

ControHing Access to Shared APL Indexed Files

If an APL indexed file is opened in the shared mode, multiple updates are permitted concurrent access. The following
features are provided to permit the user to lock out portions of such a fi Ie for purposes of reading a set of records
without other intervening updates or completing a set of updates without interference. These features use the CP-V
Enqueue-Dequeue facility, and an installation supporting these features must have reserved queue space.

• Locking out a record or block of records.

28 fname B

B is an index (key) value. Causes the designated record to be enqueued for exclusive use. Operates only
if file i5 in shared INOUT mode. Successive use of 28 fname B can be made to enqueue a contiguous set
of iSCOids, but not to enqueue records not in a contiguous block.

• Releasing a blocked record.

29 fname B

B is an index value. If a block of records is queued, they must be released in sequence from the ends,
that is, release of a record may not be used to split a contiguous block of held records into two blocks.

If B = 9999999, all records are released.

Error Conditions Unique to Enqueue-Dequeue Operations

The following error conditions may be reported on attempting to use Enqueue-Dequeue features. (These errors may
be sidetracked.)

Message

DOMAIN ERR

COMPo NOT HELD

COMPo ALREADY HELD

ABORTED BY BRK OR CTRL-Y

REQ. WOULD CREATE DEADLOCK

ENQ. FULL

ENQ. UN AUTHORIZED

NOT ENQ. SYSTEM

Listing File Names and Numbers

Code-Subcode VallJ~s (CP-'!l~~~_Cause

No code-subcode. File is not shared or result would create non
contiguous blocks of held records.

3100

3101

3104

5800

5801

5803

AEOO

Tried to dequeue an unheld record.

Tried to enqueue a held record.

User aborted queue request.

Queuing would dead lock access.

CP-V queue stack is full.

User not authorized for Enqueue.

Enqueue-Dequeue not supported.

These operations may be used in functions designed to list fj Ie components by number, with or without contents of
the records.

• Fi Ie names in a specified account

18 fname B

where B is a text vector specifying a user account. Result is a character matrix. Each row has account in
columns 1 through 10 and a fi Ie name in columns 12 through 24. The matrix is a list of fi les in the speci
fied account. Because of the general file I/o capability in CP-V, these files will not all be the result of
APL file I/o and the matrix may include other passworded or protected files. Non-APL files and APL
workspaces that are not passworded or read-protected wi II not be reported in the result.

Appendix B 209

• Names or numbers of currently open fi les

19 fname B

where B is an integer specifying the structure of the result as follows:

indicates a character matrix with names of currently open files, one fi Ie per row.

2 indicates a numeric vector with the currently open fi Ie numbers.

If B is not 1 or 2, DOMAIN ERR is reported.

Error Reporting

The use of file I/o primitives may lead to a variety of errors, which are reported similarly to errors for other APL
operations. The following common errors are of course included: DOMAIN, LENGTH, RAN K, WS FULL, and
SYNTAX. Errors are also reported for inability to open specified files or find specified records, to read or write
records on a DCB that is closed or not open in the appropriate mode, or to use fi les and DCB in an inconsistent
combination. The error codes returned by the monitor are listed in the Xerox CP-V/BP Reference Manual, 90 17 64.
The error code in the AP L fi Ie I/O subsystem is an integer scalar, related to monitor error codes as follows:

resu It = (l28xcode) + sub code

The subcode and code may be separated for checking by using the encode operator. For example; if the result
is 2561, the expression

V-+-O 128 T result

gi ves the two-e lement vector where

V[lJ = 20 and V[2J = 1

Notice that the code is 20 (hexadecimal 14) and the subcode is 1. (An attempt is made to open for output when the
fi Ie is currently open to another user or DCB.)

If the code value is zero (that is, the result is less than 128), the subcodes are as follows:

o

2

3

4

5

6

7

8-9

10-17,
22-24

20

21

indicates INABN set and OLD FILE found.

on read of identification record, indicates invalid record format.

on read of data record, indicates record is not a valid APL data block.

indicates fi Ie tie table is full. No new fi Ie numbers may be used unti I an open fi Ie is closed.

indicates attempt was made to release file from an account other than the user's.

indicates attempt was made to open a fi Ie with a tie number not in the fi Ie tie table.

indicates attempt was made to release a fi Ie with a number not in the fi Ie tie table.

indicates attempt was made to close and save a fi Ie with a number not in the fj Ie tie table.

indicates attempt was made to query or set key values for a file that is not currently open.

indicates attempted I/O operation on a fi Ie not currently open. Error number is same as primitive
number.

indicates attempt to delete record when fi Ie not in update mode.

indicates bad fj Ie ID format.

In general these operations will be used in locked functions and the error report will only indicate the type of error
and the line number of the function.

The above form of error reporting applies only when the 14 1'1 intrinsic function is used; the error code is pro
duced as a scalar integer result to be analyzed solely by the file I/O subsystem using that intrinsic. (If 141'2 is
applicable, the subsystem may use sidetracking to process the error - see Appendix A -otherwise APL will handle

210 Appendix B

the error in the standard manner. The latter case relieves the subsystem from any responsibility for analyzing errors,
and it can be designed largely as if only successful operation were possible.)

A list of standard file I/O error messages with corresponding code-subcode value (hexadecimal) follows:

Message Code-Subcode Values

FILE I/O ERR xxxx

FILE NAME ERR

FILE DAMAGE

NOT APL FILE

FILE TBL FULL

FILE ACCESS ERR

FILE IN USE

FILE SPACE TOO LOW

FILE IN DEX ERR

PRIVATE PACK UNAVAIL, CALL OPR.

