TOPS-20
Monitor Calls User’'s Guide
AA-DB589B-TM

April 1982

This manual describes the use of TOPS=20 monitor calls
which provide user programs with system services such as
input’output, process control, file handling, and device control

This manual supersedes the DECsystem=20 Monifor Calls
User's Guwde, order number DEC-20-0MUGA-A-D

OPERATING SYSTEM: TOPS-20 (KS'KL Model A), V4
TOPS-20 (KL Model B), V5

Solveny ang manualy shoukd Do crgensd Dy e 8 Srger il I Tl Linaed Sialed. fdcad Sedem
1 [l Peldrel desiribution oenter. Chutiads The Uinfled Slﬂ":'!- eders should be derecied o P noaesl
DIGITAL Fipld Sales Ol o reprasaniaia

Northaasl Mid-Atlantic Region Cendral Aegion ‘Western Aegion

Dhgital Equeprani Corporaion Dl Equigemasm Coapscse mi Dhgptinl Ecpuimaitl e o st

PO Boa CHID06 Acopiaorad and Suppled Canter Acoiisdnied §nd Suoples Caner |
Hashus Now Hampshens 030461 1050 Easd Pemingion Fioad 532 Lanbboaan Dewa

Tk | SO0 B - RS Gehaismbing, IRngs 60155 Survriai, Cabdonen DE0B6

Tadaphang (31 FEE0-5013 Tbinguers {800) T34—4015

First Printing, May 1976
Revised, April 1982

Copyright £, 1976, 1982 Digital Equipment Conparation. All Rights Aesenasd

The infgrmateon in this document is subgect to change without notce and showld
ol be construed as & commitment by Dagital Equipment Codposation. Digital
Equipment Corporation assumas no respongibility for any ernoes that mary
appear in his document

The softwane gescribed in this gocumeni & furnished unger a kcanse and may
only be used of copeed in accardance with the terms of such cense.

Mo responsibilty 5 assumed boe the use of reliabilty of soltwane on equipmeni
that is nod supplied by DIGITAL or its atfiliabed companies

Theie Toliowing aré trademarks ol Digital Eguipmént Conporalion

DEC DECHed A5
DECUS DECsysiam-10 MASSHELS
DECSYSTEM=-20 POT PDP

DHE Cwpringr ASTS UNBBLIS
HBOL (25 VAN
EduSysiam VMS VT
e AT

The pestage-prepaid READER'S COMMENTS form on the kast page of this
DOoUmignt Fequesls the usar's cribcal evakiation 1o assisl us in prepanng future
alece g TR TSGR

CONTENTS

PREFACE
CHAPTER 1 INTRODUCTION

OVERVIEW . . & .« & « & & & o« & # @« & # & & & =
MONITOR CALLSE « & & « & o« « # & = & =
Calling Seguence . . .« « « « =« = = = =« &« &=
' 2 Returns . . S e e e w s e o E oA
PROGRAM EHUIHGHHENT s e s s s s s s s

ot it
ke B)
Ll B P b
-
[
— =
[}
e bl B

L8]

CHAPTER INPUT AND QUTPUT USING THE TERMIMAL

READING A BYTE . « « + & & & = = = 2 s s s = = = =

WRITING A BYTE . . . +« « &« =& & & = o = = 2 = = = =

READING A STRING . . .« -« « = = & & 5 = & = = = & =
0 SUMMARY . s h e m s e w a aw s w a a

1:1 OVERVIEW . . . L 0 |
2.2 PRIMARY I/0 DESIGHATURE e
. 2.3 FPRIMNTIMG A STRING . . . ¢« « & ¢ & = = = = = » = = 2=3
2.4 READIMNG A HUMBEER . . « « « + & = s s s = % s« s s « 2=3
2:5 WRITING A NWUMBER . . . 1 |
2.6 INITIALIZING AND TEHHIHITIHG THE PROGRAM « 2=6
2.6.1 RESETR® Monitor Call . o & & & & & &« & s s = s &« 2=B
2.6.2 HALTF% Monitor Call . . « &« &« & o =« = @« « =« = =« 2=6
2.7 2=7
2.8 2=7
2.9 2-7
2.1 =11

w8
]
=

Mapping File Pages tn & Pru:ess D |
Mapping Process Pages to a File 3=-24
Unmapping Pages in & Process . . . « + « « « + 3-25

B B @

CHAPTER 3 USING FILES

3.1 OVERVIEW . . . e e w a m a m e e aw w w w e i=-1
1.2 JOB FILE HUHBEH . s s @ T 3=2
3.3 ASSOCIATING A FILE WITH A JFN . » » » + o« + « . 3=2
3.3.1 GTJFNE Monicor Call « s s & a a a w oa . 3=4
3.3.1.1 Short Fore of GTJFHE « &+ &« &« &« = . A=4
3.31.1.2 Long Form of GTJFNE: 3=11
3:3:1.3 Summary of GTIFNRE & &« = & « = = &« = = 3=158
3.4 OPENING A FILE . . . e £ -
1.4.1 OFPENF% Honitor Eall « s s o= o= o o= o= o= o= I=16
3.5 TEANSFERRIMG DATA . .« & & « « & s « = s s =« &« « 3=18
J.5.1 File Pointer s = = o= o= = 3=18
3.5.2 Source and Desntnat;nn Dts:gnatnrs s s o+ o5 s s 2=19
3.5.3 Transferring Seguential Bytes . s e s ow o« 3=19
3.5.4 Transferring SErinmgs « « + & + = * s s+ 3=20
3.5.:5 Transferring Hnnsequtntlal Eytta . * s o+ 3=22
3.5.6 Mapping Pages . 3=-22
3.5.6.

3.5.6.

3.5.6.

[

1ii

CONTENTS (Cont.)

