

MACRO-DEFINED MNEMONICS

C.3 KLIO EXTEND INSTRUCTION MNEMONICS

Table C-4 shows the KLIO EXTEND instruction mnemonics and the code
assembled by each. All of these mnemonics are defined only if MACRO
is assembled with the KLIO switch on.

See the Supplement to the Hardware Reference Manual for a discussion
of these EXTEND instructions.

Table C-4
KLIO EXTEND Instruction Mnemonics

002 00 a 00 000000 *CMPSE 010 00 0 00 000000 *CVTDBO
007 00 a 00 000000 *CMPSG all 00 a 00 000000 *CVTDBT
005 00 a 00 000000 *CMPSGE 004 00 a 00 000000 *EDIT
001 00 a 00 000000 *CMPSL 016 00 a 00 000000 *MOVSLJ
003 00 a 00 000000 *CMPSLE 014 00 a 00 000000 *MOVSO
006 00 a 00 000000 *CMPSN 017 00 0 00 000000 *MOVSRJ
012 00 a 00 000000 *CVTBDO 015 00 a 00 000000 *MOVST
013 00 a 00 000000 *CVTBDT 020 00 a 00 000000 *XBLT

C-9

MACRO-DEFINED MNEMONICS

C.4 JRST AND JFCL MNEMONICS

Table C-5 shows mnemonics that assemble both operator and accumulator
fields in the machine instruction. The left side of th& table shows
the mnemonics and the code they generate7 the right side shows JRST
and JFCL mnemonics with accumulators generating the equivalent code.

Table C-5
JRST and JFCL Mnemonics

Code and Mnemonic Equivalent Code and Mnemonic

254 04 0 00 000000 HALT 254 04 0 00 000000 JRST 4,
255 06 0 00 000000 JCRY 255 06 0 00 000000 JFCL 6,
255 04 0 00 000000 JCRYO 255 04 0 00 000000 JFCL 4,
255 02 0 00 000000 JCRYI 255 02 0 00 000000· JFCL 2·,
254 12 0 00 000000 JEN 254 12 0 00 000000 JRST 12,
255 01. 0 00 000000 JFOV 255 01 0 00 000000 JFCL 1,
255 10 0 00 000000 JOV 255 10 0 00 000000 JFCL 10,
254 02 0 00 000000 JRSTF 254 02 0 00 000000 JRST 2,
254 01 0 00 000000 PORTAL 254 01 O· 00 000000 JRST 1,
254 06 0 00 000000 *XJEN 254 06 0 00 000000 JRST 6,
254 05 0 00 000000 *XJRSTF 254 05 0 00 000000 JRST 5,
254 07 0 00 000000 *XPCW 254 07 0 00 000000 JRST 7,
254 14 0 00 000000 *XSFM 254 14 0 00 000000 JRST 14,

C-I0

APPENDIX D

PROGRAM EXAMPLES

The following pages contain examples of MACRO programs. Each program
has been assembled with the /C (CREF) switch ani this produces a .CRF
file for the program listing (instead of the usual .LST file). The /0
switch has been used with the CREF program to produce a .LST file that
includes all operators in an operator symbol table.

D-l

tj
I

r-v

MACROS
EXAM20

MACRO %53(1017) 16:17 2-Mar-78 Pa~e 1
MAC 2-Mar-78 16:17 Example One

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

NO ERRORS DETECTED

PROGRAM BREAK IS 000000
CPU TIME USED 00:00.570

34P CORE USED

SUBTTL Example One
UNIVERSAL MACROS

;This UNIVERSAL pro~ram contains the macro QUIT, which uses
conditional assembl~ to ~enerate a pro~ram exit monitor
call. If the TOPS10 switch is on when QUIT is called (or if
it is undefined), QUIT ~enerates -EXIT-; if the switch
is off, QUIT ~enerates -HALTF-.

DEFINE QUIT <

).

:>

~:.

:::.
PRGEND

IFNDEF TOPS10,(
TOPS10==-1

IFE TOPS10,':::
HALTF

IFN TOF'S10, <
EXIT

;;Default is TOPS10

I'tI
l:tI o
G1

~
3:

tzl
:><
~
3:
I'tI
t'1
tzl
rn

t:l
I

w

Second Example of MACRO Program MACRO %53(1017) 16:17 2-Mar-78 Page 2
EXAM20 MAC 2-Mar-78 16:17 Example Two

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

SUBTTL Example Two
TITLE Second Example of MACRO Program

;This program contains the macros CLEAR, CONCAT, and EXPAND.

;

These can be used to append arbitrar~ text into a buffer,
and to recall the text later. Two seauences of calls
to the macros show possible uses.

;The following points are of interest:

1. The buffer is cleared b~ calling CLEAR. Text is added
(on the right side of the buffer) b~ calling CONCAT.
EXPAND, when used in a context allowed for macro calls,
expands the contents of the buffer into source code.

2. A call to CLEAR defines the text buffer, EXPAND, to
contain no text. It also defines the macro CONCAT in
such a wa~ that the first call to CONCAT redefines
EXPAND to contain the first piece of text, and CONCAT
redefines itself so that further calls to CONCAT will
call the internal macro CONi. Following the second
call to CONCAT, each further call merel~ appends new
text to the old.

3. A ke~ feature of EXPAND is that it contains no carriage
returns. If it did, then each concatenation of new
text would also insert a carriage return into the text.

4. The first use of these macros shows that EXPAND can be
placed in contexts where more than one argument will
result (as in the BYTE pseudo-op). Note that because
angle brackets are used internall~ (inside the macros)
to delimit text, all concatenated text must contain
matched angle brackets.

5. Note that carriage returns, if desired, can be easil~
conc~tenated to the buffer; this is done in the second
use of the macros.

ttl
!:t' o
Gl

~
3:

t1]
:><
~
3:
ttl
t'"1
t1]
til

t::I
I
~

Second Example of MACRO ProSram MACRO %53(J017) 16:17 2-Mar-78 Pa~e 3
EXAM20 MAC 2-Mar-78 16:17 Example Two

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91 000000' 010 101 006 00000
92
93
94
95
96
97
98
99

100
101
102
103
104

DEFINE CLEAR <
DEFINE CONCAT (FTXT) <

DEFINE CONCAT (TEXT) <
CONl <TEXT),<FTXT)

).

DEFINE EXPAND <FTXT>
~~

DEFINE EXPAND <>
~:.