FILE TIE ERR

Any values not specified below

0000, 0015, 0300

0001, 7500, 7501, 7502, 7503, 7504, 7505, 7506

0002

0003

0004, 0014, 1400

1401

5600, 5700

0600, 0000, 4200, 4300

2001, 2002, 2003, 2004

0005, 0006, 0007, 0008, 0009, OOOA, 0008, OOOC, 0000, OOOE,
OOOF, 0010, 0011, 2EOO, 4400, 5100, 2500, 0016, 0017, 0018

Corresponding error messages for Enqueue-Dequeue features are listed in the section on controlling access to shared fi les.

Generation of File I/O Subsystems

A file I/O subsystem is not included as an integral module in the APL processor. File I/O subsystems may be tai
iure~ i"u un ;n~tol!ut~un!;) nc;c;J~, within tht:: c.~pubiIlt;e~ 0f the piuviJaJ fi!t.. l/'e pl:rnit':y~ 0peratof~. i~\ ~(]rnpI8 ,v0rk

space, FILEIO, is distributed to APL insta Ilations.

Table 8-3. Translation Equivalences for Nonstandard Devices

2741 APL 2741 non-APL TTY Model 33 Line Printer Output (Card Read Form Input)

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 6

7 7 7 7

8 8 8 8

9 9 9 9

0 0 0 I 0

+ + + +

x # # #

Q Q Q Q

W W W W

E E E E

R R R R

T T T T

Appendix 8 211

Table B-3. Translation Equivalences for Nonstandard Devices (cont.)

2741 APL 2741 non-A PL TTY Model 33 Line Printer Output (Card Read Form Input)

Y Y Y Y

U U U U

I I I I

0 0 0 0
p p P P

+-or $IS +- - -
A A A A

S S S S

D D D D

F F F F

G G G G

H H H H

J J J J

K K K K

L L L L

[$([$(

] $)] $)

Z Z Z Z

X X X X

C C C C

V V V V

B B B B

N N N N

M M M M

, , , ,

/ / / /
" ctnD<: ctnD<: ctnD<:

41 ""'I\..J -"""",,..J ..JI VI'''''''
-

- - - (Negative Sign)

< $LT < <
< $LE $LE $LE

= = = =

2: $GE $GE $GE

> $GT > >

! $NE $NE $NE

v $OR $OR $OR

" & & &

- $- $- $- (Subtract Operator)

.- % % %

212 Appendix B

Table B-3. Translation Equivalences for Nonstandard Devices (cant.)

2741 APL 2741 non-A PL TTY Model 33 line Printer Output (Card Read Form Input)

? ? ? $RND

w $W $W $W

E $E $E $E
I

I I p I $R $R ,$R

~ I $NOT I $NOT I $NOT

t I $TAK I $TAK I $TAK

,;. d'" "nn "' nn "' nn .)LJl'\r .l)LJl'\r .l)LJl\r

$1 $1 $1

a $0 $0 $0

* * * *

-+ $GO $GO $GO

a @ ~a) @

r $MAX $MAX $MAX

$MIN $MIN $MIN

$U $U $U (Underscore)

11 $DEL

t::. SDLT $DL T $DLT

$SC $SC $SC

0 $Q $Q $Q

(((

c $CPL $CPL $CPL

:J $CPR $CPR $CPR

n $CAP $CAP $CAP

u $CUP $CUP $CUP

T $ECD $ECD $ECD

1. $DCD $DCD $DCD

$ABS $ABS

\ $XPD \ $XPD

SPACE SPACE SPACE SPACE

TAB TAB TAB $TAB

BACKSPACE BACKSPACE $BS $BS

RETURN RETURN NL,CR NL,CR

INDEX INDEX LF LF (See also Notes at the end of Table B-3)

$ $ $ $

<t> $REV $REV $REV

Appendix B 213

Table B-3. Translation Equiva lences for Nonstandard Devices (cont.)

2741 APL 2741 non-A PL TTY Model 33 Line Printer Output {Card Read Form Input)

~ $TPS $TPS STPS

8 $RVl SRVl $RV1

e $LOG $LOG $LOG

~ $GD $GD $GD

4 $GU $GU $GU

! $FCT ! $FCT

I $IB $IB $IB

~ $QQ $OQ
I

$OQ

EH $MDV $MDV $MDV

~ $COM $COM $COM

¥ $NOR $NOR $NOR

'IY $NND $NND $NND

'" $LOK $LOK $LOK

f $RD1 $RD1 $RDl , $XP1 $XP1 $XPl

OJ f} $OUT $OUT

A a SUA SUA -
B b SUB SUB -
e c $ue $UC -
D d SUD SUD -
E e SUE SUE -
F f $UF $UF -
G 9 $UG $UG -
H h $UH $UH -
I i SUI SUI -
J i $UJ

I

$UJ -
K k $UK $UK -
I I (nil Itlll
L. I .pVL. J)VL -
M m SUM SUM -
N n SUN SUN -
0 0 SUO SUO --
P p SUP SUP -
Q q $UQ $UO -
R r SUR SUR -
S s SUS SUS -
T t $UT $UT -
U u $UU $UU -
V v $UV $UV -
W w $UW $UW -

214 Appendix B

I
I

Table B-3. Translation Equivalences for Nonstandard Devices (cont.)

2741 APL 2741 non-APL TTY Model 33 Line Printer Output (Card Reader Form Input)

X -
Y -
Z
-
6-
-
-
T

[QJ
r:J
L!J

rn

I

I
I

x

y

z:

$UDL

tTR 't' . ..,R

$QO

$Qi

$Q2

I

I
I

$UX

$UY

$UZ

$UDL

tT 't'.BR

$QO

$Qi

$Q2

I

I
I

$UX

$UY

$UZ

$UDL

tT BR

$QO

$Qi

$Q2

Notes:

• For TTY terminal the INDEX character is equivalent to LF only for output; for input the Form-Feed
(Control-L) is equivalent to INDEX. This is most useful when desiring to delete a function line.

• For the Tektronix 4013, there is no INDEX or ATTN key. In order to delete a function line, the
user may substitute Control-D for an ATTN.