3.5.7 Mapping File Sections to & Process « « « « 3=25
i.8 CLOSIMG A FILE . . + s = = = % = w = = = = =« I=136
3.6.1 CLOSF% Monitor Call . oa T]
1.7 ADDITIONAL FILE 1/0 HGHlTﬂR CHLLS « = o= om s s = 3=27
3.7.1 GTSTS% Monitor Call . « & « & & « = s & # s s« 3=27
3:.7:2 JFHE% Monitoer Call « « « « & & & & & s s % % = 3"2$
3.7.3 GHJIFHN% Momitor Call . .« & & & & & & & & 2 » « 3=31
3.8 SUMMARY+ &« & & 2 & =« o = &« = = =« = = » « 3=-34
3.9 FILE EXAMPLES . + « & & « s & s = s = = » « =« « 3=35
CHAPTER 4 USIMG THE SOFTWARE IMTERRUPT SYSTEM
4.1 OVERVIEW . . . & % B B ® % = = ® = = ®w = 4=1
4.2 INTERRUPFT CDHDITIDHS . e . s o 4-2
4.3 SOFTWARE IHTERRUPT EHEHNELS AHD PRIGRITIEE . e ow 4=3
4.4 S0FTWARE IMTERRUPT TABLES e ow 4=5
4.4.1 Channel Table . . .]
4.4.2 Priority Lewel Table i s s R
4.4.3 Specifying the Software Interrupt Tablez 4=7
4.5 ENABLING THE SOFTWARE INTERRUFT S5YSTEM . . . « « 4-8
4.6 ACTIVATING INTERRUFT CHANMELS . . . + + « 4-B
4.7 GEMERATING AN INTERRUPT . . . « &« s = 2 = = = « 4=8
4.H FROCESSIRG AN INTERRUPT « « « & « « =9
4.8.1 Dismissing an Interrupt . . a W . 4-1
4.9 TERMINAL INTERRUFTS . . P Lx L
4.10 ADDITIONAL SOFTWARE IHTEPRUPT HGHITDH CALLS . . 4-12
4.10.1 Testing for Enablement . . s 8 o+ 2 =2 o+ #=132
4.10.2 Obtaining Interrupt Table hddreslaea « s ow o« o« 4=12
4.,10.2.1 The RIRY Monitor Call . . « « « & & &« + » &« « #4=12
4.10.2.2 The XRIR% Moniter Call & &« &« & « . . 4=113
4.10.3 Disabling the Interrupt System . . . « « » = » #4=13
4.10.4 Deactivating & Channel . . « « & +« & + = =« « « #=14
4.10.5% Deassigning Terminal Codes . . & « « « « = « « 4-14
4.10.6 Clearing the Interrupt System . 4-14
4.11 SUHMARY . . % 8 & B E @ = ® d=14
4.12 SOFTWARE IHTERHUPT EKAHPLE o om e e et s alrads e o ll=18
CHAPTER 5 PROCESE STRUCTURE
5.1 USES FOR MULTIFLE FPROCESSES . . . « & &« « &« « &« « 5=2
5.2 PROCESS COMMUMNICATION . . + & s s 2 s s 2 s = = « 5=3
5.2.1 Direct Process Control . . . « & =« &« & & « & &« = 5=3
5.2.2 Boftware INterrupts . + « « s « + = = = = = » » 3=3
5.2.3 IFCF and ENQ/DEQ Facilities . . . « « « . 5=3
5.2.4 Memory Sharing - « « =« « & & & & = = & = & = . 5-4
5.3 PROCESS IDENTIFIERS n e s « 5=4
5.4 OVERVIEW OF MOMITOR CALLS FDH PHGCESEES . . 5=6
5.5 CREATING A FROCEBE . . « & « &« & & « & & & & & s 5=6
5.5.1 Process Capabilities - Wit e e w aewr wms e, w=H
5.6 SPECIFYING THE COMNTENTE OF THE ADDRESE SPACE OF A
PROCESES) -
S.6.1 GET Monitor Call T T T T T .
5.6.2 PMAPY Monitor Call . . e wca oa oa o= om = ow = S=10
5.7 STARTING AN INFERIOR PHDCEEE o 5 s s & & & & « u S=11
5.8 INFERIOR PROCESS TERMIMATION « « « =« « « 5=11

v

CHAPTER

CHAPTER

CHAPTER

B |

AL LR LA

L e -

¥ ¥ &

e I I N R IR LN R B I B B R B R |
a N " % m

o oo o o0 0D 0o OO0 O 00 00 O 0D O
" m om W o E o E E W .

= % ® % ®B ® @

% = ®

@

¥ ¥ ¥ & ¥ ¥ 1 ¥ @

et e ot
[ErTR=1

@ LN N S B e el bl el Red Led bel B O da Ss e e de B B Su Lk B b
e = n o= om m a

Pl Pl Bl B Pl B B Pl B Bl B Bl B B
= " o ® B m om om W n

" s oW

Pl

o S SRR e el Lk Ral

et Pl Pl Bl =

W g

Fodl =2

Pl =i

Pl =

* ¥

Fadl (=i

Fodl st

Bk =

CONTENTS (Cont.)

INFERIOR PROCESS STATUS . S S
PROCESE COMMUMICATION . . s s o & &
DELETING AN IMFERIOR FEﬂCESE s o a4 = ow
PROCESS EXAMPLES s & & & &

EMQUEUE/DEQUEUE FACILITY

OVERVIEW . . .
RESOURCE GHHEPEHIP " s e s a
PREPARING FOR THE ENQ/DEQ FACILITY
USING THE ENQ/DEQ FACILITY
Reguesting Use of a Resource
EHQ% Funckions . . « « &« s # = s # =
EHQR® Argqument Block . . . « + « + =
Releasing a Resource R R
DEQ% Funckions . « « « &« = = = &« & =
DEQ% Argument Block
Obtaining Information about Resources
SHARER GROUPS P 2 % B F B o8B B OE OB % ®
AVOIDING DEARDLY EMBRACES s a

INTER-PROCESS COMMUNICATION FACILITY

OVERVIEW &« & & & « =« 2 = = &«
QUOTAS . . & &« & & & =« & o = = = = =
PACEETS . . & « o« & & o =« = = = = &=
Fl&ags . « « = =« =« = = = = = = = &=
FIDE . . T
Length and Address of Packet Data Block
Directories and Capabilities
Packet Data Block . . . e a
SENDING AND RECEIVING HESEAGEE .o ow
Sending & Packet
Receiving a Packet

SENDING MESSAGES TO {ETETEH}IHFE P
Format of <SYSTEM:>INFO Regquests .
Format of <S5YSTEM>INFOQ Responses . .