DEFINE CONl (NTXT,OTXT) <
DEFINE CONCAT (TEXT) <

CONl <TEXT>,<OTXT'NTXT>
:;:.
DEFINE EXPAND <OTXT'NTXT>

:::-

SALL

CLEAR

CONCAT <10>
CONCAT <,>
CONCAT <·A·>
CONCAT <,«-1,,6>&177»

LALL
BYTE (7)EXPAND~10,·A·,«-1,,6>&177)~

SALL
CLEAR

CONCAT <DEF>
CONCAT <INE FOO ()
CONCAT <N»
CONCAT «2*N>
DEFINE)
CONCAT < BAR (N) <3*N)
::. ..

~
~
o
G)

~
~
ttl
~
!):II
3:
""d
t'1
ttl
til

o
I

U1

Second Example o~ MACRO ProSram MACRO %53(1017) 16:17 2-Mar-78 PaSe 4
EXAM20 MAC 2-Mar-78 16:17 Example Two

105
106
107
108
109
110
111
112 000001' 000000
113 000002' 000000
114 000003' 000000
115 000004' 000000
116
117

NO ERRORS DETECTED

PROGRAM BREAK IS 000005
CPU TIME USED 00:00.166

34P CORE USED

000004
000006
000006
000011

LALL
EXPAND-DEFINE FOO (N)(2*N>
DEFINE BAR (N) (3*N>

FOO 2-2*2-
FOO 3-2*3-
BAR 2-3*2-
BAR 3-3*3-

PRGEND

to
l:tI o
G'l

~ s:
tzl
:><
~ s:
to
t'1
tzl
til

0
I

0"1

Third Example of MACRO Pro~ram MACRO %53(1017) 16:17 2-Mar-78 Pa~e 5
EXAM20 MAC 2-Mar-78 16:17 Example Three

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

SUBTTL Example Three
TITLE Third Example of MACRO Pro~ram

;This pro~ram uses the macros NUMLST and X to ~enerate parallel
tables.

;
;This example ~enerates a table that contains ke~words suitable

for comparison to user input; the second table ~enerated
contains addresses or routines that handle those ke~words;
the third table contains useful values.

;
;The ke~word table is arran~ed alphabeticall~ to speed searchin~;

the other two tables correspond entr~-for-entr~ to the
ke~word table.

;
;Ke~ features of this pro~ram include:

1. Chan~in~ the size of the tables is eas~. For example,
if a new entr~, FIFTH, is needed, addin~ the word and
a dumm~ label to the definition of NUMLST will update
both tables; no separate update is reQuired.

2. The macro NUMLST calls the macro X. Before each call
to NUMLST, X is redefined so that the proper kind of
table is built. Note that a definition of X need not
use both ar~uments in the macrobod~. (However, X should
define both ar~uments.)

3. The second definition of X uses concatenation to build
mnemonic labels for the table LBLTBL.

4. The pro~ram uses the macro QUIT so that it can be used
for either TOPS-l0 or TOPS-20. The SEARCH MACROS statement
makes the definition of QUIT available; since the default
for QUIT is TOPS-l0, the pro~ram will run on TOPS-l0 if
either it defines TOPS10=-1 or does not define TOPS10;
the pro~ram will run on TOPS-20 onl~ if it defines
TOPS10=0.

ItJ
~ o
Gl

~
3:

t%j

:><:
):01
3:
ItJ
t"i
t%j
(J)

Third Example of MACRO Pro~ram MACRO %53(1017) 16:17 2-Mar-78 Pa~e 6
EXAM20 MAC 2-Mar-78 16:17 Example Three

158
159
160 SEARCH MACROS,MONSYM
161 000000 TOF'S10==0
162 .DIRECTIVE SFCOND
163
164 DEFINE NUMLST <
165 X (FIRST,1)
166 X (FOURTH,4)
167 X (SECOND,2)
168 X (THIRD,3)
169 :>
170
171 DEFINE X (TEXT, JUNK) <EXP SIXBIT ITEXT/>
172
173 000000' NAMTBL: NUMLST~

174 000000' 465162 636400 X (FIRST,l)~EXP SIXBIT IFIRST/~ "tI
175 000001' 465765 626450 X (FOURTH,4)~EXP SIXBIT IFOURTH/~ ~

0
176 000002' 634543 575644 X (SECOND,2)~EXP SIXBIT ISECOND/~ G'l
177 000003' 645051 624400 X (THIRD,3)~EXP SIXBIT ITHIRD/~ ~

178 000004 TBLLEN==.-NAMTBL :J::II
0 3:
I 179

-.J 180 DEFINE X (JUNK,LABL) ($'LABL> tJ]
~

181 :J::II
182 000004' LBLTBL: NUMLST~ 3:
183 000004' 000000 000014' X (FIRST,l)~$l'"' "tI

t"t
184 000005' 000000 000017' X (FOURTH,4)'"'$4'"' tJ]

185 000006' 000000 000015' X (SECOND,2)'"'$2'"' til

186 000007' 000000 000016' X (THIRD,3)'"'$3'"'
187
188 DEFINE X (JUNK,VALU) <DEC VALU>
189
190 000010' VALTBL: NUMLST'"'
191 000010' 000000 000001 X (FIRST,l)'"'DEC 1'"'
192 000011' 000000 000004 X (FOURTH,4)'"'DEC 4'"'
193 000012' 000000 000002 X (SECOND,2)'"'DEC 2'"'
194 000013' 000000 000003 X (THIRD,3)'"'DEC 3'"'
195
196

o
I

co

Third Example of MACRO Program MACRO Z53(1017) 16:17 2-Mar-78 Page 7
EXAM20 MAC 2-Mar-78 16:17 Example Three

197
198
199
200 000014'
201 000014' 104 00 0 00 000170
202 000015'
203 000015' 104 00 0 00 000170
204 000016'
205 000016' 104 00 0 00 000170
206 000017'
207 000017' 104 00 0 00 000170
208
209

NO ERRORS DETECTED

PROGRAM BREAK IS 000020
CPU TIME USED 00:00.152

34P CORE USED

XALL
$1: aUIT~

HAL ofF
$2: aUIT~

HALTF
$3: aUIT~

HALTF
$4; aUIT~

HALTF

PRGEND

"tI
!:t1
a
G")

$!
::c
t%l
:><
:J::oI ::c
"tI
t'1
t%l
(Jl

o
I

\.0

Third Example of MACRO ProSram MACRO %53(1017) 16:17 2-Mar-78 PaSe 5-1
EXAM20 MAC 2-Mar-78 16:17 SYMBOL TABLE

HALTF 104000 000170 int
LBLTBL 000004'
NAMTBL 000000'
TBLLEN 000004 spd
TOP510 000000 spd
VALTBL 000010'
$1 000014'
$2 000015'
$3 000016'
$4 000017'

ttl
~ o
Gl

~
3:

[I]

~
::t>'
3:
ttl
t'1
[I]
til

0
I

......
0

Fourth Example of MACRO Pro~ram MACRO %53(1017) 16:17 2-Mar-78 Pa~e 8
EXAM20 MAC 2-Mar-78 16:17 Example Four

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

SUBTTL Example Four
TITLE Fourth Example of MACRO Pro~ram

;This pro~ram contains a complex and useful macro, COMMON.
The macro allows declaration of variable names for a
FORTRAN-compatible COMMON block. Note that the pseudo-op
.COMMON allows declaration of a COMMON block, but not of
variable names within the block.