•

•

•

The Tektronix 4013 features five unique characters: 0, 1-, -I, I ,I. There are no translation
equivalents for these characters.

As normally provided. Xerox APL accepts only Iol, Ill, and f2l and their mnemonic equivalents.
Individual 'i~stallatio~s may modify their APL 'pr~~ess;;:; to allo; ~ through ~; they c~uld also
nlinw only n <;uhset nf th",sE' n"d it i<; Dossihlp to niiow "o,,~ of the hl,,,d-I'luods

For TTY operation, APL assumes that the terminal has been designated as a Model 33 TTY at TEL
level. Some installations default to other types, such as 7015. CP-V maps the bracket characters
differently in this case and they may then not be used in APL. It is advisable for TTY users to be
sure that they are identified as terminal type 33 at monitor level.

Appendix B 215

APPENDIX C. INTRINSIC FUNCTIONS

The intrinsic functions described in Chapter 7 can be created by using the dyadic T -Bar operator. Used dyadically,
this operator creates a special data block that identifies a particular intrinsic function (coded within the APL pro
cessor). The data block may be assigned to any name, which then wi II be the name for the intrinsic function. In
the examples below, the names selected are the standard names for the existing intrinsic functions (other names
could be used).

The foiiowing intrinsic function assignments aiready exist in the WSFNS or GRAF (for .6GRF) workspaces \whiCh
accompany the Xerox APL processor when it is delivered to an installation - see the installation manager).

fl.FM'F'-14 TO
E10'-14T;.
f.IOE'-~4T2
fl.GRF'-1413
f 101'-14 T4
fl.CR 4T~
t,WM'-14 T6
fl.! 6''-14 T';
l1XL'-14 ;:8
tJ.DMS.-j 4 T9

ORjG1N'-1~TO
WIDTH'-: 5 Tl.
IJl GllS 1 ~ 1'2
TABS'-1~T3
PET :.INK ~) T4
SETFUZ?'+-l S 1~
D6'LAY- J:- ;:6
IIL'AVER 1 ~ 17
ilFCHAR'-15 ;:8

f<:RRN'-16 TO
ERRF+-:6 Tl
i::RRX~:612
PAGE'-:6 T3
NLINES 16T4

The left argument of the T -bar operator indicates the type of the resulting intrinsic function:

14 for dyadi c function,

15 for monadic function, and

16 for ni ladic function.

216 Appendix C

APPENDIX D. DESIGNING AND CREATING APL INDEXED FILES

The following material describes how to design an APL indexed fi Ie for a proposed data base and how to originate
such a file. Indexed files are created using the CP-V random file capability. Their availability is subject to in
dividual installation control.

Limits and Trade-Offs

Several characteristics of the keyed AtJL ti led system, ot Lt"-V random ti les, and ot sampie uses of APL fi ies, have
been considered in designing APL indexed fi les. Some of these characteristics should also be noted in designing
appl ications. For many data bases, keyed access may be better than indexed fi les.

• T ota I Secondary Storage Occupancy

Since indexed fi les are CP-V random fi les, they require dedication of a fixed block of contiguous secon
dary storage from the time of creation. When such fi les are fi lied, they cannot be dynamically expanded.
Indexed files are thus suitable only for data bases with a reasonably predictable total size, and occupancy
of a reasonable fraction of that space soon after creation.

• Component Identification and Size

Since indexed files are to look, to the user, like current APL keyed files, each 'component' includes five
words of identity information -size, date, time, and account (2 words). Each APL variable also includes
o minimlJm of 2 words of I hp.orlp.r , informotion In hoth the keyp.rl and the indexed fi Ie systems there is

considerable overhead associated with small records.

Several design decisions for indexed files have been made to minimize the overhead cost of small records.
It is still true, however, that applications using small records are relatively inefficient compared to those
using primarily large records.

• Record Size vs. Secondary Storage Granularity

The smallest addressable unit in secondary storage is the 'granule' of 512 words (2048 bytes). All reads
and writes start on granule bounds. If records are not aligned on granule bounds, the impact is as follows:
Reads must be buffered in core and the relevant data moved to its target location. Writes must be preceded
by reads so that the new data is merged, in a core buffer, with the old data. The full granule is then
written. It would clearly be advantageous to restrict data records to start on granule bounds. This is im
practicable, however, if a fi Ie includes many small records. The design of APL indexed fi les compromises
on the granule bound question. Records which approach or exceed one granule in size are written on gran
ule bounds. Smaller records are packed.

• Sca lars and 'Empty' Components

Existing applications of APL fi les make extensive use of 'empty' components - records with keys but oc
cupied by 'empty' APL variables. These components each require an identification record (5 words) and a
data record (4 words). In the indexed file system, each index entry consists of 8 words. Any APL variable
which requires a 4-word data record in the keyed fi Ie system is stored directly in the index in the new
system. Records stored directly in the index include

Empty vec tors

Empty matrixes

Scalars

Logic vectors of length 32 or less

Appendix D 217

Text vectors of length 4 or less

Integer vectors of length 1

This approach increases the size of the file index but significantly speeds treatment of empty and 'very
smal I' components.

• Insertion Capability vs. Index Size

In keyed APl fi les, the design encouraged the use of key values which were a multiple of 'component'
numbers. The 'standard' described in the reference manua I is 1000 to 1 and a flows component numbers to
the.002 level. The ratio is actually dependent on user-defined functions and may be varied by individual
installations and users. For keyed files, there is no particular extra overhead in allowing extended inser
tion between components. For indexed files, there is the fixed overhead of the index itself. If M is the
maximum number of records allowed and IG is the number of granules used for the index:

IG = M .;. 64

It is impractical, for indexed fi les, to use a high ratio of component number to index number because of
the fixed index granule overhead that would be incurred. This is particularly the case if the average record
size is small. A realistic maximum is probably 10 to 1 - assuming that some significant number of insertions
may be made.