PERFORMING IPFCF UTILITY FUNCTIONE . .

USING EXTENDED ADDRESSING

OVERVIEW . . A

ADDRESSING HEHDET hHD ﬂC 5 - e a m w w
Instruction Format « : « « &« =« & + =
Indexing . . « « « « = = = =
Indifrection T S

Instruction Pnrmat Indirect Hurd {IFIW)

Extended-Format Indlrect Word (EFIW)
AL References . . i ow & &
Extended Adﬂ:e5$1ng Examples

Immediate Instructions . « « « « & =
XMOVEI . + & & & s = o o s @« = v a
XHLLEI . - & -« 2« = & & & & & & & &
Other Instrucclons . . .

Instructions that Affpct the PC
Stack Imstructions . s w

s ®
1ol ol ol ol ll ol ol] wd ol

rd) e el
I
=

Lak P B=F O 00 =l O 0% O L LA R e e R

CONTENTS (Cont.)

B.2.7.3 Byte InStructlons . . « « « « =« = « = = - -8
2.3 HMAPPING MEMORY os o « « H=H
8.3.1 Mapping File 5ect1uns ta a Fruceaa & m s « « B=9
8.3.2 Mapping Process Sections to a Process . + » B=9
8.3.3 Creating Sections « « « & &« = = . B=10
B.3.4 Unmapping a Process Section . . « « « « « 8=11
g.4 MODIFYING EXISTING PROGRAMS ., . . . « + « B=11
B.4.1 Data SEructuEes . . . &« « « = = = = = = B=-12
3-"4-111 Il'l-di?:ﬂ Words « = = & = & & & & & & = - - 3‘12
B.4.1.2 Indirect Words e « « 8=12
$-"+I|13 S‘tﬂch Pﬂlnt@rﬁ] = & =] LI = CREE LI 3_12
B.4.2 Using Monmitor Calls . . « = s« = = = = = =« B=12
B.5 WRITING MULTISECTION PHDGHAHS . s « B=13
B.5.1 Controlling a Process in an Extended S&ctlan . B=14
B:5.1.1 Btarting a Process in a Honzero Section . B-14
B.5.1.2 Setting the Entry Vector in Nonzero Sections . B-=14
B.5.2 Obtaining Information About a Process B=15
B.5.2.1 Hemory Access Informatiom . - & « -« & « =« « « B=15
B.5.2.2 Entry Vector Information . « - = = & = = = = = B=16
B.5.2.3 Page=Failure Information . . « « + « « « &« « « B=17

APPENDIX A ERROR CODES AND MESSAGE STRINGS

FIGURES
FIGURE 4-1 Basic Operational Sequence of the Software
Interrupt System e s s s s s . 4=2
4-2 Channels and Priocrity Levela - - . 4=5
6=1 Deadly Embrace Situsbtion . . « « = & = « = 5 B=d
b=2 Use of Sharer GEOUPE . . « « & + = + = « o« « B=14
7=1 IPCF Packet . . . 7=2
g=1 Program Counter Address Fields . . ow B-2
B=2 Instruction-Word Address Fields « & s ou 8-13
8=3 Instruction-Format Indirect Word . . « .« « « « « B-d
=4 Extended-Format Indirect Word - 8-4
TRELES

TABLE 2=1 HOUTY Format Options e 2=5
2=-2 RD'TI‘Y% ':ﬂl'rtl.'ﬂ-l Eltﬂ s = @ « = & &= = & & @ 2_3
3-1 Standard System Values for Elle

Specifications . « « « & + + & + = & + 2 8 & + =+ 33

i-2 GTJFN%® Flag Bits . . R L
=3 Bits Returned on GTJFH! Call -)
3=4 Long Form GTJFH% Argument Block « 3=1]
1-5 QOPENF% Access Bits . . . L T S S S P, i I
3-6 Bits Returned on GTS5TS4 fall M « 3=27
3=7 JFN5% Format Options « + o+ 3=30
4=-1 Software Interrupt Channel ﬂﬁg:qnments L « o« =4
4=2 Terminal Codes and Conditions . . . u « « A=10
5=1 Process Hamdles . . « & « « & & & & + = +« + B=5
5-2 Process Status Word« . « + « + = « « 5=12

Vi

ol e el el ned e Y O
I
R B Rad B B

CONTENTS (Cont.)

ENQ% Functlons . « « « +« =« = =

DEQYE Funckions . . « & o = = = = = &
Packet Descriptor Block Flags . . .
Flags Meaningful on a MSENDE® Call
Flags Mesningful on & MRECVE Call .
{SYSTEM>INFO Functions and Arguments
CSYSTEM>INFO Responses

MUTIL® Functions . .

vii

PREFACE

The TOPS-20 Monjtor Cplls User's Guide is written for the assembly

language wuser who is unfamiliar with the DECsystem=20. The manual
introduces the user to the functions that he can reguest of the
moniter from within his assembly language programs. The manual also
teaches him how to use the basic monitor calls for performing these
functions.

This manual is mnot & reference document, nor is 1t complete
documentation of the entire set of monitor cells. It is organized
according toe funmctions, starting with the simple and proceeding to the
more advanced.

