

MACRO-DEFINED MNEMONICS

C.4 JRST AND JFCL MNEMONICS

Table C-5 shows mnemonics that assemble both operator and accumulator
fields in the machine instruction. The left side of the table shows
the mnemonics and the code they generate; the right side 'shows JRST
and JFCL mnemonics with accumulators generating the egquivalent code.

Table C-5
JRST and JFCL Mnemonics

Code and Mnemonic Equivalent Code and Mnemonic
254 04 0 00 000000 HALT 254 04 0 00 000000 JRST 4,
255 06 0 00 000000 JCRY 255 06 0 00 000000 - JFCL 6,
255 04 0 00 000000 JCRYO 255 04 0 00 000000 JFCL 4,
255 02 0 00 000000 JCRY1 255 020 00 000000-- JFCL 2,
254 12 0 00 000000 “JEN - 254 12 0 00 000000 JRST 12,
255 01.0 00 000000 - JFOV 255 01 0 00 000000 JFCL 1,
255 10 0 00 000000 Jov » 25510 0 00 000000 JFCL 10,
254 02 0 00 000000 - JRSTF 254 02 0 00 000000 JRST 2,
254 01 0 00 000000 PORTAL 254 01 0 00 000000 JRST 1,
254 06 0 00 000000 *XJEN 254 06 0 00 000000 JRST 6,
254 05 0 00 000000 *XJRSTF 254 05 0 00 000000 JRST 5,
254 07 0 00 000000 *XPCW 254 07 0 00 000000 JRST 7,
254 14 0 00 000000 *XSFM 254 14 0 00 000000 JRST 14,

APPENDIX D

PROGRAM EXAMPLES

The following pages contain examples of MACRO programs. Each program
has been assembled with the /C (CREF) switch on; this produces a .CRF
file for the program listing (instead of the usual .LST file). The /O
switch has been used with the CREF program to produce a .LST file that
includes all operators in an operator symbol table.

MACROS MACRO Z53(1017) 16%17 2-Mar-78 Fade 1

EXAM20 MAC 2-Mar-78 16117 Examrle One

1 SURTTL Examrle One

2 UNIVERSAL MACROS

3

4 iThis UNIVERSAL rrodgram contains the macro QUITy which uses
S $ conditional assemblw to dernerate a rrodram exit monitor
3 3 call., If the TOFS10 switch is on when QUIT is called (or if
7 # it is undefined)» QUIT dererates "EXIT"i if the switch
a8 # is offy QUIT denerates "HALTF".

?

10 DEFINE QUIT <«

11 IFNDEF TOFPS10y<

12 TOFS10==-1 iillefault is TOFS10

13 S

14 IFE TOFS10y+

15 HALTF

16 =

17 IFN TOFS10,<

18 EXIT

19 =

20 3

21 PRGEND

NO ERRORS DETECTED

FROGRAM EREAR IS 000000
CFU TIME USED 00:00.370

34F CORE USED

SHTANVXIT WVYIDOUd

Second Examrcle of MACRO Frodram

EXAM20

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

MAC

2-Mar-78 16317

MACRO

Z53(1017) 16117 2-Mar-78 Fade 2
Examrle Two

SURTTL Examrle Two
TITLE Second Examrle of MACRO Frodgram

I LI IR I R T ST A A I A T T T T TR TR PO TR T I N D TR L D T e Y

-

This srodram contains the macros CLEARy CONCAT» and EXFAND.
These can be used to arrend arbitrary text into a buffery
and to recall the text later. Two secuences of calls
to the macros show rossible uses,

The following roints are of interest!

1.

3.

4.,

The buffer is cleared by calling CLEAR., Text is added
(on the right side of the buffer) by calling CONCAT.
EXFANDy when used in a context allowed for macro callsy
exrands the contents of the buffer into source code.

A call to CLEAR defines the text buffery EXFANDy to
contain mo text, It also defines the macro CONCAT in
such a way that the first call to CONCAT redefines
EXFPAND to contaimnm the first riece of textsr and CONCAT
redefines itself so that further calls to CONCAT will
call the internal macro CON1. Following the second
call to CONCATy each further call merely arrends new
text to the old.

A key feature of EXPAND is that it contains no carriade
returns. If it didy then each concatenation of new
text would also insert a carriade return into the text.

The first use of these macros shows that EXFAND can be
rlaced in contexts where more than one ardument will
result (as in the RYTE rseudo-or). Note that because
andle brackets are used internally (inside the macros)
to delimit texty 2ll concatenated text must contain
matched andle brackets.

Note that carriadge returnsy if desiredy can be easily
concatenated to the bufferi this is dome in the second
use of the macros.

.

SHTTAWYXI WTIO0dd

Second Examrle of MACRO Frogram MACRO 7Z53(1017) 163117 2-Mar~78 Fade

EXAM20

62
63
b4
45
b6
&7
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

MAC

0000007

2-Mar-78 1617

010 101 006 00000

Examrle Two
; . * *

DEFINE CLEAR <
DEFINE CONCAT (FTXT) <
DEFINE CONCAT (TEXT) <
CON1 <TEXT>s<FTXT>

“

&

DEFINE EXFAND <FTXT>

~

DEFINE EXPAND <3

s
-~

DEFINE CON1 (NTXT,O0TXT) <
DEFINE CONCAT (TEXT) <
CON1 <TEXT>y<OTXT’/NTXT>

o

DEFINE EXFAND <OTXT/NTXT:>

:';.

SALL

CLEAR

CONCAT 10>

CONCAT <y

CONCAT <"A":

CONCAT <y<<~1yyb6>81775>

LALL

BYTE (7)EXFANDT10s"A®"»<~1y96-8177>7

SALL
CLEAR

CONCAT <DEF>

CONCAT <INE FOO (>
CONCAT <N)»

CONCAT <<2XN>

DEFINE>)
CONCAT < BAR (N) <3%N>

-,
g

.
|]

SHTAWVYXA WYYDOHd

Second Examrle of MACRO Frosiram MACRO %Z53(1017) 16317 2-Mar-78 Fade

EXAM20

105
106
107
108
109
110
111
112
113
114
115
116
117

MAC

000001~
000002
000003”
000004 "

2-Mar-78 16117

000000
000000
000000
000000

NO ERRORS DETECTED

FROGRAM BREAK IS 000005
CFU TIME USED 00:00.166

34F CORE USED

000004
000006
000006
000011

samrle Two
; * . *

LALL
EXFANDTDEFINE FOO (N)<2%N>
DEFINE BAR (N) -{3%Nx

FOO 272%2"
FOO 372%3"
BAR 273%27
EAR 373%3"

FRGEND

STTdHWVXT WYED0dd

Third Examrle of MACRO Frodram

EXAM20

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

MAC

2-Mar-78 16317

MACRO %53(1017) 16:17 2-Mar-78 Fade S
®amrle Three

SURTTL Examrle Three
TITLE Third Examrle of MACRO Frodram

iThis srodgram uses the macros NUMLST and X to denerate rarallel
tables.