File Structure

The indexed file capability employs standard CP-V random fi les. Structural aspects of these fi les are described
below:

Granule Zero

The first granule (offset zero) has the following fixed structure:

Word 0 TEXT 'APLI' Identifies as APl indexed fi Ie.

Word 1 M N umber of index entries.

Word 2 R Ratio of component number to index number.

Word 3 0 Granule offset to start of index.

Word 4 l lowest index number in use.

Word 5 H Highest index number in use.

Words 6-11 Spares (set to zero).

Words 12-511 Free segment chain.

Free Segment Chain

The free segment chain is a variable length table, or tables, of unused fi Ie space. The table starts in granule zero.
Each entry requires two words as follows:

Word 1 Size, in words, of unused block.

Word 2 Offset, in words, from start of fi Ie.

218 Appendix 0

If word 2 = 0, this is the last entry in the table.

If word 2 = 0 and word 1 is not zero, word 1 is the granule offset to another table of free segments.

If word 2 < 0, entry is currently not in use.

Index Granules

The fi Ie index begins at a granule offset specified by word 3 of granule O. The index occupies contiguous granules
and all entries are initialized to zero when the fi Ie is created. Each entry consists of eight words.

Case 1.

Case II.

Case III.

Distinguishing Cases I, II, and III.

Data Granules

No record with this index number.

Word 1 Zero.

Words 2-8 Unused.

Records of APL variables requiring 4 words or less in primary storage.

Words 1-4

Words 5-8

APL variable, including header.

Date-Time-Account in same format as for keyed fi Ie
ID records.

Records of APL variables requiring more than 4 words in primary storage.

Word 1

VVord 2

Word 3 First word of data block header.

Word 4 Unused.

Words 5-8 Same as for Case II.

For Case I, Word 1 equals O.

For Case II, Word 1 (bits 16-31) equals 4.

For Case III, Word 1 (bits 16-31) greater than 4.

Each data record in the file is a copy of the core image of an APL variable. Records which are 400 words or longer
always start at granule bounds. Shorter records may start mid-granule but may not cross granule bounds. Note that
the physical size of records may exceed the data block size. This is because physical size for larger records is
always rounded up to a multiple of 512 v ords and because small records may be rounded up to avoid leaving 'free
segments' smaller than 6 words.

Efficiency Considerations

This addition to APL file I/o has b~en motivated by specific needs which relate to extensive resource demands, and
require explicit concern for optimization. The file structure has been designed primarily to minimize the number of
disc accesses required to read and write APL file components. A second consideration has been to minimize in-core
data transfers.

Appendix D 219

In particular, the design choice of placing the component ID data in the index rather than with the data block was
dictated by the desire to allow direct moves of the APL data blocks between core and secondary storage. The ad
ditional increase of index entry size to allow direct access of lemptyl and scalar variables was dictated by the fact
that existing data bases of potential users contain a high proportion of lempty' values.

The design goal of minimal disc access has been compromised for records of sizes between 6 and 400 words. These
records may start in mid-granule and require read-merge prior to write. They also require in-core data transfer fol
lowing reads.

Fixed Overhead

The fixed overhead in granules associated with an APL indexed file is 1 + M ~ 64, where M is the number of index
entries.

Strictly speaking, this is not all overhead. The index includes identification data for all occupied entries and com
plete data for empty and scalar values.

Variable Overhead

As a file is modified, particularly by record deletions and replacements of records by larger or smaller versions, the
free segment chain may grow and a number of unusable small segments of granules may accumulate. Each 255 entries
in the free segment chain will require one granule (after the 249 'free ' entries in granule zero). An extensive free
segment chain slows processing associated with writing or deleting records but has no timing impact on reads. If a
file has become badly fragmented, it should be transferred to a new file, copying in index order, to create a clean
version.

Estimating Granule Requirements

An approximate formula for estimating granule requirements for an AP L indexed fj Ie is:

G = JG + DG + 2.

IG = M ~ 64 (index granules).

M = number of index values.

DG = (1 ~ E) x NR x ARS ~ 512 (data granules).

E = efficiency of packing. Depends on record sizes.

If record sizes unpredictable, assume E = .75.

NR = number of non-empty, non-scalar records when fi Ie is fully occupied, including anticipated inserts.

ARS = average record size, in words, including data block header.

Procedure for Creating APL Indexed Files

APL indexed files are created by the following procedure:

1. Execute APL workspace, SETPARS. This workspace requests information on the following parameters:

Number of granules

Number of index entries

Ratio of index number to component number

Offset to first index granule

220 Appendix D

If the inputs are logically consistent, SETPARS creates a file, APLIPARS, which will be used to initialize
the random fi Ie.

2. Build a job file, similar to APLISAMP, shown below, specifying file name, and number of granules. This
job file may optionally, as shown, specify READ accounts, WRITE accounts, SN (for private packs), and
a password. The file may be created by the TEL BUILD command or by copying and editing APLISAMP,
using EDIT.

This job consists of an ASSIGN card, with extensions, followed by a RUN of APLIlMN, which create and
initialize the file. APLllMN was created from APLISI, also shown below.

APLISNvW sample of job to create APL indexed fi Ie:

1. !JOB
2. ! LIMIT (TIME,5), (CORE, 10)
3. !PCL
4. DE LETE DC/fid
5. END
6. 'ASSIGN M:BO, (RANDOM), (OUT), (SAVE),;
7. (FILE, fid),;
8. (READ, I ALL1

),;

9. (WRITE, INONE I),;
10. (PASS, name),;
11. (SN, serial number(s)),;
12. (RESTORE, limit)
13. .RUN (lMN, APLllMN)
14. !EOD

Notes:

Lines 3 to 5 are to delete any prior fi Ie with the name of that being created.