Each chapter should be read from beginning to end. A user who sSkips
around in his reading will not gain the full benefit of this manual.
Once the user has a working knowledge of the moniter calls in this
document, he should then refer to the TOP5-20 Monitor Calls Reference
Manual (AA-4166E-TH} for the complete descriptions of all the calls.

To understand the exsmples in this manwval, the user must be familiar
with the MACRED language and the DECsystem-20 machine instructlions.
The TOPS-20 MACRD Assembler Reference Manual (AA-4159C-TM) documents
the “MACREO Tanguage. The TOPS5-20 LINE Reference Manual describes the
linking loader. The DECsystem-10/DECSYSTEM-20 Processor Reference
Manual (AA=HIAS1A-TK) contains the i1nformation on the machine
instructions. These three manuvals should be used together with the
Monitor Calls User's Guide, and should be referred to when guestions
arise on the MACRD language or the instruction set.

In addition, some of the examples in this manual contain macros and
symbals (MOVE, TMS5G, JS5ERR; or JSHLT for example) from the MACSYM
system file. This file iz a universal file of definitions available
te the user as a means of producing consistent and readable programs.
A listing of MACSYM.MAC iz available in Appendix € of the TOPS-20
Monitor Calls Reference Manual.

Finally, the user should be familiar with the TOPS-20 Command Language
to enter and run the examples. The TOPS-20 User's Guide [(AA=4179C-TH)
describes the TOPS=-20 commands and system programs.

ix

CHAFTER 1
INTRODUCTION

1.1 OVERVIEW

A program written in MACRO assembly lanquage consists of a series of
statements, each statesent wusvally corresponding to one or more
machine language instructions. Each statement in the MACRD program
may be one of the following types:

1. A MACRO assembler directive, or pseudo-operation (pseudo-op) .,
such as SEARCH or ENKD. These pseudo-ops are commands to the
MACRC assembler and are performed when the program is
assembled. Refer to the CECsystem=20 MACRD Assembler
Reference Manual for detailed” gescriptions” of the MWACRD
pSeudo-ops.

2. A HMACED assembler direct assignment statement. These
statements are in the form

gymbol=value

and are used to assign a specific wvalue to a symbol.
Assionment statesents are processed by the MACRO assembler
when the program is assembled. These statements do not
generate instructions or data in the assembled program.

3. A MACRC asgembler constant declaration statement, Such a5
OME: EXF 1
These statements are processed when the program is assembled.

4. An instruction snemonic, or symbolic instruction code, such
as MOVE or ADD. These symbolic instruction codes represent
the operations performed by the cemtral processor when the

program is executed. Fefer to the Hardware Reference Manual
for detailed descriptions of the symbolic instruction codes.

%. A monitor call, or J5Y5, such as FESET or BIMN. These calls
are commands to the moniter and are performed when the
proaram is executed. This manual describes the commonly=-used

monitor calls. However, the user should refer to the TOPS=20
Monitor Calls Reference Manual for detailed descriptions otf

all the calls.

INTRODUCTION

When the MACRD program is assembled,; the MACRD assembler processes the
gstatements in the program by

tramslating syebolic instruction codes to binary codes.
relsting symbols to numeric values.
& assianing relocatable or absolute memory addresses.

The MACRD assembler also converts each symbolic call ko the monitor
inte & Jump-to-5System (JSYS) imstruction.

1.2 HMONITOR CALLS

Moniter calls are used to reguest monitor functions, such as input or
output of data (1/0), error héndling, and number conversions, durlng
the execution of the program. These calls are accomplished with the
JEY¥E instruction (operation code 104), where the address portion of
the instruction indicates the particular function.

Each monitor call has a predefined symbol indicating the particular
moniter function to be performed (e.g9., OFENF% to indicate opening a
file}. The symbols are defined im a system file called MHOKRSYH.
Menitor calls defined in Felease 4 and leter, reguire a percent
sign(%) as the final character im the call symbol. Moniter Calls
defined prior to Eelesse 4 do not reguire the %, but do accept it.
The current convention is that all monitor calls use the % as part of
the call symbol. This manuwal follows that convention. (Refer to the
TOPS=20 Monitor Calls Beference Manual for @ listing of the MONSYM
fTile.] Tc use Lhe symbols and to cause them to be defined correctly,
the vser's program mest contain the statement

SEARCH MONSYM

at the beginning of the prooram. Dwring the assembly of the progaram,
the assembler replaces the wmwonitor call symbel with an instruction
containing the operation code 104 inm the left half and the appropriate
function code in the right half.

Arguments for a JS5¥S instruction are placed in accumulators (ACs).
Any data resulting from the execution of the J5Y¥YS instruction are
returned in the accumulastors or in an address in memory to which amn
accumulator points. Therefore, before the JSYS instruction can be
executed, the appropriate arguments must be placed in the specific
accumulators.

1.2.1 <Calling Seguence

Arouments for the <calls are placed in accumulaters 1 through 4

(ACLl=-RAC4) . If more than four arguments are reguired for a particulac
call; the arguments are placed in a list to which an accumulator
points. The arguments for the calls are specific bit settings or

values. These bit settinos and values are defined in MONSYM with
symbol mnames, which ¢an be used in the program. In fact, it is
recommended that the user write his program uwsing symbols whenever
possible. This makes the program easier to read by another user. Use
of symbols also allows the values of the symbols to be redefined
without reguiring the prooram to be changed. In this manual, the

1-2

INTRODUCTION

argquments for the monitor calls are described with both the bie
settings and the symbol names. All program examples are writktem using
the =ymbol names.