WP Ws WP WP MR e WP WP WP R WD WP NS R W P W WP WP WP P W W P M WS R e W NP WP €> W b

-

This examsle denerates a table that contasins kewwords suitable
for comrarison to user inrut’? the second table denerated
contains addresses of routines that handle those keywordsi
the third table contains useful values.

The kewword table is arranded alrhabeticalls to sreed searchind’
the other two tables corresrond entruy-for-entru to the
kevword table.

Keu features of this rrodgram include?

1.

Chanding the size of the tables is easy., For examrler
if 8 new entryy FIFTHy is neededs adding the word and
a dummy label to the defimition of NUMLST will urdate
bhoth tabless ro serarate urdate is required.

The macro NUMLST calls the macro X. BRefore each call

to NUMLSTy X is redefined so that the Frorer kind of
table is built., Note that a definition of X need not
use both arguments in the macrobody., (Howevers X should
define both arduments.)

The second definition of X uses concatenation to build
mnemonic labels for the table LBLTBL.

The rrodram uses the macro QUIT so that it can be used

for either TOFPS-10 or TOFS-20. The SEARCH MACROS statement
makes the definition of QUIT availablei since the default
for QUIT is TOPS-10» the srodram will run on TOPS-10 if
either it defines TOFS10=-1 or does rnot define TOFPS107

the rrodram will run on TOPS-20 onlwy if it defines
TOFS10=0,

SHTdWVYXd WYIO0dd

Third Examrle of MACRO Frodram

EXAM20

158
159
160
161
162
163
164
165
166
167
148
169
170
171
172
173
174
175
176
177
178
179
180
i81
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

MAC

0000007
000000
000001~
0000027
000003°

0000047
0000047
000005
000006/
000007~

0000107
0000107
000011~
0000127
000013~

2-Mar-78 16117

465162
465765
46343543
6450351

Q00000
000000
000000
000000

000000
000000
000000
000000

000000

636400
626450
575644
624400
000004

0000147
000017’
000015”
0000167

000001
000004
000002
000003

MACRO %53(1017) 16:17 2-Mar-78 Fade 6

Examrle Three
N
y * * *

SEARCH MACROSyMONSYM
TOFS10== .
+DIRECTIVE SFCOND

DEFINE NUMLST <
X (FIRST»1)
X (FOURTH»4)
X (SECONI»y2)
X (THIRIy3)

e

DEFINE X (TEXTyJUNK) <EXP SIXRIT /TEXT/:*

NAMTEL: NUMLST™
X (FIRST,»1)"EXF SIXBIT /FIRST/"
X (FOURTH»4)TEXF SIXBIT /FOURTH/™
X (SECONDy2)TEXF SIXRIT /SECOND/"
X (THIRD»3)"EXF SIXRIT /THIRD/™
TRLLEN==,~-NAMTEL

DEFINE X (JUNKsLAEBL) <$‘LABL>

LELTEL? NUMLST™
X (FIRST»1)"¢1"
X (FOURTHr4)" %47
X (SECONDi,2)"427
X (THIRD,3)"$3""

DEFINE X (JUNKyVALU) <DEC VALU>

VALTEL: NUMLST™

(FIRST»1)"DEC 17
(FOURTH»4)"DEC 4~
(SECOND,2)"DEC 2"
(THIRD,3)"DEC 37

XX XX

-
.
-
.

SITAWVYXH WYIOD0Ud

Third Examrle of MACRO Frodram

EXAM20

197
198
199
200
201
202
203
204
205
206
207
208
209

MAC

000014
000014/
000015~
000015/
0000167
000016~
0000177
0000177

2-Mar-78 16117

104 00 0 00 000170
104 00 0 00 000170
104 00 O 00 000170

104 00 0 00 000170

NO ERRORS DETECTED

FROGRAM BREAK IS 000020
CPU TIME USED 00:00.152

J4F CORE USED

MACRO %Z53(1017) 16:17

Examele Three

s
’ . e

XALL

$12 QUIT™
HALTF

$2¢ UIT™
HALTF

$3¢ QUIT™
HALTF

$4; QuIT™
HALTF

PRGEND

2-Mar-78 Pade 7

SHTAWYXT WVID0¥d

Third Examrle of MACRO Frodgram MACRO %53(1017) 16317 2-Mar-78 Fage 5-1

EXAM20 MAC 2-Mar-78 16117 SYMBOL TARLE
HALTF 104000 000170 int
LELTEL 000004
NAMTEL 000000
TELLEN 000004 srd
TOFS10 000000 srd
VALTEL 000010~

$1 0000147

$2 Q000157

$3 0000167

$4 000017~

SHTAWVXE WYYD0dd

0T-a

Fourth Examsle of MACRO FProgram MACRO %Z53(1017) 16:17 2-Mar-78 Fade 8
Examrle Four

EXAM20

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

236

MAC

2-Mar-78 16117

SURTTL Examrle Four
TITLE Fourth Examrle of MACRO Frodram

#This rrodram contains a comrlex and useful macros COMMON.

1.

el

Py

1.

4.

3.

WP NP WP MR W WP WP NI WS R WP NP M W WP WS W W W NP MR NS WS M W W W M WS WP M MR NS W W WP N NP S W b

-

The macro allows declaration of variable names for a
FORTRAN~comratible COMMON block. Note that the rseudo-or
+COMMON 3llows declaration of a COMMON blocks but rnot of
variahle names within the block.

The COMMON macro uses two arduments?

The name of the COMMON block.

An IRF-stule list of the variable names for the block.
The list can contain either variable names only (with
an assumed lendgth of omne word for each variable)r or
can contain an andgle-bracketed rair dgiving the name and
the lendth in decimal.