Lines 8 and 9, as shown, are default Read-Write access. Up to 16 individual accounts can be specified for
read access and write access.

Line 10 is optional, for passworded fi les.

Line 11 is optional, for private packs. If private packs are used, the! LIMIT card should also include a
MOUNT option specifying the serial numbers to be used.

Standard CP-V error diagnostics will be issued if this job fails to create the specified random file.

V SETPARS
[1] ~+'HOW MANY GRANULES?'
[2] ~ERROR1X\(NG~rNG}v(1~p.NG}v(NG+D}<6

[3] ~+'HOW MANY INDEX ENTRIES?'
[4] +ERRORlx\(NIE~rNIE}v(l~p.NIE}V(NIE+O}<l

[5] ~+'RATIO OF INDEX NO. TO COMPONENT NO. (INTEGER RATIO}=?'
[6] +ERRORlx\(RIC~rRIC}v(l~p.RIC)V(RIC+D}<l

[7] ~+'OFFSET TO FIRST INDEX GRANULE=?'
[8] +ERRORlx\(IO~rIO)v(l~p.IO)v(IO+D)<l
[9] LIG+IO+NIG+rNIEf64
[10] +ERROR2x\LIG>NG
[11] +ERROR3x\NIG>NGf4
[12] +IOEQl x \IO=l
[13] 01+512;Sl+512xIO-l
[14] 02+512 xNIG+IO;S2+(512 xNG-NIG+l}-Sl
[15] +CATENx\S2~0

[16J 02+0
[17] +CATEN
[18] IOEQ1:01+512 xNIG+l;Sl+512 xNG-NIG+l
[19] 02+S2+0
[20] CATEN:GRANO+(26 F'APLI').NIE.RIC.IO.NIE,(7pO),Sl,01,S2,02.(496pO)NIG.I0
[21J 5 F 2.21 F'APLIPARS'.l F 1

Appendix D 221

[22] 6 F 1,22 F GRANO,9 F 1
[23] ~

[24] ERROR1:'INPUT PARAM. NOT SINGLE ELEMENT ,NON-INTEGER, OR OUT OF RANGE'
[25] ~

[26] ERROR2:'INDEX OFFSET TOO HIGH'
[27] ~

[28] ERROR3:'TOO MANY INDEX ENTRIES'
V

*
* APLISI-SOURCE FOR APLILMN,WHICH WILL CREATE AN APL INDEXED FILE

* ASSEMBLED BY APLIMETA,WHICH CREATES APLIBO
APLILOAD CREATES APLILMN

* SEE SETPARS, AN APL WORKSPACE, WHICH CREATES THE FILE 'APLIPARS'
* USED BY APLILMN.
* SEE ALSO APLISAMP, WHICH IS AN EXAMPLE OF THE JOB FILE,USING

APLILMN, TO CREATE AN APL INDEXED FILE

*

GRANO
ZEROS

START

WRITEZ

222 Appendix D

SYSTEM
SYSTEM
REF
REF
CSECT
RES
RES
DOl
DATA
CSECT
M:OPEN
U:OPEN
M:READ
M:WRITE
LW,l
LW,2
M:WRITE
AI,2
BDR t l
M:CLOSE
M:EXIT
END

BPM
SIG7F
M:BO
M:SI
a
514
a
32
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1
M:SI,(IN),(FILE,'APLIPARS')
M:BO,(OUT) ,(SAVE)
M:SI,(BTD,O),(BUF,GRANO),(SIZE t 2056),(WAIT)
M:BO,(BLOCK,O>,(BTD,O).(BUF,GRANO),(SIZE.2048)
GRANO+512 NUMBER OF INDEX GRANULES
GRANO+513 INDEX OFFSET
M: BO. (BLOCK. * 2) .(BTD. a) • (B U F • ZEROS) • (SI ZE .2 a 48)
1
WRITEZ
}.1: BO • (SA VE)

START

APPENDIX E. APLjEDMS INTERFACE

Installations which support the Xerox Extended Data Management System (EDMS) may also support a version of APL
which provides an interface to EDMS data bases. Xerox EDMS is described in the EDMS Users Guide (90 30 37)
and EDMS Reference Manual (9030 12). The EDMS Reference Manual includes a complete description of the APL/
EDt-AS Interface.

Table E-l is a summary of the EDtl,S interface function call formats. These functions are contained in the DMSFNS
... ,orkspace, which normally resides in the DMSLIB account. Table E-1 is ordered alphabetica"y by function name.

Tabie E-i.

Function Call Format

BERRCODE

BGRPNO

BREFCODE

CLOSAREA 'area-name'

CLOSEDB

r"" .. jl'"' or.,. ,... L-

CUIVO Inrerrace runcTlons

Action/Result

Result is contents of CCB ERR-CODE
cell.

Result is contents of CCB GRP-N 0
cell.

Result is contents of CCB REF-CODE
cell.

Named area is closed.

All areas are closed.

CREA.TE 'area-name [.[accolJnt] [, [password][' cipher-key]]]' Named area is opened in create mode. I
Result is contents of current-of-type
cell for named group.

CURRGRP 'group-name'

CURRS~T 'set-name'

DCDREF encoded -reference -codes

DELETANT 'group-name'

DELETE 'group-name'

DELETSEL 'group-name'

'group-name' DELIN K 'set-name'

DMSABORT 'function-name'

DMSCHKPT

DMSEND

DMSERCOD

Result is contents of set table for
named set.

Result is matrix of decoded reference
codes.

DBM buffers are flushed and lockout
bit is reset.

Dynamic memory is released and
EDMS public library is disassociated.

Result is code of most recent APL
level EDMS error.

t
No explicit result is returned. See EDMS reference manual for a description of the action taken.

Appendix E 223

Table E-l. EDMS Interface Functions (cont.)