The =zet of instructlions that place the arqueents In the accumulators
iz followed by one line of code giving the particular monitor call
symbol. During the proorsm"s execution, control is transferred to the
monitor when this line of code is reached.

l1.2.2 EReturns

After the execution of the call, control returns to the user's program
at ane of two places. If an errcor oCcCuUrs during the call'"s executlon,
control generally returns to the instruction immediately following the
moniter call. In addition, an error code may be stored 1n an
accumulater to indicate the exact cause of the failure. This ecror
code cam be obtained by the prooram and translated into its
corresponding ereor mhemonic and message string with the GETERY and
EFSTEY monitor calls (refer to Appendix A for the list of error codes,
mnemonics, and message strings). If the execution of the call is
successful, contrel generally returns to the second instruction
followine the momitor call. Data returned from the execution of the
call is stored im an accumulator or in an address pointed to by an
accumulator.

However, for some monitor <#lls, only a single return to the
instruction following the call occurs. On a successful return, that
ingtruction is executed. If an error occurs durimg the execution of
the call, the monitor examines the instruction following the call. If
the instruction i= a JUMP instruction with the AC field specified as
either 16 or 17, the monitor transfers control to a uwser-specified
address. If the instruction is not a JUMP instruction, the monitor
generates an illegal instruction trap indicating an illegal
instruction, which the user's program cén process wvia the software
interrupt system (refer to Chapter 4). If the user's orogram is not
prepared to process the instruction trep, it is terminated, and a
messsae is output stating the resson for failure.

To place a JUMP instruction im his proaram, the uger can include a
statement uvusing one of two predefined symbols. These symbols are

ERJHF address (= JUMF l&,]
ERCAL address (= JUMF 17;)

and cause the assembler to generate & JUMF instruction. The JUMF
instruction 15 & non-operation instruction (i.e., a no-op) as far as
the hardware ils concerned. MHowever, the moniter executes the JUMP
instruction by transferrino control to the address specified, which is
normally the beginning of &n error processine routine writtem by the
UBEE . If the user includes the ERJMF symbol, controcl is transferred
as though a JUMPA instruction had been executed, and conmtrol will not
return to his preogram after the error routine is fimished. If the
user includes the ERCAL symbol, control is transferred as though a
FUSRJ 17, address instruction had been executed. If the ercor routine
executes a POPJ 17, imstruction, comtrol will returm to the uwser's
program at the location following the EBCAL.

The ERJHF and ERCAL symbols can be used after all moniter calls,
regardless of whether the call has one or two returns. To handle
BECOCS consistently,; users are encouraged to erploy these symbols with
all <calls. The ERIJMF or ERCAL 1f a no-op unless it immediately
follows a monmitor call that fails.

1-3

INTRODUCTION

The following i= an example of executing a moniter call (BIM%, refer
te Chapter 3) that has a single return. If the execution of the call

ig suwccessful, the program reads and stores a character. If the
execution of the call is not successful, the program transfers control
to am error coutine, This routine processes the error and then

returns control back te the main program seguence. Note that ERCAL
stores the return address on the stack.

DOIT: HOVE 11,IKJFH jobtain JFH for input file
BIN% rinpuet one character
ERCAL ERROE jcall error routine if problem
MOVEM T2,CHAR ;jstore character
JEET DoIT rand get another
EREOR: HOVE Tl ,INJFH sinmput JFH
GTETS5% ;read file status
TXME T2,G5%EQF send of file?
JEST EOF ives, process end=ocf=file condition

HRROTI 11, [ASCIES ;no, data error
?INPUT ERROR, CONTINUING
£
PSOUTE rprint message
RET jreturn to program (BOFJ 17.)

1.3 PROGRAM ENVIRONMENT

The user program enviconment in the TOPS-20 operating system consists
of a job structure that camn contain many processes. A process is a
runnable or Schedulable entity capable of performine computations in
parallel with other processes. This means that 2 runnable program is
asgocizted with at least one process.

Each process hag its own address space for storing its computations.
Thig address space is called wirtval space because it is actually a
"window" into physical storage. The address space is divided into 32
sectlions. Each section is divided into 512 (decimal) pages, and each
page contains 512 (decimal) words. Each word contains 36 bits.

A process can communicate with other processes im the following ways:

@ @oxplicitly; by software interrupts or system facilities (the
inter-process communication facility, or IPCF, for example).

ipplicitly, by changing parts of its environment (its address
gpace, for instance) that are being shared with other
F roCesSsSes,

A process can create other proceszes inferior eo it, but there is one
conktrol process from which the chain of creations begins. A process
iz said to exist when & superior process creates it and is said to end
when a cuperior process deletes ik, Fefer to Chapter 5 for more
information on the process Structure.

& set of one or more related processes, normally wnder control of a
sinole user, 15 & job. Each active process is part of some job om the
system. A job is defined by a user name, an account number, Some Oopen
files, and a set of running andsor suspended processes. This seans
that a job can be composed of several running or suspended programs.

TOP5=-20 Version 5§ 1-4 April 1982

INTRODUCTION

The following disoram illustrates a job structure consisting of four
processes.

TOP PROCESS \L o
/

[— AT

Both process A and process B are created by the control process and
thug are inferior to it. FProcess C is created by process B and thus
is inferior to process B only.

In sSummary, processes can be considered as independent wvirtual
machines with well-defined relationships to other processes in the
gystem, and a job is a collection of these processes,

1-5

CHAPTER 2

INFUT AND OQUTPUT USING THE TERMIMNAL

One of the main reasons for using monitor calls is to transfer data

from one location to another. This chapter discusses moving data to
and from the user's terminal.

2.1 OVERVIEW

Data transfers to and from the terminal are in the form of elther
individual bytes or text strings. The bytes are 7-bit bytes. The
strings are ASCII strings ending with a 0 byte. These strings are
called ABCIZ strings.