Key features of the rrodgram include?!

Lendgths for variables are diven in decimal numberss
so that the definitions look much like those in the
FORTRAN landuade. This is accomplished by storing

the current radix in a8 created sumboly and restoring
it at the end of the macro.

The macro uses the technieue of IRPindg more than once
on the IRF list, The first IRF counts the lendgth of
the entire COMMON blocks so that the .COMMON rseudo-or
can be usedi the second IRF declares variable names
for each entry in the block.

The rseudo-orps XCREF and PURGE are used often
in the macro$ this is to remove references to created
sumbols from the CREF listing and the susmbol table.

Created sumbols are used in the macro for sumbols that
are used only within the macro itself. This minimizes
the chance that other definitions will conflict with
these suymbols.

Once the COMMON macro has been calledy sumbols in the
COMMON block may be used much as any other sumbolsj

“this is shown in the IFIX and ZERO routines.

SHATINVYXE WYID0Ud

11-a

Fourth Examrle of MACRO Frodram

EXAM20

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

MAC

2-Mar-78 1617

MACRO %53(1017) 16:17

Examrle Four

a
y

LI Y

2-Mar-78 Pade 9

DEFINE COMMON (COMyVARS»ZRADYZLENyZVAL»ZCOMyZFAS) <
+XCREF ZRADyZLENy»ZVAL » ZCOMy ZFPAS

a s
ry
aa
ry

DEFINE ZPAS (A»R) <A R

Temr macro to strir one rair of andle brackets from
a macro ardument and rass it to amother macro

siTemre macro to comrute length of COMMON

DEFINE X%COM (VARyLEN<13) <XLEN==Z%LEN+LEN>

ZRAD==10
RADIX 10
ZLEN==

IRF VARS<ZFAS ZCOM»VARS:
+COMMON COMLCZLEN]

DEFINE ZCOM (VARyLEN<13:)
VAR=ZVAL
ZVAL==ZVAL+LEN

.
s

ZLEN==

ZVAL==COM

IRF VARS<XFAS ZCOMsVARSH
RADIX ZRAD

<

N

Save current radixy use 10

so defs read like FORTRAN

et to count lemgth of COMMON
et length of this COMMON
llocate the whole COMMON

et ur another temr macro
efine COMMON block entry
ncrement to next entry

HIDU DOW

s iReinitialize lendth

i1Start to define entries in block
i slefine next COMMON entrw

i iRestore current radix

IF2y<PURGE ZLEN,ZRADZVAL»ZCOMs»ZFAS> jiKeer sumbol table clean

SITAWVYXE WWID0Ud

A

Fourth Examerle of MACRO Frodram MACRO %Z53(1017) 16117 2-Mar-78 Fade 10
EXAM20 MAC 2-Mar~78 16117

291

292

293

294

295

2964

297

298

299

300

301

302 0000007 122 01
303 0000017 202 01
304 000002/ 263 17
305

306

307

308 000003’ 200 01
3092 0000047 402 00
310 000005’ 251 01
311 0000067 263 17
312

313 000007/

(oo ool

00
00
00

00
00
00
00

000000%
000000%
000000

000007
000000#
000000#
000000

314 000007’ 000000F% 000000%

315
316

NO ERRORS LDETECTED

FROGRAM RREAK IS 000010
CFU TIME USED 00:00.232

346F CORE USED

Examrle Four
N
’ + . *

INTEGER SNGLEsARRAYsMULTI

REAL REAL

DOUBLE PRECISION DOUBLE

COMMON /AREA/SNGLEs»REAL » DOUBLEy ARRAY(10) sMULTI(S5,10)

- e e

COMMON AREAs<SNGLEsyREAL y “DIOUBLE 22y ARRAY y 10y <MULTI yS%k10>>"
iSam=le routine to do SNGLE=IFIX(REAL)

IFIX? FIX 1syREAL
MOVEM 1sSNGLE
POPJ 17y

iSamrle routine to set a3ll elements in ARRAY to O
ZERO? MOVE 1,[CXWD ARRAYsARRAY+11

SETZM ARRAY

BLT 1,ARRAY+"D9

FOPJ 17,

LIT

END

SHTIWVXT WYID0Ud

€1-a

Fourth Examrle of MACRO Frodgram
2-Mar-78 16117

EXAM20 MAC

AREA 000001~
ARRAY 000000000000#
DOUERLE 000000000000#%
IFIX 0000007
MULTI 000000000000%

REAL 000000000000%
SNGLE 000000x%
ZERO) 000003~

ex
rol
rol

rol
rol

MACRO %53(1017) 16:117 2-Mar-78 Fade S5-2

SYMEROL TARLE

SITIWVXd WYID0¥d

PT-d

AREA
ARRAY
DOUBLE
IFIX
LEBLTBL
MULTI
NAMTRL
REAL
SNGLE
TELLEN
TOFPS10
VALTEL
ZERO
%1

$2

$3

$4

299%
299%
299%
302#
182%
299%
173%
299%
299%
178%
161%
190#%
308%
183

185

186

184

299
308

178

200%
202%
204%
206%

309

1
[+

310

SHTIWVXE WYID0Ud

sT1-a

EAR
CLEAR
COMMON
CON1
CONCAT

EXFAND
FOO
HALTF
NUMLST
QUIT

X

++0004
* 0005

109#%
64%
259%
74%
83%
?8
83+
108#%
201
164%
10%
171#%
194
299
299

115
94

87
85%
99
86%
113
205
182
202
175

88
86
100%

87%

207
190
204
176

97

86%

101

88+

206
177

98
87

102+

?1

180%

100
87%

4%

183

102
88

6%

184

=3=E

97%

185

4%

8%

186

26

100%

180#%

6%

102%

191

@7

108

?7%

193

STTAWYXHT WYIO0dd

91-d

BLT
BYTE
DEC
DEFINE

END
EXF
FIX
IF2
IFE
IFN
IFNDEF
IRF
LALL
LIT
MOVE
MOVEM
POFJ
FRGEND
FURGE
RADIX
SALL
SEARCH
SETZM
SIXBIT
SURTTL
TITLE
UNIVER
XAaLL
Xun

+ COMMO
+DIREC

310

191

10
108
316
174
302
299
201
202
201
299

20
313
308
303
304

21
299
299

81
160
309
174

23

199
308
299
162

192
64
109

175
203
204
203

107

311
117

?3

175

22
119

193
74
164

176

205
206
205

174

118
211

194
83
171

177
207

208
207

177
210

85
180

86
188

87
259

88
299

?4

?6

97

98

100

10

SHTANYXE WYEDOud

APPENDIX E

PSEUDO-OPS FOR SYSTEM COMPATIBILITY

The pseudo-ops in this appéndix are included for system compatibility;
they are to be used only to assemble TOPS-10 programs while running
TOPS-20.