Function Ca II Format

DMSLOCK 'function-name'

DMSPASS I password ,

DMSPKSN 'serial-numbers'

DMSRECV

DMSRLSE

DMSSUB 'subschema-name[. [account]G password]]'

DMSTRACE

EC DREF decoded -reference -codes

ENDTRACE

FIN DC 'group-name'

FINDD

FIN DDUP 'group-name'

FINDFRST 'group-name'

FINDG 'group-name'

FIND LAST 'group-name'

FIN DM 'set-name'

FIN ON {'group-name'}
'set-name'

FINDP {'group-name'}
'set-name'

FINDS

FIN DSI

FINDX 'item-name [{~ } group-name]'

FRSTREF encoded-reference-code

Ac ti on/Resu It

Password is placed into CCB
PASSWORD ce II.

Serial numbers are placed into most
recently referenced DCB.

Named subschema is identified for
subsequent use.

Procedural trace is initiated.

Result is vector of encoded reference
codes.

Procedural trace is terminated.

Result is contents of item working
storage.

CCB FRST-REF cell is set to the value
of the argument.

tNo explicit result is returned. See EDMS reference manual for a description of the action taken.

224 Appendix E

Table E-l. EDMS Interface Functions (cont.)

Function Call Format

GET 'group-name'

HEAD 'set-name'

LASTREF f~ncoded -reference-code 1
lmteger scalar J

'group-name' LIN K 'set-name'

MODIFY 'group-name'

{

OPENRET }

g~~~T~~~ 'area-name[. [account]G[password]G cipher-key]]]

OPUPDSHD

REFCODE encode-reference-code

'group-name' RELIN K 'set-name'

REMOVE 'group-name'

REMOVSEL 'group-name'

RESETERR integer-sca lar-or-vector

integer-scalar-or-vector SETERR 'function-name'

STORE 'group-name'

I TODMS ,. [{OF}{group-name }J' va ue Item-name IN _ set-name

Action/Result

CCB LAST-REF cell is set to the
value of the argument.

Named area is opened in indicated
mode.

CCB REF-CODE cell is set to the
value of the argument.

Error control for indicated data
dependent errors is reset.

Error control for indicated data
dependent errors is set to
function-name.

Item working storage is set to argu
ment value.

tNo explicit result is returned. See EDMS reference manual for a description of the action taken.

Appendix E 225

APPENDIX F. APL SYMBOLS

Table F-l. APL Symbols and Names

Symbol Name{s) Page (s)

Identity 54

+ or

Pddition 54

Signum 56

x or

Multiplication 56

-+- Specification Arrow 40

[Left Bracket 21, 68

] Right Bracket 21, 68

Rave! 75

or

. Catenation 75

or

Lamination 76

Period 71, 73

Reduction 68

/ or

Compression 84

.. Dieresis 7

-
Negative Sign 13

< Less Than 63

s Less Than or Equa I 63

= Equal 64

~ Greater Than or Equal 64

> Greater Than 65

~ Not Equal 65

v Or 66

1\ And 66

Negation 55

- or

Subtraction 55

226 Append i x F

Table F-l. APL Symbols and Names (cont.)

Symbol Name(s) Page (s)

Reciprocal 56

.- or

Division 57

? Random 74

w Omega 7

lA __ L ___ L!_ 87 ,Vlt:II IlJel :'111 P

or

Execute 87

Dimension 77

p or

Restructure 78

Not 68

t Take 86

+ Drop 86

7A

I
t:A ,"-",It:I_.UI

I
' .

I 1. or

Index Of 75

Pi Times 61

0 or

Circular Functions 61

Exponentia I 57

* or

Exponentiation 58

-+ Branch Arrow 96

a Alpha 7

Ceiling 59

r or

Maximum 59

Floor 59

l or

Minimum 59
r--

- Underscore 7

V Del 101

6 Delta 7

0 Small Circle 73

Appendix F 227

Table F-l. APL Symbols and Names (cont.)

Symbol Name(s) Page (s)

,
Quote 14

0 Quad 43, 47

(Left Parenthesis 48

) Right Parenthesis 48, 122

c Left Cap 7

:::> Right Cap 7

n Cap 7

u Cup 7

T Encode 83

l. Decode 82

Absolute Value 60

I or

Residue 60

; Semi-Colon 21, 47, 93

: Colon 105

Scan 70

\ or

Expansion 85

$ Dollar Sign 212-215

Reversal 78

¢ or

Rotation 78

~ Transpose 79

Reversal 78

e or

Rotation 78

Natural Logarithm 58

• or

Logarithm 58

• Grade Down 82

• Grade Up 82

228 Appendix F

Table F-1. APL Symbols and Names (cont.)

Symbol Name(s) Page(s)

Factorial 62

!
or

Combination 62

I I-Beam 92

[!] Quote-Quad 44

"A ~. , Q() , •• 0 I ii X Ai"iVers:on . -
iii or

Matrix Division 90

A Comment 10

"" Nor 67

Iv Nand 67

¥ Locked Function 119

Reduction 68

r or

I Compression 84

7() an ~ , or

Expansion 85

~ Underscored Delta 7, 15

T T-Bar 93

D Quad-Zero 166

III Quad-One 198

fa Quad-Two 198

Appendix F 229

INDEX

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

A
absolute value operator, 60
account, 17
active workspace, 123
adding characters to end of line, 113
addition operator, 54
affixture codes, 156
ampersand, 198
and operator, 66
APL codes, 191
APL exponential notation, 13
APL features, 1
APL operators, 25,52
APL terminal keyboard, 6,7
argument characteristics, 52
arguments, 24
arithmetic group (operators), 54
arrays, 19
arrays of two or more dimensions, 46
assigning a value to an array, 23
assignment, 40
assignment statement; 99
asterisk after an entry, 118
ATTN key, 159
autostart, 2
AUTOSTART, 141
auxi liary plotting functions, 165