To designate the desired string, the pser's proaram msoest include a
statement that points to the beginning of the string being read or
written. The MACRO pseudo-op, POINT, can be wsed to Set up this
pointer, as shown in the following sequence of statements:

MOVE AC1,FTR

L]

PFTE: POINRT 7,M5G
MSG: ASCIZ/STEXT MESSAGE/

heccumulator 1 contains the symbolic address (FTE) of the pointer. At
the address specified by FTE is the pointer to the beginming of the
string. The pointer is et up by the POGINT pseudo-op. The general
format of the POINT pseudo-op is:

POINT decimal-byte-gize,address,decimal-byte-position

(Refer to the MACED Assembler Reference Manual for more information on
the POINT pseudo-op.) In the example above, the FCINT pseudo-op has
been written to indicate 7-bit bytes starting before the left-most bit

in the address speclified by MEG.

Another way of Setting up an accumulator to contain the address of the
pointer i%s with the following statement:

HEEOI ACL, [ASCIZ/TEXT MESSAGE/)

2=1

IRPUT AND QUTPUT USING THE TERMIMAL

The instruction mpemonic HRROI causes a =1 to be placed in the left

half of accumulatoer 1 and the address of the string to be placed in
the right half. However, in the above statement,; a literal (enclosed
in =guare brackets) has been uvsed instead of a symbolic address. The
literal causes the MACRD assembler to:

Store the dats within brackets (i.e., the string) im a table.
& ass5ign an address to the first word of the data.

insert that address as the operand to the HEROI instruction.

Literals have the adventase of showinea the data at the point in the
program where it will be used, instead of showing it at the end of the
DEQSCam,

hs far as the 1/0 monitor calls are concerned, a word in this format
(=1 im the left half and an address in the right half) designates the
system's standard pointer (i.e., & pointer to & 7-bit ASCIZ string
beainnine before the leftmost byte of the string). The HRROI
gstatesent is interpreted by the ponitor to be functionally eguivelent
te the word assembled by the FOINT 7, address pseudo-op and is the
recomeended Statement to use. However, byte manipulation instructions
1eiq-. ILDE, IBP, ADJEP) will not operate properly with this type of
pointer.,

Afrver a string is read, the pointer is advanced to the character

followina the terminating character of the string., After a Etrin? is
written, the pointer is aovanced to the character following the ast

non=nwll character written.

2.2 PRIMARY I/0 DESIGHATORS

To transfer data from ome location to another, the user's program must

indicate the source from which the data is to be obtained and the
destination where the data is to be placed. The two designators used
te represent the user's terminal are:

1. The syebol .PRIIM to represent the wuser's terminal as the
source [(input) dewice.

i. The symbol .FRIOU to represzent the wser's terminal as the
destination [output) device.

These symbols are called the primary input and output designators and
by default are used to represent the terminal controllimg the program.
They ape defined in the symbol File MOWSYM and do not have ko be
defined in the user's progrér 8% long &% the progarsm contains the
statement

SEARCH MOKSYM

2=2

INFUT AND OUTFUT USING THE TERMINAL

2.3 PRINTING A STRING

Many times a program may need to primt an error message or some other
string, such &5 a prompt to reguest input Erom the user at the
terminal. The PS0OUTY (Frimacry String Output) monitor call is used to
print such a string on the terminal. This call copies the designated
string from the program's address space. Thus, the source of the data
ig8 the program's address space, and the destination for the data is
the terminal. The program need only supply the pointer to the string
being printed.

hecumuplator 1 (ACl) is wsed to contain the address of the pointer.
After ACl is set up with the pointer te the string, the next line of
code is the PSOUTE call. Thus, an example of the FS50UTY call is:

HRROI ACL,[ASCIZ/TEXT MESSAGE/] setring to print
PSOUTS sorint TEXT MESSAGE

The ASCIZ pseudo-op specifies a left-justified ASCII strina terminated
with & null ({i.e.; C) byte. The PFS50UTE call prints on the terminal
all the characters in the string uvuntil it encounters a mnull byte.
Hote that the sString is printed exactly as it is stored in the
program, starting at the current position of the terminal's print head
of <cursor and ending at the last character im the string. If a
carriage return and line feed are to be output, either before or after
the string, these characters should be inserted as part of the string.
For example, to print TEXT MESSAGE on one line and to output a
carriage return-line feed after it, the user's pregram includes the
call

HEEQI AC], [ASCIZ/TEXT MESSAGE

ESCUTY

After the string is printed, the instruction following the PFSOUTY call
in the user's progrem is executed. Also, the pointer inm ACL is
updated to point to the character followina the last non-null
character written.

If an error occurs during the execution of the call, the monitor looks
for an ERJMPF or ERCAL instruction as the next instruction following
the call. If the next instruction is either one of these, the monitor
transfers control to the address specified. If the next instruction
is not an ERJHP or ERCAL, the momnitor generates an illegal instruction
trap.

2.4 READING A HWUMEBER

The HIN% (Number Input) monitor call is used to read an integer. This
call does not assume the terminal a& the source designator;
therefore, the user's progras msust specify this. The NIN% call
accepts the number from any wvalid souvrce designator, including a
string in memory. This section discusses reading a number directly
from the terminal. ERefer to Section 2.9 for am example of using the
MIN% call to read the number from a string in memoery. The destination
for the nusber is ACZ, and the KINY call places the binary value of
the number read inte this accumulator. The user's progras also
specifies a number in AC3 that represents the radizx of the number
being input. The radix given cannot be greater than base 10.

INPUT AND OUTEUT USING THE TERMIMAL

Thug, the setup for the HINE moniter call is the following:

MOVEI ACL,;.FRIIN sACL contains the primary input designator
jfi.e., the user's terminal)

MOVEI AC3, D10 ;ACY contains the radix of the number being
sinput (l.e., decimal number)

NIN% ;The call to input the number

After completion of the WIN% call, control returms to the program at
one of two places (refer to Sectiom 1.2.2). If an error occurs durinag
the execution of the call, contrel returns to the instruction
following the call. This instfuction should be a jump=-type
instruction to am error processing routine. Also, an error code 18
placed inm AC3 (refer to Appendix A for the error codes). If the
execution of the WIN% call 15 swvccessful, control returns to the
second instruction feollowina the call. The number input from the
terminal is placed im AC2.