;The COMMON macro uses two ar~uments:

;

1. The name of the COMMON block.

2. An IRP-style list of the variable names for the block.
The list can contain either variable names onl~ (with
an assumed len~th of one word for each variable), or
can contain an an~le-bracketed pair ~ivin~ the name and
the len~th in decimal.

;Key features of the pro~ram include:

1. Len~ths for variables are ~iven in decimal numbers,
so that the definitions look much like those in the
FORTRAN lan~ua~e. This is accomplished b~ storin~
the current radix in a created symbol, and restorin~
it at the end of the macro.

2. The macro uses the techniGue of IRPin~ more than once
on the IRP list. The first IRP counts the len~th of
the entire COMMON block, so that the .COMMON pseudo-op
can be used; the second IRP declares variable names
for each entry in the block.

3. The pseudo-ops .XCREF and PURGE are used often
in the macro; this is to remove references to created
symbols from the CREF listin~ and the s~mbol table.

4. Created symbols are used in the macro for symbols that
are used onl~ within the macro itself. This minimizes
the chance that other definitions will conflict with
these symbols.

5. Once the COMMON macro has been called. symbols in the
COMMON block may be used mu~h as any other symbols;
this is shown in the IFIX and ZERO routines.

tt1
!:Jj
o
G'l

~
3:
tzj
:><
:J:oI
3:
tt1
t""
tzj
ttl

0
I

.......

.......

Fourth Example of MACRO ProSram MACRO Z53(1017) 16:17 2-Mar-78 PaSe 9
EXAM20 MAC 2-Mar-78 16:17 Example Four

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

DEFINE COMMON (COM,VARS,ZRAD,ZLEN,ZVAL,ZCOM,ZPAS) <
.XCREF ZRAD,ZLEN,ZVAL,ZCOM,ZPAS

)*

;;Temp macro to strip one pair of ansle brackets from
;; a macro arSument and pass it to another macro

DEFINE ZPAS (A,B) (A B)

;;Temp macro to ~ompute lensth of COMMON

DEFINE ZCOM (VAR,LEN(I» (%LEN==%LENtLEN)

:r.RAD==10
RADIX 10
ZLEN==O
IRP VARS(ZPAS ZCOM,VARS)
.COMMON COM[:r.LENJ

DEFINE :r.COM (VAR,LEN(l» (
VAR=ZVAL

., .,.
ZVAL==:r.VALtLEN

ZLEN==O
ZVAL==COM
IRP VARS(ZPAS :r.COM,VARS)
RADIX %RAD

;;Save current radix, use 10
;; so defs read like FORTRAN
;;Set to count lensth of COMMQN
;;Get lensth of this COMMON
;;Allocate the whole COMMON

;;Set UP another temp macro
;;Define COMMON block entr~
;;Increment to next entr~

;;Reinitialize lensth
;;Start to define entries in block
;;Define next COMMON entr~
;;Restore current radix

IF2,(PURGE %LEN,ZRAD,ZVAL,:r.COM,:r.PAS) ;;Keep s~mbol table clean

tt:I
:;d
o
Gl

~
3:

trl
:><
:J:>I
3:
tt:I
tot
trl
til

o
I

......
N

Fourth Example of MACRO ProSram MACRO %53(1017) 16:17 2-Mar-78 PaSe 10
EXAM20 MAC 2-Mar-78 16:17 Example Four

291
292
293
294
295
296
297
298
299
300
301
302 000000' 122 01 0 00 OOOOOOt
303 000001' 202 01 0 00 000000*
304 000002' 263 17 0 00 000000
305
306
307
308 000003' 200 01 0 00 000007'
309 000004'402 00 0 00 OOOOOOt
310 000005' 251 01 0 00 OOOOOOt
311 000006' 263 17 0 00 000000
312
313 000007'
314 000007' OOOOOot OOOOOOt
315
316

NO ERRORS DETECTED

PROGRAM BREAK IS 000010
CPU TIME USED 00:00.232

36P CORE USED

INTEGER SNGLE,ARRAY,MULTI
REAL REAL
DOUBLE PRECISION DOUBLE
COMMON /AREA/SNGLE,REAL,DOUBLE,ARRAY(10),MULTI(5,10)

COMMON AREA,<SNGLE,REAL,<DOUBLE,2>,<ARRAY,10>,<MULTI,5*10»~

;Sample routine to do SNGLE=IFIX(REAL)

IFIX: FIX 1,REAL
MOVEM 1,SNGLE
POPJ 17,

;Sample routine to set all elements in ARRAY to 0

ZERO:

LIT

MOVE 1,[XWD ARRAY,ARRAY+1J
SETZM ARRAY
BL T 1, ARRAY+,"'D9
F'OPJ 17,

END

"0
~ o
G1

$!
3:
I:%]
:>c:
):II
3:
"0
t-t
I:%]
til

t:I
I

I--'
W

Fourth Example of MACRO Pro~ram MACRO %53(1017) 16:17
EXAM20 MAC 2-Mar-78 16:17 SYMBOL TABLE

AREA 00000 l' e;·{t
ARRAY 000000000000=1= pol
DOUBLE 000000000000=1= pol
IFIX 000000'
MULTI 000000000000=1= pol
REAL 000000000000=1= pol
SNGLE 000000*
ZERO 000003'

2-Mar-78 Pa~e S-2

to
~ o
G"l

~
3:

[J:]

:>c:
~
3:
to
tot
[J:]
(Jl

o
I

......
,1:::0.