FORMAT

FUNCTION

PSEUDO-OPS FOR SYSTEM COMPATIBILITY

HISEG

HISEG address

address = program high-segment origin address. Must be
equal to or greater than 400000 and must be a
multiple of 1000.

Directs the loader to load the current program into the
high segment if the program has reentrant (two-segment)
capability. HISEG should appear at the beginning of
the source program.

HISEG does not affect assembler operation. The code
produced by HISEG will execute at either relocatable 0
or relocatable 400000, depending on the loading
instructions given.

The code following HISEG looks as if it was assembled
to start at relocatable 0.

This pseudo-op has been replaced by TWOSEG.

FORMAT

FUNCTION

PSEUDO-OPS FOR SYSTEM COMPATIBILITY

RIM

RIM

Specifies a format for absolute binary programs (useful
only for PDP-6 systems), and consists of a series of
paired words.

The first word of each pair is a paper-tape read
instruction giving the memory address of the second
word. The last pair of words is a transfer block; the
first is an instruction obtained from the END statement
and executed when the transfer block is read, and the
second is a dummy word to stop the reader.

FORMAT

FUNCTION

PSEUDO-OPS FOR SYSTEM COMPATIBILITY

RIM10

RIM10

Causes a program format in which programs are absolute,
unblocked, and not checksummed. When the RIM10
statement follows a LOC statement in a program, the
assembler punches out each storage word in the object
program, starting at the absolute address specified in
the LOC ' statement. RIM10 writes an arbitary "paper:
tape"; if it-is in the format given below, it can be
read by the DECsystem~10 Read-In Mode hardware.

IOWD n,first

where n is the length of the program including the
ending word transfer, and first is the first memory
location to be occupied. The 1last location must
contain a transfer instruction to begin the program,
such as

JRST 4,60

For example, if a program with RIM10 output has its
first 1location at START and its 1last location at
FINISH,you can write

IOWD FINISH~START+1,8TART

NOTE

If the location counter is increased but no
binary output occurs (for example, BLOCK, LOC,
and VAR pseudo-ops), MACRO inserts a zero word
into the binary output file for each location
skipped by the location counter.

FORMAT

FUNCTION

PSEUDO-OPS FOR SYSTEM COMPATIBILITY

RIM10B

RIM10OB

If a program is assembled into absolute locations (not
relocatable), a RIM1OB statement following the LOC
statement at the beginning of the source program causes
the assembler to write out the object program in RIM10B
format. This format 1is designed for wuse with the
DECsystem-10 Read-In Mode hardware.

The program is punched during Pass 2, starting at the
location specified in the LOC statement. If the first
two statements in the program are

LOC 1000
RIM1OR

MACRO assembles the program with absolute addresses
starting at 1000 and punches the program in RIM10B
format, also starting at location 1000. You can reset
the 1location counter during assembly, but only one
RIM1OB statement is needed to punch the entire program.

In RIM10B format, the ‘assembler punches the RIM10B
Loader, followed by the program in 17-word (or less)
data blocks, each block separated by blank tape. The
assembler inserts an I/O transfer word (IOWD) preceding
each data block, and also 1inserts a 36-bit checksum
following each data block. The word count in the IOWD
counts only the data words in the block, and the
checksum is the 36-bit added checksum of the IOWD and
the data words.

Data blocks can contain less than 17 words. If the
assembler assigns a nonconsecutive location, the
current data block 1is terminated, and an IOWD
containing the next 1location is inserted, starting a
new data block. '

The transfer block consists of two words. The first
word of the transfer block is an instruction obtained
from the END statement. This first word 1is executed
when the transfer block is read. The second word is a
dummy word to stop the reader.

APPENDIX F

STORAGE ALLOCATION

MACRO allocates storage in two directions:
1. User symbols and macronames are entered in the
2. Macros and literals are entered in free space.

A symbol table entry is two words long. The first word
name in SIXBIT. The second word has flags in the

symbol tables.

is the symbol
left half, and

either the value or a pointer in the right half. The flags indicate

symbol type and attributes.

The following list shows how symbols and values are stored.
Type How Stored
18-bit symbol Value in right half of second word.
36-bit symbol Value in free storage with a pointer in
(includes OPDEFs symbol table.

and negative numbers)

EXTERNAL symbol " Pointer in symbol table to a 2-word block in
free storage. The first word is the value

that is the last reference in

a chain of

references to the symbol; the second word is

the symbol name in SIXBIT.

Polish symbol The symbol table entry points
. block:

word 1: O

to a 2-word

word 2: negative number, ,address

Word 1 is the relocation word and 1is always
zZero. Word 2 gives the address of a Polish

stack in free storage. The Pol
of the form:

word 1l: O
word 2: opcode

ish stack is

word 3: relocation constant

word 4: value

word 5: relocation constant

word 6: value

Inter-PSECT reference

Synonym operator
(SYN argument)

Macroname

STORAGE ALLOCATION

Words 3 and 4 designate an operand. If the
operator is binary, words 5 and 6 designate
the second operand; if the operator is
unary, the stack contains only four words.

If an operand is EXTERNAL, its two words (3
and 4, or 5 and 6) are:

word i: pointer to EXTERNAL symbol
word i+l: O

If an operand is itself a Polish symbol, its
two words are:

word i: Polish pointer
word i+l: O

Polish stack containing:

word 1l: 0

word 2: 15

word 3: -2 v _)

word 4: referenced PSECT index
word 5: relocation constant
word 6: address :

SIXBIT operator name in free storage with a
pointer in the symbol table. :

Value in free storage with a pointer to the
text string in symbol table.