The MINE call terminates when it encounters a mnondigit character
{#.g9., & letter, a punctuation character, or a control character).
This means that if 32X]l were typed on the terminal, on returm ACZ
would contain a 40 {(octal) because the HINE call terminated when it
read the X.

The followinag program prints & messaae and then accepts a decimal
number from the user at the terminal. MNote that since the HINS call
terminates reading on any nondigit character: therefore, the usSer
cannot edit his ipput with any of the editing characters [(e.49.,
DELETE, CTEL/W}. The RDTTY call (refer to Section 2.9) should be used
in programs that read from the terminal because it allows the user to
edit his input as he iz typing it.

SEARCH MOMSYM
HEEOI ACL,[ASCIZ/Enter # of seconds: /]

PEOUTS joutput a prospt mesSsage
MOVEI ACL,.PRIIN sinput from the terminal
MOVEI AC3, D10 juse the decimal radix
HIN% rinput & decimal number
ERJMF HIMERE jerror=-go to error routine

MOVEM AC2, NUMSEC rgave number entered

NUMSEC:BLOCK 1

2.5 WRITING A NUMBER

The HWOUTE® (Mumber Qutput) moenitor call is wveed to output an integer.
The nurber toe be output is placed in AC2Z. The user's progrém must
specify the destination for the number in ACl and the radix i1n which
the npumber i% to be output im AC3. The radix given cannot be greater
than base 36. In addition, the user's program cam specify certain
formatting options to be used when printing the number.

2=4

INFUT AND QUTPUT USING THE TERMINAL

Thus, the general setup for the NOUTY monitor call is as follows:

AC1: output designator

ACE: number being oubpuk

AC3: format options in left half and radix in right half
The format options that can be specified in the left half of AC3 are
described in Table 2-1.

Table 2=1
HOUTY® Format Options

Bit Symbol Meaning

LI HORMAG PFrimt the number as a positive 3I6=bit
number . For example; =1 would be printed
as TIVITV OTANNNT.

1 HORSGH Frint the appropriate sign (+ or =) before
the number. If bits HORMAG and HORSGH are
both on, a plus sign is always printed.

2 HORLFL Print leading fillee. If this bit i= not
get, trailing filler is printed.

3 ROGREZRO Use 0's as the leading filler if the
gspecified number of columns allows filling.
If this bit is not set, blanks are used as
the leading filler if the number of columns
allows filling.

4 NOROOV Uze the setting of bit 5 (NORAST) 1f column
overflows and give an error return. If
this bit is not set, column overflow is mot
printed.

5 HORAST Print asterisks when the column overflows.
If this bit is not set, and bit 4 (NOROOWV)
is set, all necessary digits are printed
when the columns overflow.

=10 Beserved for DEC (must be zero).

11-17 ROWCOL Frint the mnumber of columns indicated.
This walue includes the sign column. IE
thiz field iz 0, as many columns as
RECESSArY are printed.

Like the NIN%® call, the HOUT® call returns contrel to the uwser's
program at one of two places. Control returns to the instruction

following the call if an error is encountered, and an error code is
placed n AC3. Control returns to the second instruction following

the call if no error is encountered.

INPUT AND OUTPUT USIRG THE TERMIMAL

The followinag example illustrates the use of the three monitoer calls

described 8o far. The BRESETY and HALTFR: monitor calls are described
in Sectionm 2.6.

SEARCH MONSYM

START: RESETH
HREROI ACLl, [ASCIZ/PLEASE TYPE A DECIMAL NUMEBER: /]
PSOUTHE
MOVEI ACL,.FRIIN reaurce degiaqnator
MOVEI AC3I, D10 sdecimal radix
NIN%

ERJMF EFROR
HEROI ACL, [ASCIZ/THE QCTAL EQUIVALENT IS [f]

FEOUT
HOVEI ACL,.FRIOCU
MOVEI AC3, DB roctal radix
HOUT%
ERJMF ERRCE
HALTF% jreturn to command lanauage
JEST START sbegin again, if continued

ERROR: HRROI AC), [ASCIZ/
PEFROR-TYPE START TO BEGIN AGAIN/]
PSOUTYR
HALTF&
JRET START
END START

2.6 INITIALIZING AND TERMINATING THE PROGRAM

Two monitor calls that have not yet been described were used in the
above program - RESETR and HALTFR.

2.6.1 RESETY% Monitor Call

A good programming practice 15 to include the RESET monitor call at
the beginning of every assesbly language prosram. This call closes
any existing open files and releases thelr JFNs, kills any inferior
processes, and clears the software interrupt system [(see Chapter 4).
The format of the call is

RESETY

and control always returns to the next instruction following the call.

2.6.2 HALTF% Monitor Call

To stop the execution of his prooram and toe retuen contrel to the
TOFPS=20 Command Lanouage, the user must include the BALTF monitor call
as the last instruction perforsed in his prograsm. He can then resume
execution of his prograe at the instructiom following the HALTF® call
by typing the CONTINUE command after control has been rceturned to
command level.

INFUT AND OUTPUT USING THE TERMINAL

2.7 READING A BYTE

The FEINR (Primary Byte Input) monitor call is used to read a s=ingle
byte (i.e., one character) from the terminal. The user's program does
net have to specify the sSowrce and destination for the byte because
this <¢all wuses the primacry input desionater (i.e., the user's
terminal) as the source and accumulator 1 as the destination. After
execution of the PBINWY call, contrel returns to the instruction
following the PEINR. If execution of the call is successful, the byte
read from the terminal is right-justified im ACl. 1If execution of the
call is not successful, an illegal instruction ktrap i5 generated 1if
the user's program does not have, immediately after the PBINR call, an
ERJMP or ERCAL instruction to an error routine.