AREA
ARRAY
DOUBLE
IFIX
LBLTBL
MULTI
NAMTBL
REAL
SNGLE
TBLLEN
TOPS10
VALTBL
ZERO
$1
$2
$3
$4

299+
299+
299+
302+
182+
299+
173+
299+
299+
178+
161+
190*
308+
183
185
186
184

299
308

178
302
303

201

200+
202+
204+
206+

309 310

202 203 204 205 206 207 208

"0
~ o
G)

~
3:

ttl
:><
:JlI
3:
"0
t""
ttl
til

o
I

.....
U1

BAR
CLEAR
COMMON
CON1
CONCAT

EXPAND
Faa
HALTF
NUMLST
QUIT
X

•• 0004
•• 0005

1094
641

2591
741
831
98
831

1081
201
1641

101
1711
194
299
299

114 115
83 94

298
86 87 88
85 851 86
984 99 1001
851 861 87:1:

112 113
203 205 207
173 182 190
200 202 204
174 175 176

2991

97 98 100 102
861 87 871 88 881

101 1024
B81 91 941 961 97t

206
177 1801 183 184 185

941 96 961

984 lOOt 1021

186 188t 191

97 97:1=

108

192 193

ttl
~ o
Gl

~
3:

[:I:]

:><:
):II
3:
ttl
t'1
[:I:]

til

BLT 310
BYTE 91
DEC 191 192 193 194
DEFINE 10 64 74 83 85 86 87 88 94 96 97 98 100 102

108 109 164 171 180 188 259 299
END 316
EXP 174 175 176 177
FIX 302
IF2 299
IFE 201 203 205 207
IFN 202 204 206 208
IFNDEF 201 203 205 207
IRP 299
LALL 90 107
LIT 313
MOVE 308
MOVEM 303
POPJ 304 311
PRGEND 21 117 209
PURGE 299 ftJ
RADIX 299 !:tJ

0
SALL 81 93 Gl
SEARCH 160

~ t1 SETZM 309
1 SIXBIT 174 175 176 177 I-' tr.l 0'1 SUB TTL 1 22 118 210 >: TITLE 23 1-19 211 ~. UNIVER 2

XALL 199 t""
XWD 308 tr.l
.COMMO 299 til

.DIREC 162

APPENDIX E

PSEUDO-OPS FOR SYSTEM COMPATIBILITY

The pseudo-ops in this appendix are included for system compatibility;
they are to be used only to assemble TOPS-IO programs while running
TOPS-20.

E-l

FORMAT

FUNCTION

PSEUDO-OPS FOR SYSTEM COMPATIBILITY

HISEG

HISEG address

address = program high-segment origin address. Must be
equal to or greater than 400000 and must be a
multiple of 1000.

Directs the loader to load the current program into the
high segment if the program has reentrant (two-segment)
capability. HISEG should appear at the beginning of
the source program.

HISEG does not affect assembler operation. The code
produced by HISEG will execute at either relocatable 0
or relocatable 400000, depending on the loading
instructions given.

The code following HISEG looks as if it was assembled
to start at relocatable o.

This pseudo-op has been replaced by TWOSEG.

E-2

FORMAT

FUNCTION

PSEUDO-OPS FOR SYSTEM COMPATIBILITY

-I~ ________ R_I_M ______ ~
RIM

Specifies a format for absolute binary programs (useful
only for PDP-6 systems), and consists of a series of
paired words.

The first word of each pair is a paper-tape read
instruction giving the memory address of the second
word. The last pair of words is a transfer block; the
first is an instruction obtained from the END statement
and executed when the transfer block is read, and the
second is a dummy word to stop the reader.

E-3

FORMAT

FUNCTION

PSEUDO-OPS FOR SYS~EM COMPATIBILiTY

RIMIO

RIMIO

Causes a program format in which programs are ab~olute,
unblocked, and· not checksummed. When the RIMIO
statement follows a LOC statement in a program, the
assembler punches out each storage word in the object
program, starting at the absolute address specified in
the LOC· statement. RIMIO ~ritesan arbitary "paper
tape"~ if it·is in the format given below, it can be
read by the DECsystem-lO Read-In Mode hardware.

IOWD n,first

where n is the length of the program including the
ending word transfer, and first is the first memory
location to be occupied. The last location must
contain a transfer instruction to begin the program,
such as

JRST 4,GO

For example, if a program with RIMIO
first location at START and its
FINISH,you can write

IOWD FINISH-START+l,START

NOTE

output has its
last location at

If the location counter is increased but no
binary output occurs (for example, BLOCK, LaC,
and VAR pseudo-ops), MACRO inserts a zero word
into the binary output file for each location
skipped by the location counter.

E-4

FORMAT

FUNCTION

PSEUDO-OPS FOR SYSTEM COMPATIBILITY

RIMIOB

RIMIOB

If a program is assembled into absolute locations (not
relocatable), a RIMIOB statement following the LOC
statement at the beginning of the source program causes
the assembler to write out the object program in RIMIOB
format. This format is designed for use with the
DECsystem-lO Read-In Mode hardware.

The program is punched during Pass 2, starting at the
location specified in the LOC statement. If the first
two statements in the program are

LOC 1000
RIM10B

MACRO assembles the program with absolute addresses
starting at 1000 and punches the program in RIMIOB
format, also starting at location 1000. You can reset
the location counter during assembly, but only one
RIMIOB statement is needed to punch the entire program.

In RIMIOB format, the assembler punches the RIMIOB
Loader, followed by the program in 17-word (or less)
data blocks, each block separated by blank tape. The
assembler inserts an I/O transfer word (IOWD) preceding
each data block, and also inserts a 36-bit checksum
following each data block. The word count in the IOWD
counts only the data words in the block, and the
checksum is the 36-bit added checksum of the IOWD and
the data words.

Data blocks can contain less than 17 words. If the
assembler assigns a nonconsecutive location, the
current data block is terminated, and an IOWD
containing the next location is inserted, starting a
new data block.

The transfer block consists of two words. The first
word of the transfer block is an instruction obtained
from the END statement. This first word is executed
when the transfer block is read. The second word is a
dummy word to stop the reader.

E-5

APPENDIX F

STORAGE ALLOCATION

MACRO allocates storage in two directions:

1. User symbols and macronames are entered in the symbol tables.

2. Macros and literals are entered in free space.

A symbol table entry is two words long. The first word is the symbol
name in SIXBIT. The second word has flags in the left half, and
either the value or a pointer in the right half. The flags indicate
symbol type and attributes.

The following list shows how symbols and values are stored.

Type

IS-bit symbol

36-bit symbol
(includes OPDEFs
and negative numbers)

EXTERNAL symbol

Polish symbol

How Stored

Value in right half of second word.

Value in free storage with a pointer in
symbol table.

Po~nter in symbol table to a 2-word block in
free storage. The first word is the value
that is the last reference in a chain of
references to the symbol; the second word is
the symbol name in SIXBIT.