The text string is stored in a 4-word block
of the form: '

word 1: 1link to next block (0 1if
' last),,two characters

word 2: five characters -

word 3: five characters

word 4: five characters

However, the first such block is
‘special:

word 1: 1link to next block,,link
to last block

word 2: pointer to default
arg., ,number of args
expected + reference count

word 3: five characters

word 4: five characters

The number of args expected is the number of
dummy-~arguments in the macro definition.

The reference count is incremented when the
macro is called and decremented when the
macro is exited. When this count goes to
zero, the macro is removed from free space.

Macro arguments

Macros

STORAGE ALLOCATION

Stored in the same linked block, but not 1in
the symbol table. Repeats (two or more
times) are also stored in the same way. The
text Dblocks are removed when the macro exits
or the repeat exits, since the reference
count has gone to zero.

The addresses of the actual argument blocks
are stored in a pushdown stack in order of
generation.

Default arguments are stored in the same way,
except that the 1list is in free core. The
pointer to the default arg list is stored 1in
the left half of the second word of the first
block of the macro definition.

The macrobody is stored as is, except that
dummy-arguments are replaced by special
symbols.

ASCII 177 (RUBOUT) signals that the next
character is a special character, as follows:

001. ;end of macro

002 ;end of dummy symbol
003 ;end of REPEAT

004 ;end of IRP or IRPC
005 ;RUBOUT

If the character is more than 5 and less than
100, it is illegal.

If the character is greater than or equal to
100, it is a dummy symbol; the value of the
character is ANDed with 37 to get the dummy
symbol number, and the corresponding pointer
retrieved from the stack of actual arguments.

If the symbol was not specified (that is, has
no pointer), and if the 40 bit is on, this
symbol requires a created symbol, and one 1is
created; otherwise the argument is ignored.

NOTE

Verbose macros can use too much
storage space.

STORAGE ALLOCATION

Literals Four-word block for each word generated

word 1l: form word

word 2: relocation bits

word 3: code

word 4: pointer to next block

Form word is the word used for 1listing.
This word is not checked when comparing
literals, so that different forms
producing the same code are classed as
equal.

Relocation bits are 0, 1, or EXTERNAL
pointers.

Pointer is the address of the zero word
of the next block.

NOTE

Long literals slow assembly and
use storage; they should be
written as subroutines or inline
code.

APPENDIX G

ACCESSING ANOTHER USER'S FILE

MACRO allows you to access another user's file in two ways. The first
is to give a logical name in place of the device name; the second is
to give a project-programmer number instead of a directory name. You
can give either of these in your program or in a MACRO command line.

For more information about referencing other users' files, refer to
the DECSYSTEM-20 User's Guide.

G.1 USING LOGICAL NAMES
To use a logical name in accessing another user's file, you must:

1. Give the DEFINE command to define a logical name (of no more
than six characters) as the other user's directory name.

2. Use the logical name as the device name whenever giving the
file specification.

G.1.1 Giving the DEFINE Command
To give the DEFINE command:

1. Type DEF and press the ESCAPE key; the system prints INE
(LOGICAL NAME).

@DEFINE (LOGICAL NAME)

2. Type the logical name, ending it with a colon; then type the
directory name in angle brackets and RETURN:

GDEFINE (LOGICAL NAME) BRAK:!<BAKERX
@ -

To check the 1logical name, give the INFORMATION (ABOUT)
LOGICAL-NAMES command.

CINFORMATION (ABOUT) LOGICAL~NAMES
BAK? = <BAKERX
@ .

ACCESSING ANOTHER USER'S FILE

G.1.2 Using the Logical Name

You can include the logical name in a command line or in your program.

G.1.2.1 Command Lines - To include the 1logical name in a command
line, type the logical name in place of a device name.

The following example shows how to compile the file <BAKER>SPEC.MAC.
You must have already defined the logical name BAK: as <BAKER>.)

@GMACRO
XSFPECREL=RAK:SFEC.MAC

G.1.2.2 User Programs - After giving the DEFINE command, include the
logical name within the program to reference the file. '

The following example shows how to reference ' the file
<BAKER>MACROS.MAC with a .REQUEST pseudo-op. :

+REQUEST BAK!MACROS.MAC

This command causes LINK to 1load the file MACROS.MAC from the
directory that has been assigned the logical name BAK.

G.2 USING PROJECT-PROGRAMMER NUMBERS

To use a project-programmer number in accessing ahother user's file,
you must: '

1. Run the TRANSL program to find “the corresponding
project-programmer number for the given directory name.

2. Include the project-programmer number after the filename,
You do not have to define a logical name if you . wuse a

project-programmer. number. Project-programmer numbers, however,
sometimes change; therefore, use logical names wherever possible.

G.2.1 Running the TRANSL Program
To run the TRANSL program, you must:

1. Type TRANSL and press the ESCAPE key. The system completes
the line as TRANSLATE (DIRECTORY).

BTRANSLATE (DIRECTORY)

2. Type the directory name and press the RETURN key. The system
prints the appropriate project-programmer number.

TRANSLATE (DIRECTORY)<BAKER:
FS$<RAKER> IS FS:L4,2041]

ACCESSING ANOTHER USER'S FILE

You can also use the TRANSL program to make sure a project-programmer
number 1is correct. Simply replace the directory name with the
project-programmer number.

@GTRANSLATE (DIRECTORY)>L4,2041
FS:C4,2041 IS PS!IBARKERX

G.2.2 Using the Project-Programmer Number

You can include the project-programmer number in a command line or in
your program. Because project-programmer numbers can change, you
should use a logical name.

G.2.2.1 Command Lines - To include a project-programmer number in a
command line, type the project-programmer number after the file
specification.

The following example shows how to compile the file <BAKER>SPEC.MAC by
using a project-programmer number.

@MACRO
*SPEC .REL=SFEC.MACL4,2041

G.2.2.2 User Programs - After obtaining the project-programmer
number, you can use it within the program to reference the file.

The following example shows how to reference the file
<BAKER>MACROS.MAC from your program.

+REQUEST MACROS.MACLC4,2041]

This command causes LINK to 1load the file MACROS.MAC from the
directory associated with {4,204].