B
base value or decode operator, 82
batch operation, 193
blind I/o, 198,2
bl i nd I/o for fi les, 199
blind I/o on a device, 198
blind output, 47
branch statements, 96
breaks, 50

c
canonical representation, 171
card input format, 194
CATCH command, 128
catching assignments, 3
catenation, 76
catenation and lamination operator, 75
CENTER function, 164
changing a function header, 114
changing suspended functions, 105
changing terminal declaration, 189
character set, 7
circular operator, 61
CLEAR command, 130

CLEAR option, 147
closing files, 203
combination operator, 62
command statements, 95
commands, 124
comments, 10
communications commands; 122
composite operators, 68
compound statements, 2, 100
compression operator, 84
constants, 13
CONTINUE command, 6, 130
CONTINUE HOLD command, 6, 130
CONTINUE workspace, 123
control keys, 11
converting data types, 208
COPY command, 131
COS function, 166
~CR function, 171, 120, 121
creating the set of file I/O operators, 200

o
da~a list (right argument) i 1 "3
data transmission rates, 197
default terminal output, 49
defined functions, 101, 12
defined functions, displaying and editing, 108
defined functions, examples, 102
defined functions, syntax, 102
DELAY, 120
deleting a line, 109
deleting characters, 112
deleting records or components, 207
devices, standard and nonstandard, 189
DIGITS, 120
DIGITS command, 45, 133
dimension operator, 77
direct control of graphic I/O, 166
direct input, 42
direct-line prompt, 9
directives, 105
display function, 89
displaying and editing defined functions, 108
displaying user-defined functions, 106
division operator, 57
domain, 52
double colon, 198
DRA W function, 163
DROP command, 133
drop operator, 86
dummies, 104
dyadic function, 40
dyadic scalar operators, 53
dyadic transposition operation, 80

Index 231

Note: For each entry in this index, the number of the most significant page is I isted first. Any pages thereafter are listed in
numerica I sequence.

E
EBCDIC codes, 191
editing a line number, 114
editing user-defined functions, 107
empty arrays, 46
empty vectors, 46
equals operator, 64
ERASE command, 134
ERRN, ERRF, and ERRX, 121
error and break control, 3
error ex its, 157
error marker, 193, 195, 198
error messages, 179
error reporting, 171,210
error response, 195
error stop, 161
errors, 50
ESCAPE key sequences and APL, 192
evaluated input, 43
execute operator, 2, 87
execution and definition modes, 9
execution break, 159
execution stops, 159
EXP, 166
expansion operator, 85
exponential notation, 45
exponential operator, 57
exponentiation operator, 58
expression evaluation, 48
expunge, 172, 173

F
factorial operator, 62
false terminal declaration, 190
false terminal declaration, problem examples, 192
fast formatted output, 1
file I/o subsystems, 211
fi Ie identifier (FlO), 16
file input/output, 200, 1
FlO, 121
FlOE, 121
floor and ceiling operators, 59
.6FMT, 152,216
FMT operation, 153, 157
FNS command, 134
format specifications, 152
format statement (left argument), 153
formats for branching, summary, 98
formatted output function (FMT), 152
formatting aids, 157
fractional number, 45
function copying, 2
function creation, 89
function definition mode, 88
function editing, 105
function editing in evaluated input and execute mode, 3
function execution, 116

232 Index

function I ine appendage, 2
function name, 15
function references, 39
function-line prompt, 10
functions, 12
fuzz, 45

G
general input/output, 42
general ized logarithm (base A) operator, 58
gin-mode, 197
global variables, 17
grade down operator, 82
grade up operator, 92
GRAF workspace, 167
graphic functions, 163
graphic I/O, 166
graphic input functions, 165
graphics capability, 3
greater than operator, 65
greater than or equal to operator, 64
GRF calls, 168
.6GRF intrinsic function, 167
GROUP command, 135
group name, 15
GRP command, 136
GRPS command, 136

H
HEADER function, 157, 120
higher-order array, 20
home terminal, 149

I-beam functions, 92
identity operator, 54
ii legal character, i93
illegal characters, 197
index generator operator, 74
index of operator, 74
indexed assignment, 41
indexing, 19
indexing an indexed argument, 24
indexing of arrays, 21
inner product operator, 71
input scaling, 170
input/output, 42
input/output device assignments, 194
input/output devices, 42
input/output translation, 190
inquiry commands, 122
inserting a line, 110
inserting characters, 112
INT (interval) function, 163

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerica I sequence.

intrinsic functions, 120,216
issuing system commands, 115
items subject to sidetracking, 185

K
key values versus component values, 204

L
labels, 105
lamination, 25,76
left argument, 153
length, 52
less than operator, 63
less than or equal to operator, 63
LIB command, 137
line corrections during input, 8
I ine deletion, 89
I ine editing, 192, 196
line insertion, 89
line numbers, 110
line printer graphic codes, 192
I ine replacement, 89
iineiist, i71
listing fi Ie names and numbers, 209
LOAD command, 137
local variables, 17, 18
locals, 105
locking function, 119
log on/log off procedures, 4
logging off, 6
logging on, 4, 196
logging on and logging off APL system, example, 5
logical operator, 65

M
maintaining component range and current

component value, 204
mathematical notation, 13
matrix, 20
matrix arguments, 155
matrix divide operator, 90
matrix inversion operator, 90
membersh ip operator, 87
minimum and maximum operators, 59
mixed operators, 74
mixed output, 46
modification function, 90
modifying a line, 112
monadic function, 40
monadic scalar operators, 53
monadic transposition operation, 79
multiple assignment, 41
multipl ication operator, 56

N
name format, 15
name usage, 15
namelist! 171
names, 7, 15
nand operator, 67
natural logarithm (base e) operator, 58
negation operator, 55
negative symbol; 13