The symbol table entry points to a 2-word
block:

word 1: 0
word 2: negative number"address

Word 1 is the relocation word and is always
zero. Word 2 gives the address of a Polish
stack in free storage. The Polish stack is
of the form:

word 1: 0
word 2: opcode
word 3: relocation constant
word 4: value
word 5: relocation constant
word 6: value

F-l

Inter-PSECT reference

Synonym operator
(SYN argument)

Macroname

STORAGE ALLOCATION

Words 1 and 4 designate an operand. If the
operator is binary, words 5 and 6 designate
the second operand; if the operator is
unary, the stack contains only four words.

If an operand is EXTERNAL, its two words (3
and 4, or 5 and 6) are:

word i: pointer to EXTERNAL symbol
word i+l: 0

If an operand is itself a Polish symbol, its
two words are:

word i: Polish pointer
word i+l: 0

Polish stack containing:

word 1: 0
word 2: 15
word 3: -2
word 4 : referenced PSECT index
word 5: relocation const~nt
word 6: address

SIXBIT operator riame in. free st6rage with-a
pointer in the symbol table.

Value in -free storage with a pointer to the
text string in symbol table.

The text string is stored in a 4-word block
of the form:

word 1: link to next block (0 if
last) "two ~haracters

word 2: five characters
word 3: five characters
word 4: five characters

However, the first such block is
special:

word l: link to next block"link
- -to last block

word 2: pointer to default
arg."number of args
expected + reference count

word 3: five characters
word 4: five characters

The number of args expected is the number of
dummy-arguments in the macro definition.

The reference count is incremented when the
macro is called and decremented when the
macro is exited. When this count goes to
zero, the macro is removed from free space.

F-2

Macro arguments

Macros

STORAGE ALLOCATION

Stored in the same linked block, but not in
the symbol table. Repeats (two or more
times) are also stored in the same way. The
text blocks are removed when the macro exits
or the repeat exits, since the reference
count has gone to zero.

The addresses of the actual argument blocks
are stored in a pushdown stack in order of
generation.

Default arguments are stored in the same way,
except that the list is in free core. The
pointer to the default arg list is stored in
the left half of the second word of the first
block of the macro definition.

The macrobody is stored as is,
dummy-arguments are replaced
symbols.

except that
by special

ASCII 177 (RUBOUT) signals that the next
character is a special character, as follows:

001. ;end of macro
002 ;end of dummy symbol
003 ;end of REPEAT
004 ;end of IRP or IRPC
005 ;RUBOUT

If the character is more than 5 and less than
100, it is illegal.

If the character is greater than or equal to
100, it is a dummy symbol; the value of the
character is ANDed with 37 to get the dummy
symbol number, and the corresponding pointer
retrieved from the stack of actual arguments.

If the symbol was not specified (that is, has
no pointer), and if the 40 bit is on, this
symbol requires a created symbol, and one is
created; otherwise the argument is ignored.

NOTE

Verbose macros can use too
storage space.

F-3

much

Literals

STORAGE ALLOCATION

Four-word block for each word generated

word 1: form word
word 2: relocation bits
word 3: code
word 4 : pointer to next block

Form word is the word used for listing.
This word is not checked when comparing
literals, so that different forms
producing the same code are classed as
equal.

Relocation bits are 0, 1, or EXTERNAL
pointers.

Pointer is the address of the zero word
of the next block.

NOTE

Long literals slow assembly and
~se storage; they should be
written as subroutines or inline
code.

F-4

APPENDIX G

ACCESSING ANOTHER USER'S FILE

MACRO allows you to access another user's file in two ways. The first
is to give a logical name in place of the device name; the second is
to give a project-programmer number instead of a directory name. You
can give either of these in your program or in a MACRO command line.

For more information about referencing other users' files, refer to
the DECSYSTEM-20 User's Guide.

G.l USING LOGICAL NAMES

To use a logical name in accessing another user's file, you must:

1. Give the DEFINE command to define a logical name (of no more
than six characters) as the other user's directory name.

2. Use the logical name as the device name whenever giving the
file specification.

G.l.l Giving the DEFINE Command

TO give the DEFINE command:

1. Type DEF and press the ESCAPE key;
(LOGICAL NAME) •

@DEFINE (LOGICAL NAME)

the system prints INE

2. Type the logical name, ending it with a colon; then type the
directory name in angle brackets and RETURN:

@DEFINE (LOGICAL NAME) BAK:<BAKER>
@

To check the logical name, give the INFORMATION (ABOUT)
LOGICAL-NAMES command.

@INFORMATION (ABOUT) LOGICAL-NAMES
BAK: => <BAKER>
@

G-l

ACCESSING ANOTHER USER'S FILE

G.l.2 Using the Logical Name

You can include the logical name in a command line or in your program.

G.l.2.1 Command Lines - To include the logical name in a command
line, type the logical name in place of a device name.

The following example shows how to compile the file <BAKER>SPEC.MAC.
You must have already defined the logical name BAK: as <BAKER>.)

@MACRO
*SPEC.REL=BAK:SPEC.MAC

G.l.2.2 User Programs - After giving the DEFINE command, include the
logical name within the program to reference the file.

The following example shows how to
<BAKER>MACROS.MAC with a .REQUEST pseudo-oPe

.REQUEST BAK:MACROS.MAC

ref~renc~ the file

This command causes LINK to load the file MACROS.MAC from the
directory that has been assigned the logical name BAK.

G.2 USING PROJECT-PROGRAMMER NUMBERS

To use a project-programmer number in accessing anothet user's file,
you must:

1. Run the TRANSL program to find "the corresponding
project-programmer number for the given"directory name.

2. Include the project-programmer number after the filename.

You do not have
project-programmer.
sometimes change;

to define a logical name if. you use a
number. Project~programmer numbers," however,

therefore, use logical names wherever possible.

G.2.1 Running the TRANSL Program

To run the TRANSL program, you must:

1. Type TRANSL and press the ESCAPE key. The ~ystem completes
the line as TRANSLATE (DIRECTORY).

@TRANSLATE (DIRECTORY)

2. Type the directory name and press the RETURN key. The system
prints the appropriate project-programmer number.

TRANSLATE (DIRECTORY>(BAKER>
PS:<BAKER> IS PS:C4,204J

G-2

ACCESSING ANOTHER USER'S FILE

You can also use the TRANSL program to make sure a project-programmer
number is correct. Simply replace the directory name with the
project-programmer number.

@TRANSLATE (DIRECTORY)[4,204J
PS:C4,204J IS PS:<BAKER>

G.2.2 Using the Project-Programmer Number

You can include the project-programmer number in a command line or in
your program. Because project-programmer numbers can change, you
should use a logical name.