INDEX

/A, 7-3 . ‘ A , B, B-2
Absolute address, 3-38, /B -
3-46 : “B, B 2
Absolute expression, 2-15 _ Backslash (\), B-5
Absolute symbol, 2-12 ‘ " Backslash-apostrophe (\'),
Accumulator, 4-4 . . B-6
Accumulator, , Backslash-quote (\") B-6
implicit, 4-6 ' Binary program file, 6-5
Addition, 2-13 ‘ . Binary shifting, 2-6
Address, 1-3, 4-4 ’ : Bit 0 (sign bit), 2-2
Address,)) " Bit pattern,
absolute, 3-38, 3-46 _ - querying, 2-6
relocatable, 3-46, 3-57 . BLOCK, 3-8, 6-2
starting, 3-17 _ Brackets (<>},
Address a551gnment, 4- 3 s angle, B-7
Allocation, . ‘ Brackets ([1).,
storage, F-1 - square, B-7
Ampersand (&), B-4 BYTE, 3-9
AND, 2-13 ‘ Byte pointer, 3-50
Angle brackets (<>), B-7
Apostrophe ('), 6-2, B-5
Argument,
concatenating, 5-8 :
default, 5-8 /C, 7-3
dummy, 5-1, 5-2 _ Call,
missing, 5-2 , ' macro, 5-2
null, 5-2 . Character codes, A-1
passed, 5-1, 5-2 . Characters,
quoting characters in, . ASCII, 2~-1
5-4 ' ' MACRO, 2-1
Argument handling, 5-4 : special, 2-2
Argument 1nterpretat10n, ' Code,
5-11 _ error, 6-3
Argument list, 5-4 ' : relocatable, 1-3
Argument storage, _ k Codes,
macro, F-3 o symbol table, 6-4
Arithmetic expression, 2-13 - Colon, B-3
Arithmetic operator, 2-13 Colon (:), B-7
Arithmetic overflow, 3-16 Colon (::),
ARRAY, 3-2 R double, B-3
ASCII (pseudo-op), 3-3 » Comma (,), B-4
ASCII character codes, A-1 " Comma (,4) .,
ASCII characters, 2-1) double, B-4
ASCIZ, 3-4 T Command level,
Assembler output, 6-1 t MACRO, 7-1
Assembly,) Comment, 3-10, 3-59, 4-2,
conditional, 3-23, 3-24, 4-3
3-25, 9-5 COMMENT (pseudo-op), 3-10
.ASSIGN, 3-6 Comment pseudo-ops,
Assignment, ‘ : COMMENT, 3-10
address, 4-3 REMARK, 3-59
Asterisk (*), 6-2, B-4 . .COMMON, 3-11
ASUPPRESS, 3-7 o Compat1b111ty pseudo-ops,
At-sign (@), B-6 _ . E-1
Attributes, : Compilation,
symbol, 2-12, 3-23, 3-24 program, 7-1

Index-1

Compiler switches,
MACRO, 7-3
Complement,
one's, 2-14
two's, 2-2
Concatenating argument, 5-8
Conditional assembly, 3-23,
3“'24, 3-25, 9-5
Conditional pseudo-ops,
.IF, 3-23
.IFN, 3~24
IFx group, 3-25
Counter,
location, 2-8, 3-15, 3-38,
3_46, 3-49, 3"57' 3-74'
4-4, B-3
Counter pseudo-ops,
.ENDPS, 3-18
LOC, 3~-38
'ORG' 3-46
.PSECT, 3-53
RELOC, 3=57
TWOSEG, 3-74
Created symbol, 5-9
.CREF, 3-12
Cross~-reference table, 3-12,
3-79, 6-4 ‘ :
CTRL/undeérscore, B-6

hD, B"'2
Decimal number,
fixed-point, 2-3
floating-point, 2-~4
Decimal point (.), B-3
Default argument, 5-8
DEFINE (pseudo-op), 3-14
Definition,
label, 2-10
macro, 5-1
nested macro, 5-6
symbol, 2-10, 3-70, 4-3
DEPHASE, 3-15
Device code, 4-6
Device code mnemonics,
I/0, C-6
Direct-assignment symbol,
2-11, 4-3
.DIRECTIVE, 3-16
Division, 2-13
Dot (location counter), 2-8,
4-4, B-3
Double colon (::), B-3
Double comma (,,), B-
Double equal sign (

4
==) ’ B-7
Double pound-sign (##), B-5

INDEX (CONT.)

Double quotation marks ("),
B-5

Double semicolon (;;), B-3

Dummy-~argument, 5-1, 5-2

E, 2"‘5, B—Z

‘ /El 7‘3

END, 3-17
.ENDPS, 3-18
Ent code, 6-4
ENTRY, 2-12, 3-19
Equal sign (=), B-7
Equal sign (==), .
double, B-7
'EROVL' 3"16
Error code, 6-3 _
single-character, 8-3
Error messages,
MCRxxx, 8-7
Evaluating expressions,
2-14, 2-15
Examples,
program, D-1
Exclamation point (!), B-3,
B-4 '
EXP, 3-20
Expression,
absolute, 2-15
arithmetic, 2-13
evaluating, 2-15.
logical, 2-13
nested, 2-15
Polish, 2-14 .
relocatable, 2-15
Expressions, .
evaluating, 2-14
Ext code, 6-4
EXTEND, 4-7
EXTEND mnemonics,
KL10, C-9
Extended Instruction,
KL-10, 4-7 o
EXTERN, 2-13, 3-21
EXTERNAL symbol, 2-12, 2-13,
2-14
EXTERNAL symbol storage,
F-1

/F, 7-3
“F, B-2
File, i
listing, 6-1
UNIVERSAL, 6-5, 9-4
Fixed-point decimal number,
2-3

Index-2

FLBLST, 3-16
Floating-point decimal
number, 2-4

G, 2-3, B-2
/G, 7-3
Global symbol, 2-12, 2-13

/H, 7-3

Halfword, 1-3, 3-82

Halfword notation, 2-15

Hierarchy of operations,
2-14

HISEG, E-2

.HWFRMT, 3-21

Hyphen (-), B-4

I/0 device code mnemonics,
C~6

I/0 instruction format, 4-6

I/0 instruction mnemonics,
C-6

.IF, 3-23

IFl, 3-25

IF2, 3-25

IFB, 3-25

IFDEF, 3-25

IFDIF, 3-25

IFIDN, 3-25

.IFN, 3-24

IFNB, 3-25

IFNDEF, 3-25

Implicit accumulator, 4-6

Indefinite repeat, 3-30,
3-31, 3-67, 5-10

Index register, 4-4

Indexed addressing, 4-4

Indirect addressing, 4-4

Informational messages, 8-1

Instruction format,
I/0, 4-6
primary, 4-4
Int code, 6-4
Integer, 2-2, 3-55
INTEGER (pseudo-op), 3-27
inter-PSECT reference
storage, F-2
INTERN, 2-12, 3-28
INTERNAL symbol, 2-12
Interpretation,
argument, 5-11
IOWD, 3-29
IRP, 3-30, 5-10

INDEX (CONT.)