-I .- ,. _ I ~ An
nllaalC fUnCTiOn, ~

NUNES function, 157, 120
non-APL 2741 terminals, 197
nonassignment statement, 99
nonstandard input/output, 189
nor operator, 67
norma I stop, 159
NOSCALE function, 164
not equal to operator, 65
not operator, 68
numeric and character vectors, 46
numeric constants, 13

o
observation of intermediate results, 3
OBSERVE command, 138
OFF command, 6, 139
OFF HOLD command, 6, 139
OFF option, 147
ON option, 147
on-line and batch operation,
opening and creating fi les, 202
operation without APL characters,
operators, 11,24,25
OPR command, 140
OPRN command, 140
or operator, 66
order of evaluation, 48
ORIGIN, 120
ORIGIN command, 140
outer product operator, 73
output, 44
output sca ling, 169
output va I ue forms, 155
overstriking a character, 114

p
PAGE function, 157, 120
parentheses, 48
password, 17
passwords, 124
PCOpy command, 141
pendant function, 118
pi times operator, 61
plotting functiGns, 163
precedence of operators, 48

Index 233

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

primitive functions (see "APL operators ")
prompt character, 193, 195
prompts, 9

Q
QCOPY command, 141
QLOAD command, 141
quad input prompt, 198
quad or quote-quad input, 44
quad output, 47
quad prompt, 10
quad zero input, 165
quad zero output, 166
qualifiers, 1.56
quiet load and copy commands, 2, 141
quitting line editing, 114
quote-quad input, 44
quote-quad prompt, 10

R
rank, 52
rave I operator, 75
reading APL records, 206
reading non-APL records, 207
reciprocal operator, .56
recursive function, 116
reduction operator, 68
referencing a single element, 21
referencing more than one element, 22
replacing a line, 111
replacing characters, 113
report formatting, 152
representation or encode operator, 83
reshape operator, 78
residue operator, 60
reverse I operator, 78
right argument, 153
right parenthesis, 122
roll operator, 74
rotation operator, 78

s
SAVE command, 141
saved workspace, 123
sca lar arguments, 153
sca lar operators, 53
sca lar output, 166
SCALE function, 164
scal ing functions, 164
scan operator, 70
SEAL command, 142
sequential access to existing APL fi les, 207
sequential access to non-APL files, 208
SET command, 142

234 Index

SETFUZZ, 120
SETLINK, 121
shadowing, 18
shape, 52
SI CLEAR command, 119
SI command, 118, 146
SI-damage protection, 2
sidetrack setting, 186
sidetracking considerations, 187
sidetracking dynamics, 187
sidetracking on error and breaks, 184
sidetracking, aids for users, 188
sidetracking, items subject to, 185
significant digits, 45
signum operator, 56
simple assignment, 40
SIN function, 166
SIV command, 119, 146
standard 8-bit computer codes (EBCDIC), 191
standard file I/o error messages, 211
state indicator, 118
statement labe I, 15
statement labels, 98
statements, 11, 95
stop control vector, 160
stop of user input, 159
stopping a display, 47
stopping execution, 117
STRAPIS, 166
strapping options, 197
subtraction operator, 55
suspended function, 118
suspending execution, 118
SYMBOLS command, 147
syntax considerations, 49
syntax conventions, 52
system commands, 11, 115, 122
system commands, summary, 124

T
T -bar functions, 93
tab usage, 193
TABS, 120
TABS command, 148
take operator, 86
6. TE function, 171, 121
Tektronix 4013 graphics terminal, 163
Tektronix 4013 usage, 195
teletype usage, 192
TERMINAL command, 149
terminal declaration, 189
text constants, 14
text editing functions, 175
tracing execution, 116
translation equivalences for nonstandard devices, 211
transparent scal ing, 169
transposition operator, 79
types of input, 42

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

u
unequally spaced tabs, 2
unscaled graphic I/o, 169
user accounts, 124
user input versus computer output, 8
user-defined functions, 101

v
value of variable versus its name, 48
variable, 15
variab les, 11, 16
variables local to defined function, 104
VARS command, 150
VCHAR function, 157, 120
vector, 20
vector arguments,
VS function, 163

w

154

WHA TCHAR function, 165
WHATCOORD function, 165

WHATSCALE function, 164
WHATWINDOW function, 164
WIDTH, 120
WIDTH command, 150
width of line, 44
window functions, 164
6. WM function, 171 j 172; 121
wordspace control commands, 122
workspace concept, 123
workspace management functions, 171
workspace name, 15
workspace WSFNS, 120
writing APL records, 205
writing non-APL records, 205
WSID command, 151

x
£::. XL function, 158, 120

Index 235

Xerox Corporation
701 South Aviation Boulevard
EI Segundo, California 90245

Reader Comment Form

XEROX

We would appreciate your comments and suggestions for improving this publ ication.

Publ icatlon No. Current Date

How did you use ihis pubiication? Is the materia! presented effectively?

o Learning 0 !nsta!linn

o Reference o Maintaining

o Sales

o Operating
U Fully Covered U Well Illustrated U Well Organized U Clear

What is your overall rating of this publication') What is your occupat ion?

0 Very Good 0 Fair o Very Poor

I 0 Good 0 Poor

Your other comments may be entered here. Please be specific and give page, column, and line number references where
applicable. To report errors, Please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form.

I

I
L __ ~ ____ ~_.~_. __ . __ ,._" ..

Your Name & Return Address

2190(12172)

Thank You For Your Interest. (fold & fasten as shown on back, no postage needed if rnailed in U.S.A.)

Staple

Fold

Attn: Programming Publications

Fold

BUSINESS REPLY MAIL
No postage stamp necessary if mailed in the United States

Postage will be paid by

Xerox Corporation
701 South Aviation Boulevard
EI Segundo, California 90245

Staple

First Class
Permit No. 229

EI Segundo,
California

701 South Aviation Boulevard
EI Segundo, California 90245
213679-4511

XEROX

XEROX® is a trademark of XEROX CORPORATION.