G.2.2.l Command Lines - To include a project-programmer number in a
command line, type the project-programmer number after the file
specification.

The following example shows how to compile the file <BAKER)SPEC.MAC by
using a project-programmer number.

@MACRO
*SPEC.REL=SPEC.MACC4,204J

G.2.2.2 User Programs - After obtaining the project-programmer
number, you can use it within the program to reference the file.

The following example shows how to reference the file
<BAKER)MACROS.MAC from your program.

.REQUEST MACROS.MACC4,204J

This command causes LINK to load the file MACROS.MAC from the
directory associated with [4,204] •

G-3

jA, 7-3
Absolute address, 3-38,

3-46
Absolute expression, 2-15
Absolute symbol, 2-12 '
Accumulator, 4-4
Accumulator,

implicit, 4-6
Addition, 2-13
Address, 1-3, 4-4
Address,

absolute, 3-38, 3-46
relocatable, 3-46, 3-57
starting, 3-17

Address assignment, 4-3
Allocation,

storage, F-l
Ampersand (&), B-4
AND, 2-13
Angle brackets «», B-7
Apostrophe ('), 6-2, B-5
Argument,

concatenating, 5-8
default, 5-8
dummy, 5-1, 5-2
missing, 5-2
null, 5-2
passed, 5-1, 5~2
quoting characters in,

5-4
Argument handling, 5-4
Argument interpretation,

5-11
Argument list, 5-4
Argument storage,

macro, F-3
Arithmetic expression, 2-13
Arithmetic operator, 2-13
Arithmetic overflow, 3-16
ARRAY, 3-2
ASCII (pseudo-op), 3-3
ASCII character codes, A-I
ASCII characters, 2-1
ASCIZ, 3-4
Assembler output, 6-1
Assembly,

conditional, 3-23, 3~24,
3-25, 9-5

.ASSIGN, 3-6
Assignment,

address, 4-3
Asterisk (*), 6-2, B-4
ASUPPRESS, 3-7
At-sign (@), B-6
Attributes,

symbol, 2-12, 3-23, 3-24

INDEX

B, B-2
jB, 7-3
.... B, B-2
Backslash (\), B-5
Backslash-apostrophe (\'),

B-6
Backslash-quote (\"), B-6
Binary program file, 6-5
Binary shifting, 2-6
Bit 0 (sign bit), 2-2
Bit pattern,

querying,,2-6
BLOCK, 3-8, 6-2
Brackets «»,

angle, B-7
Brackets ([]),

square, B-7
BYTE, 3-9
Byte pointer, 3-50

jC, 7-3
Call,

macro, 5-2
Character codes, A-I
Characters,

ASCII, 2-1
MACRO, 2-1
special, 2-2

Code,
error, 6-3
relocatable, 1-3

Codes,
symbol table, 6-4

Colon, B-3
Colon (:), B-7
Colon (::),

double, B-3
Comma (,), B-4
Comma (,,),

double, B-4
Command level,

MACRO, 7-1
Comment, 3-10, 3-59, 4-2,

4-3
COMMENT (pseudo-op), 3-10
Comment pseudo-ops,

COMMENT, 3-10
REMARK, 3-59

.COMMON, 3-11
Compatibility pseudo-ops,

E-l
Compilation,

program, 7-1

Index-l

Compiler switches,
MACRO, 7-3

Complement,
one's, 2-14
two's, 2-2

Concatenating argument, 5-8
Conditional assembly, 3-23,

3-24, 3-25, 9-5
Conditional pseudo-ops,

.IF, 3-23
• IFN, 3-24
IFx group, 3-25

Counter,
location, 2-8, 3-15, 3-38,

3-46, 3-49, 3-57, 3-74,
4-4, B-3

Counter pseudo-ops,
.ENDPS, 3-18
LOC, 3-38
.ORG, 3-46
.PSECT, 3-53
RELOC, 3-57
TWOSEG, 3-74

Created symbol, 5-9
.CREF, 3-12
Cross-reference table, 3-12,

3-79, 6-4
CTRL/underscore, B-6

.... D, B-2
DEC, 3-13
Decimal number,

fixed-point, 2-3
floating-point, 2-4

Decimal point (.), B-3
Default argument, 5-8
DEFINE (pseudo-op), 3-14
Definition,

label, 2-10
macro, 5-1
nested macro, 5-6
symbol, 2-10, 3-70, 4-3

DEPHASE, 3-15
Device code, 4-6
Device code mnemonics,

I/O, C-6
Direct-assignment symbol,

2-11, 4-3
.DIRECTIVE, 3-16
Division, 2-13
Dot (location counter), 2-8,

4-4, B-3
Double colon (::), B-3
Double comma ("), B-4
Double equal sign (==), B-7
Double pound-sign (##), B-5

INDEX (CONT •)

Double quotation marks ("),
B-5

Double semicolon (11), B-3
Dummy-argument, 5-1, 5-2

E, 2-5, B-2
IE, 7-3
END, 3-17
• ENDPS , 3-18
Ent code, 6-4
ENTRY, 2-12, 3-19
Equal sign (=), B-7
Equal sign (~=),

double, B-7
.EROVL, 3-16
Error code, 6-3

single-character, 8-3
Error messages,

MCRxxx, 8-7
Evaluating expressions,

2-14, 2-15
Examples, .

program, D-1
Exclamation point (1), B-3,

B-4
EXP, 3-20
ExpJ:ession,

absolute, 2-15
arithmetic, 2-13
evaluating, 2-15.
logical, 2-13
nested, 2-15
Polish, 2-14
re1ocatable, 2-15

Expressions,
evaluating, 2-14

Ext code, 6-4
EXTEND, 4-7
EXTEND mnemonics,

KLIO, C-9 ,.
Extended Instruction,

KL-IO, 4-7
EXTERN, 2-13, 3-21
EXTERNAL symbol, 2-12, 2-13,

2-14
EXTERNAL symbol storage,

F-l

/F, 7 3
.... F, B-2
File,

l~sting, 6-1'
UNIVERSAL, 6-5, 9-4

Fixed-point decimal number,
2-3

Index-2

FLBLST, 3-16
Floating-point decimal

number, 2-4

G, 2-3, B-2
/G, 7-3
Global symbol, 2-12, 2-13

/H, 7-3
Halfword, 1-3, 3-82
Halfword notation, 2-15
Hierarchy of operations,

2-14
HISEG, E-2
.HWFRMT, 3-21
Hyphen (-), B-4

I/O device code mnemonics,
C-6

I/O instruction format, 4-6
I/O instruction mnemonics,

C-6
.IF, 3-23
IFl, 3-25
IF2, 3-25
IFB, 3-25
IFDEF, 3-25
IFDIF, 3-25
IFIDN, 3-25
• IFN, 3-24
IFNB, 3-25
IFNDEF, 3-25
Implicit accumulator, 4-6
Indefinite repeat, 3~30,

3-31, 3-67, 5-10
Index register, 4-4
Indexed addressing, 4-4
Indirect addressing, 4-4
Informational messages, 8-1
Instruction format,

I/O, 4-6
primary, 4-4

Int code, 6-4
Integer, 2-2, 3-55
INTEGER (pseudo-op), 3-27
inter-PSECT reference

storage, F-2
INTERN, 2-12, 3-28
INTERNAL symbol, 2-12
Interpretation,

argument, 5-11
IOWD, 3-29
IRP, 3-30, 5-10

INDEX (CaNT.)