IRPC, 3-31, 5-10
.ITABM, 3-16

JFCL mnemonics, C-10
JRST mnemonics, C-10

K, 2-3, B-2

KAl0, 3-16

KI10, 3-16

KL-10 Extended Instruction,
4-7

KL10, 3-16

KL10 EXTEND mnemonics, C-9

/L, 7-3
“L, B-2
Label, 4-1, 4-3
Label definition, 2-10
Label in literal, 2-8
Label symbol, 2-10
LALL, 3-32
.LINK, 3-33
Linkage pseudo-ops,
.COMMON, 3-11
DEPHASE, 3-15
.DIRECT KAl0, 3-16
.DIRECT KI10, 3-16
.DIRECT KL10, 3-16
ENTRY, 2-~12, 3-19
EXTERN, 2-13, 3-21
INTERN, 2-12, 3-28
.LINK, 3-33
.LNKEND, 3-37
PHASE, 3-49, 6-2
.REQUEST, 3-61
.REQUIRE, 3-62
.TEXT, 3-72
TWOSEG, 3-74
XPUNGE, 3-81
LIST, 3-34
Listing file, 6-1
Listing format, 6-2
Listing pseudo-ops,
ASUPPRESS, 3-7
.CREF, 3-12
.DIRECT FLBLST, 3-16
.DIRECT LITLST, 3-16
,DIRECT SFCOND, 3-16
+HWFRMT, 3-21
LALL, 3-32
LIST, 3-34
.MFRMT, 3-39
.NODDT, 3-42
NOSYM, 3-43

Index-3

Listing pseudo-ops (Cont.)
PAGE, 3-47
SALL, 3-63
SUBTTL, 3-68
SUPPRESS, 3-69
TITLE, 3-73
XALL, 3-78
.XCREF, 3-79
XLIST, 3-80
XPUNGE, 3-81
LIT, 3-35
Literal, 2-7, 3-35, 3-40,
3-41
Literal,
Label in, 2-8
Literal storage, F-4
LITLST, 3-16
.LNKEND, 3-37
LoC, 3-38
Local symbol, 2-12

Location counter, 2-8, 3-15,

3-38, 3-46, 3-49, 3-57,
3-74, 4-4, B-3
Logical expression, 2-13
Logical operator, 2-13

M, 2-3, B-2
/Ml 7"'3
Machine instruction
mnemonics, 3-83, 4-4,
Cc-1
MACMPD, 3-16
MACPRF, 3-16
Macro argument storage, F-3
Macro call, 5-2
Macro call format, 5-4
MACRO characters, 2-1
MACRO command level, 7-1
MACRO compiler switches,
7-3
Macro definition, 5-1
nested, 5-6
Macro listing, 5-6
Macro pseudo-ops,
DEFINE, 3-14
.DIRECT .ITABM, 3-16
.DIRECT MACMPD, 3-16
.DIRECT MACPRF, 3-16
.DIRECT .XTABM, 3-16
IRP, 3-30, 5-10
IRPC, 3-31, 5-10
PURGE, 3-54
REPEAT, 3-60
sToPI, 3-67, 5-10

Macro table, 2-9, 2-12, 6-4

MACRO-defined mnemonics,
2-16, 4-2, C-1

INDEX (CONT.)

Macrobody, 5-1
Macrobody storage, F-3
Macroname, 5-1
Macroname storage, F-2
MCRxxx error messages, 8-7
Memory, 1-3
Message pseudo-ops,
PRINTX, 3-52
Messages,
MCRxxx error, 8-7
.MFRMT, 3-39
Minus sign (-), B-5
Missing argument, 5-2
MLOFF, 3-40
MLON, 3-41
Mnemonics,
I/0 device code, C-6
I/0 instruction, C-6
JFCL, C-10
JRST, C-10
KL10 EXTEND, C-9
machine instruction, 3-83,

4-4, C-1p
MACRO-defined, 2-16, 4-2,
c-1 -

Multiplication, 2-13

/N, 7-3 _
Nested expression, 2-15
Nested macro definition,
5-6
NO (with .DIRECTIVE), 3-16
.NOBIN, 3-16
.NODDT, 3-42
NOSYM, 3-43
NOT, 2-13
Null argument, 5-2
Number, 2-2, 3-=55
Number,
fixed-point decimal, 2-3
floating-point decimal,
2-4
Number pseudo-ops,.
.ASSIGN, 3-6
DEC, 3-13
.DIRECT .EROVL, 3-16
.DIRECT .OKOVL, 3-16
EXP, 3-20
OoCT, 3-44
RADIX, 3-55
RADIX50, 3-56
SQUOZE, 3-66
Z, 3-83

/O, 7_3

"0, B-3

oCcT, 3-44
.OKOVL, 3-16

Index-4

One's complement, 2-14
Op-code table, 2-9
Opcode table, 6-4
OPDEF (pseudo-op), 3-45
OPDEF operator, 4-2
OPDEF storage, F-1
Operand, 4-2, 4-3, 4-4
Operation,

hierarchy, 2-14
Operator, 4-2, 4-3, 4-4
Operator,

arithmetic, 2-13

logical, 2-13
OR, 2-13
.ORG, 3-46
Output,

assembler, 6-1
Overflow,

arithmetic, 3-16

/P, 7-3
p22, 3-21
PAGE, 3-47
Parentheses, B-6
Pass 1, 3-17, 4-3
Pass 2, 3-17, 4-3
Pass control pseudo-ops,
END, 3-17
PASS2, 3-48
PRGEND, 3-51
PASS2 (pseudo-op), 3-48
Passed argument, 5-1, 5-2
Percent-sign (%), B-6
PHASE, 3-49, 6-2
Plus sign (+), B-4
POINT, 3-50
Pointer,
byte, 3-50
Pol code, 6-4
Polish expression, 2-14
Polish symbol storage, F-1
Pound-sign (##),
double, B-5
Pound-sign (%), 6-2, B-5
PRGEND, 3-51
Primary instruction format,
4-4 '
PRINTX, 3-52
Program,
single-segment, 9-1
two-segment, 9-2
Program compilation, 7-1
Program file,
binary, 6-5
Program listing file, 6-1
Program name, 3-73

INDEX (CONT.)