IRPC, 3-31, 5-10
.ITABM, 3-16

JFCL mnemonics, C-lO
JRST mnemonics, C-lO

K, 2-3, B-2
KAlO, 3-16
KIlO, 3-16
KL-IO Extended Instruction,

4-7
KLlO, 3-16
KLIO EXTEND mnemonicsj C-9

/L, 7-3
"'L, B-2
Label, 4-1, 4-3
Label definition, 2-10
Label in literal, 2-8
Label symbol, 2-10
LALL, 3-32
.LINK, 3-33
Linkage pseudo-ops,

.COMMON, 3-11
DEPHASE, 3-15
.DIRECT KAlO, 3-16
.DIRECT KIlO, 3-16
.DIRECT KLlO, 3-16
ENTRY, 2-12, 3-19
EXTERN, 2-13, 3-21
INTERN, 2-12, 3-28
.LINK, 3-33
.LNKEND, 3-37
PHASE, 3-49, 6-2
.REQUEST, 3-61
.REQUIRE, 3-62
• TEXT, 3-72
TWOSEG, 3-74
XPUNGE, 3-81

LIST, 3-34
Listing file, 6-1
Listing format, 6-2
Listing pseudo-ops,

ASUPPRESS, 3-7
.CREF,· 3-12
.DIRECT FLBLST, 3-16
.DIRECT LITLST, 3-16
,DIRECT SFCOND, 3-16
• HWFRMT, 3-21
LALL, 3-32
LIST, 3-34
.MFRMT, 3-39
.NODDT, 3-42
NOSYM, 3-43

Index-3

Listing pseudo-ops (Cont.)
PAGE, 3-47
SALL, 3-63
SUBTTL, 3-68
SUPPRESS, 3-69
TITLE, 3-73
XALL, 3-78
• XCREF, 3-79
XLIST, 3-80
XPUNGE, 3-81

LIT, 3-35
Literal, 2-7, 3-35, 3-40,

3-41
Literal,

Label in, 2-8
Literal storage, F-4
LITLST, 3-16
.LNKEND,3-37
LOC, 3-38
Local symbol, 2-12
Location counter, 2-8, 3-15,

3-38, 3-46, 3-49, 3-57,
3-74, 4-4, B-3

Logical expression, 2-13
Logical operator, 2-13

M, 2-3, B-2
/M, 7-3
Machine instruction

mnemonics, 3-83, 4-4,
<:-1

MACMPD, 3-16
MACPRF, 3-16
Macro argument storage, F-3
Macro call, 5-2
Macro call format, 5-4
MACRO characters, 2-1
MACRO command level, 7-1
MACRO compiler switches,

7-3
Macro definition, 5-1

nested, 5-6
Macro listing, 5-6
Macro pseudo-ops,

DEFINE, 3-14
.DIRECT .ITABM, 3-16
.DIRECT MACMPD, 3-16
.DIRECT MACPRF, 3-16
.DIRECT .XTABM, 3-16
IRP, 3-30, 5-10
IRPC, 3-31, 5-10
PURGE, 3-54
REPEAT, 3-60
STOPI, 3-67, 5-10

Macro table, 2-9, 2-12, 6-4
MACRO-defined mnemonics,

2-16, 4-2, C-l

INDEX (CaNT.)

Macrobody, 5-1
Macrobody storage, F-3
Macroname, 5-1
Macroname storage, F-2
MCRxxx error messages, 8-7
Memory, 1-3 .
Message pseudo-ops,

PRINTX, 3-52
Messages,

MCRxxx error, 8-7
.MFRMT, 3-39
Minus sign (-), B-5
Missing argument, 5-2
MLOFF, 3-40
MLON, 3-41
Mnemonics,

I/O device code, C-6
I/O instruction, C-6
JFCL, C-lO
JRST, C-lO
KLIO EXTEND, C-9
machine instruction, 3-83,

4-4, C-lp
MACRO-defined, 2-16, 4-2,

C-l
Multiplication, 2-13

/N, 7-3
Nested expression, 2-15
Nested macro definition,

5-6
NO (with .DIRECTIVE} , 3-16
.NOBIN, 3-16
.NODDT, 3-42
NOSYM, 3--43
NOT, 2-13
Null argument, 5-2
Number, 2~2, 3-55
Number,

fixed-point decimal, 2-3
floating-point decimal,

2-4
Number pseudo-ops,

.ASSIGN, 3-6
DEC, 3-13
.DIRECT .EROVL, 3-16
.DIRECT • OKOVL , 3-16
EXP, 3-20
OCT, 3-44
RADIX, 3-55
RADIX50, 3-56
SQUOZE, 3-66
Z, 3-83

/0, 7-3
"'0, B-3
OCT, 3-44
. OKOVL , 3-16

Index-4

One's complement, 2-14
Op-code table, 2-9
Opcode table, 6-4
OPDEF (pseudo-op), 3-45
OPDEF operator, 4-2
OPDEF storage, F-l
Operand, 4-2, 4-3, 4-4
Operation,

hierarchy, 2-14
Operator, 4-2, 4-3, 4-4
Operator,

arithmetic, 2-13
logical, 2-13

OR, 2-13
.ORG, 3-46
Output,

assembler, 6-1
Overflow,

arithmetic, 3-16

/P, 7-3
P22, 3-21
PAGE, 3-47
Parentheses, B-6
Pass 1, 3-17, 4-3
Pass 2, 3-17, 4-3
Pass control pseudo-ops,

END, 3-17
PASS2, 3-48
PRGEND, 3-51

PASS2 (pseudo-op), 3-48
Passed argument, 5-1, 5-2
Percent-sign (%), B-6
PHASE, 3-49, 6-2
Plus sign (+), B-4
POINT, 3-50
Pointer,

byte, 3-50
Pol code, 6-4
Polish expression, 2-14
Polish symbol storage, F-l
Pound-sign (##),

double, B-5
Pound-sign (#), 6-2, B-5
PRGEND, 3-51
Primary instruction format,

4-4
PRINTX, 3-52
Program,

single-segment, 9-1
two-segment, 9-2

Program compilation, 7-1
Program file,

binary, 6-5
Program listing file, 6-1
Program name, 3-73

INDEX (CONT .)

Program segmentation, 9-1
Program with PSECTs, 9-3
• PSECT, 3-53
PSECTs,

program with, 9-3
Pseudo-op,

format, 3-1
Pseudo-op operator, 4-2
Pseudo-ops,

compatibility, E-l
PURGE, 3-54

/Q, 7-3
Querying bit pattern, 2-6
Quotation marks ("),

double, B-5
Quotation marks ('),

single, B-5
Quoting characters in

argument, 5-4

Radix, 2-2
RADIX (pseudo-op), 3-55
RADIX50, 3-56
RADIX50 character codes,

A-I
Register,

index, 4-4
RELOC, 3-57
Relocatable address, 3-46,

3-57
Relocatable code, 1-3
Relocatab1e expression,

2-15
Re1ocatab1e symbol, 2-12
REMARK (pseudo-op), 3-59
Repeat,

indefinite, 3-30, 3-31,
3-67, 5-10

REPEAT (pseudo-op), 3-60
.REQUEST, 3-61
.REQUIRE, 3-62
RIM, E-3
RIMIO, E-4
RIM10B, E-5

/S, 7-4
SALL, 3-63
SEARCH, 3-64
Segmentation,

program, 9-1

Index-5

Semicolon (i), B-3
Semicolon (i i) ,

double, B-3
Sen code, 6-4
Sex code, 6-4
SFCOND, 3-16
Shifting,

binary, 2-6
underscore, 2-6

Sin code, 6-4
Single quotation marks ('),

B-5
Single-character error code,

8-3
Single-segment program, 9-1
SIXBIT (pseudo-op), 3-6~
SIXBIT character codes, A-I
Slash (I), B-4
Spd code, 6-4
Special characters, 2-2
Square brackets ([]), B-7
SQUOZE, 3-66
Starting address, 3-17
Statement format, 4-1
Statement processing, 4-3
STOPI, -3-67, 5-10
Storage, 3-2, 3-8, 3-11,

3-27, 3-35, F-l
Storage,

symbol, F-l
Storage allocation, F-l
Storage pseudo-ops,

ARRAY, 3-2
BLOCK, 3-8, 6-2
BYTE, 3-9
DEC, 3-13
EXP, 3-20
INTEGER, 3-27
IOWD, 3-29
LIT, 3-35
OCT, 3-44
POINT, 3-50
REPEAT, 3-60
VAR, 3-77
XPUNGE, 3-81
XWD, 3-82
Z, 3-83

Subroutine entry, 3-19
Subtraction, 2-13
SUBTTL, 3-68
SUPPRESS, 3-69
Switches,

MACRO compiler, 7-3
Symbol, 2-9

absolute, 2-12
created, 5-9
direct-assignment, 2-11,

4-3
EXTERNAL, 2-12, 2-13,

2-14

INDEX (CaNT.)

Symbol (Cont.)
global, 2-12, 2-13
INTERNAL, 2-12
label, 2-10
local, 2-12
relocatable, 2~12
valid, 2-9
variable, 2-11, 3-77

Symbol attributes, 2-12,
3-23, 3-24

Symbol definition, 2-10,
3-70, 4-3

Symbol pseudo-ops,
.ASSIGN, 3-6
• CREF, 3-12
DEFINE, 3-14
.DIRECT MACPRF, 3-16
ENTRY, 2-12, 3-19
EXTERN, 2-13, 3-21
INTERN, 2-12, 3-28
.NODDT, 3-42
OPDEF, 3-45
PURGE, 3-54
RADIX50, 3-56
SEARCH, 3-64
SQUOZE, 3-66
SYN, 3-70
UNIVERSAL, 3-75
VAR, 3-77
.XCREF, 3-79

Symbol storage, F-l
Symbol table, 2-9, 3-7,

3-43, 3-54, 3-64, 3-69,
3-75, 3-81, 6-4

Symbol table, .
user, 2-9, 2-12

Symbol table codes, 6-4
SYN (pseudo-op), 3-70
SYN symbol storage, F-2

IT, 7-4
Table,

cross-reference, 3-12,
3-79, 6-4

macro, 2-9, 2-12, 6-4
op-code, 2-9
opcode, 6-4
symbol, 2-9, 3-7, 3-43,

3-54, 3-64, 3-69, 3-75,
3-81, 6-4

user symbol, 2-9, 2-12
TAPE, 3-71
.TEXT, 3-72
Text entry pseudo-ops,

ASCII, 3-3
ASCIZ, 3-4
SIXBIT, 3-65
.TEXT, 3-72

Index-6

TITLE, 3-73
Two's complement, 2-2
Two-segment program, 9-2
TWOSEG, 3-74

/U, 7-4
Udf code, 6-4
Underscore, B-6
Underscore shifting, 2-6
UNIVERSAL, 3-75
UNIVERSAL file, 6-5, 9-4
User symbol table, 2-9,

2-12

Valid symbol, 2-9
VAR, 3-77
Variable symbol, 2-11, 3-77

INDEX (CONT.)

/W, 7-4

/X, 7-4
XALL, 3-78
.XCREF, 3-79
XLIST, 3-80
XOR, 2-13
XPUNGE, 3-81
.XTABM, 3-16
XWD, 3-82

z, 3-83

Index-7

MACRO ASSEMBLER
Reference Manual
AA-4l59C-TM

'\
I READER'S COMMENTS

I
I
I,
I,
I'
I'

:1
I'

,I

)1. '
I'
I
I

:1 , .,
I
1

'.

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use 'of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

o Assembly language progr~mmer

o Higher-level language programmer

o Occasional programmer (experienced)

[J User with little programming experience

o Student programmer

O' Non-programmer interested in computer concepts and capabilities

",Name Date ____________ _

Organization _______________ ~--~----------------------

·Street _____________________________ ~~-~----------------------------

, ci ty _______________________ Sta te _______ Z ip Code ____________ _
or

Country

.---------------------------------------~--------------------Fold lIere---.

. --~-- Do Not Tear· Fold Here and Staple ---.-

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Documentation
200 Forest Street MRl-2/E37
Marlborough, Massachusetts 01752

FIRST CLASS

PERMIT NO. 152

MAR LBOROUGH, MA

01752

•