Program segmentation, 9-1
Program with PSECTs, 9-3
.PSECT, 3-53
PSECTs,
program with, 9-3
Pseudo-op,
format, 3-1
Pseudo-op operator, 4-2
Pseudo-ops,
compatibility, E-1
PURGE, 3-54

/Q, 7-3 »

Querying bit pattern, 2-6

Quotation marks ("),
double, B-5

Quotation marks ('),
single, B-5

Quoting characters in

argument, 5-4

Radix, 2-2

RADIX (pseudo-op), 3-55

RADIX50, 3-56

RADIX50 character codes,
A-1

Register,

index, 4-4

RELOC, 3-57

Relocatable address, 3-46,
3-57

Relocatable code, 1-3

Relocatable expression,
2-15

Relocatable symbol, 2-12

REMARK (pseudo-op), 3-59

Repeat,

indefinite, 3-30, 3-31,

3-67, 5-10

REPEAT (pseudo-op), 3-60

.REQUEST, 3-61

.REQUIRE, 3-62

RIM, E-3

RIM10, E-4

RIM10B, E-5

/S, 7-4

SALL, 3-63

SEARCH, 3-64

Segmentation,
program, 9-1

Index~-5

Semicolon (:
Semicolon (;
double, B-
Sen code, 6-4
Sex code, 6-4
SFCOND, 3-16
Shifting,
binary, 2-6
underscore, 2-6
Sin code, 6-4

r

Single quotation marks ('),

B-5

Single-character error code,

8-3

Single-segment program, 9-1

SIXBIT (pseudo-op), 3-65

SIXBIT character codes, A-1

Slash (/), B-4
Spd code, 6-4
Special characters, 2-
Square brackets ([1),
SQUOZE, 3-66
Starting address, 3-17
Statement format, 4-1
Statement processing, 4-3
STOPI, '3-67, 5-10
Storage, 3-2, 3-8, 3-11,
3-27, 3-35, F-1
Storage,
symbol, F-1
Storage allocation, F-1
Storage pseudo-ops,
ARRAY, 3-2
BLOCK, 3-8, 6-2
BYTE, 3-9
DEC, 3-13
EXP, 3-20
INTEGER, 3-27
LIT, 3-35
OCT, 3-44
POINT, 3-50
REPEAT, 3-60
VAR, 3-77
XPUNGE, 3-81
XWD, 3-82
Zz, 3-83
Subroutine entry, 3-19
Subtraction, 2-13
SUBTTL, 3-68
SUPPRESS, 3-69
Switches,
MACRO compiler, 7-3
Symbol, 2-9
absolute, 2~12
created, 5-9
direct-assignment, 2-11,
4~3
EXTERNAL, 2-12, 2-13,
2-14

2
B-7

INDEX (CONT.)

Symbol (Cont.)
global, 2-12, 2-13
INTERNAL, 2-12
label, 2-10
local, 2-12
relocatable, 2-12
valid, 2-9
variable, 2-11, 3-77
Symbol attributes, 2-12,
3-23, 3-24 o :
Symbol definition, 2-10,
3-70, 4-3 B
Symbol pseudo-ops,
.ASSIGN, 3-6
.CREF, 3-12
DEFINE, 3-14
.DIRECT MACPRF, 3-16
ENTRY, 2-12, 3-19
EXTERN, 2-13, 3-21
INTERN, 2-12, 3-28
.NODDT, 3-42
OPDEF, 3-45
PURGE, 3-54
RADIX50, 3-56
SEARCH, 3-64
SQUOZE, 3-66

SYN, 3-70
UNIVERSAL, 3-75
VAR, 3-77
+XCREF, 3-79

Symbol storage, F-1
Symbol table, 2~9, 3-7,
3-43, 3-54, 3-64, 3-69,
3-75, 3-81, 6-4 :
. Symbol table, - :
user, 2-9, 2-12 .
Symbol table codes, 6-4
SYN (pseudo-op), 3-70
SYN symbol storage, F-2

/T, 7-4
Table,
cross~-reference, 3-12,
3-79, 6-4
macro, 2-9, 2-12, 6-4
op-code, 2-9 .
opcode, 6-4
symbol, 2-9, 3-7, 3-43,
3-54, 3-64, 3-69, 3-75,
3-81, 6-4 ,
user symbol, 2-9, 2-12
TAPE, 3-71
.TEXT, 3-72
Text entry pseudo-ops, .
ASCII, 3-3
ASCIZ, 3-4
SIXBIT, 3-65
.TEXT, 3-72

Index-6

INDEX (CONT.)

TITLE, 3-73 /W, 7-4
Two's complement, 2-2

Two-segment program, 9-2

TWOSEG, 3-74

/X, 7-4
/u, 7-4 XALL, 3-78
Udf code, 6-4 .XCREF, 3-79
Underscore, B-6 XLIST, 3-80
Underscore shifting, 2-6 XOR, 2-13
UNIVERSAL, 3-75 XPUNGE, 3-81
UNIVERSAL file, 6-5, 9-4 .XTABM, 3-16
User symbol table, 2-9, XWD, 3-82

2-12

Valid symbol, 2-9
VAR, 3-77
Variable symbol, 2-11, 3-77 72, 3-83

Index-7

~ -

~——

~—

~ -

his line.

Please cut along

MACRO ASSEMBLER
Reference Manual
AA-4159C~-TM

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form,

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

_ Name, Date
- Organization

~Street

.QCity ‘ State Zip Code

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

000000

Non-programmer interested in'ébmputer concepts and capabilities

or
Country

Fold Here

Do Not Teur - Fold Here and Staple

FIRST CLASS
PERMIT NO. 152
MARLBOROUGH, MA

01752

BUSINESS REPLY MAIL : :
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES o T
...]

Postage will be paid by: I -
]
. .
dlilgliltlall] —
. []
]
Software Documentation EEEE——
200 Forest Street MR1-2/E37 N —

Marlborough, Massachusetts 01752