2.8 WRITING A BYTE

The FBOUTR (Primary Byte Output) monitor call is uvsed to write a
single byte to the terminal. This call uses the primacy output
designator (i.e., the user's terwinal) as the destination for the
byte; thus, the wuvser's program does not have to specify the
destination. The source of the byte being writtem iz accumulater 1;
therefore, the user's program must place the byte right-justified in
ACl before the call.

After execution of the FBOUTY® call, control returns to the instruction
following the PBOUTR. If execution of the call is successful, the
byte is written to the uwser's terminal. If execution of the call is
not suecessful, an illegal instruction trap is generated if the user's
progras does not heave, immediately after the FBOUTR call, am ERJHF orf
ERCAL instruction to an error routine,

2.9 READING A STRING

Up to this point, monitor calls have been presented for printing a
string, reading and writing am integer, and reading and writimg a
byte. The next call to be discussed obtains a string from the
terminal and, in addition, allows the user at the terminal to edit his

input as he is typing it.

The RDTTY% (Feasad from Terminal) moniter call reads input Erom the
uger's terminal (i.e., from .PRIIN)} into the program's addre&s Space.
Input is read until the uvser either types an appropriate termimating
{breask) character or inputs the maximum nusber of characters allowed
in the string, whichever occurs first. Output genecrateo &% & result
of character editing is printed on the user's terminal (i.e., output

te .FRIOU).
The RDTTYY call handles the following editing functions:

1. Delete the last character in the string if the wvser presses
the DELETE key while typing his input.

2. Delete back to the last punctuation character in the sString
if the user types CTRL/W while typing his input.

3, Delete the current line if the user types CTRLAU while typling
his input.

4. FRetype the current line if the user types CTREL/R while typing
his input.

INFUT AND OUTFUT USING THE TERMINAL

Because the EDTTY% call can handle these editing functions, a8 program
can accept input from the terminal and allow this input to be
corrected by the user as he is typing it. For this reason, the RDTTY
call should be used to read input from the terminal before processing
that input with calls such as NIN%.

The RDTTY% call accepts three words of arguments in ACl through AC3.

ACL: pointer to area in program's address space where input is
to be placed. This area is called the text input buffer.

RC2: control bits in the left half, and maximum number of bytes
in the text input buffer in the right half.

AC3: pointer to buffer for text to be output before the user's
input if the user types a CTREL/R, or 0 if only the user's
input i% to be owtput on a CTRL/R.

The control bits in the left half of ACZ specify the characters on
which to terminate the input. These bits are described in Table 2-2.

Table 2=2
EDTTY% Control Bits

Bit Symbol Meaning

0 FORBRE Terminate input when user types a
CTRL/Z or presses the ESC key.

1 EDRTOF Terminate input when user types one of
the following:

CTEL/G

CTEL/L

CTRL/Z

ESC key
RETUEN key
Line feed key

2 RO FUN Terminate input when user types one of
the followina:

CTEL/A=CTRL/F
CTRL/H=-CTRL/I
CTEL/K
CTRL/N-CTRL /D
CTRL/S=CTRL/T
CTRL/X-CTRL/Y

BECII codes 3d=36
ASCII codes 40-57
ASCII codes 72-100
ASCII codes 133=140
ASCII codes 173-176

The ASCII codes listed above represent
the punctuation characters in the
ASCII character set. REefer to an
ASCII character set table for these
characters.

INPUT AND OUTPUT USING THE TEEMIMAL

Table 2=2 (Cont.)
BOTTY%® Control Bits

Bit Symbol Meaning

3 RDRBEL Terminate input when user types the
RETUEN or line feed key (i.e., end of
linej.

4 RDRCEF Store only the line feed in the input
buffer when the user presses the
FETURN key. A carriage return will
&till be output to the terminal but
will not be stored in the buffer. If
this bit is not set and the wuser
PEESESES the RETURKN key, both the
carriage return and the line feed will
be stored as part of the input.

5 RDARND Feturn to program if the user attempts
to delete past the beginmning of his
input, This allows the program to
take contrel if the wuser tries to
delete all of his input. If this bit
is mot set, the program waits for more
inpukt.

[Feserved for DEC (must be zera).

T RDRRIE Return to program when there is no
input (i.e., the text input buffer is
emptyl. If this bit is not set, the
program waits for more input.

#=19 Feserved for DEC (must be zera).

10 EDWRAI Convert lower case input to upper
Case.

11 RD&5U1 Suppress the CTRL/U indication on the
terminal when a CTRL/s0 is typed by the
user, This means that if the wuser
types a CTRL/U, XXX will not be
printed and, on display terminals, the
characters will not be deleted from
the screen. If this bit is not set
and the user types a CTRLAU, XXX will
be printed and, if appropriate, the
characters will be deleted from the
screen. In neither case is the CTRL/SU
stored in the input buffer.

12-17 Reserved for DEC (must be zero).

2-9

INPUT AND OQUTPUT USING THE TERMINAL

I1f ne control bits are set in the left half of ACZ, the input will be

terminated when the uSer presses the RETURN or line feed key (i.e..
terminated on an end=-of=line condition only).

The count in the right half of ACZ specifies the number of bytes
available for storing the string in the program's address space. The
input iz terminated when this count is exhausted, even if a specified
break character has not yet been btyped.

The pointer in AC3 is to the beginning of a buffer containing the text
to be output if the user types a CTRL/R. When this happens, the text
in this separate buffer is cutput, followed by any text that has been
typed by the user. The text in this buffer cannot be edited with any
of the editing chearacters (i.e., DELETE, CTERL/W, or CTRL/SU). If the
contents of AC3 is zero, them no such buffer exists, and if the user
types CTEL/R, only the text in the input buffer will be output.

If execution of the RDTTY call is suwecessful, the input is in the
specified area in the program's address space. The character that
terminated the input is also stored. (If the terminating character is
a carriage return followed by a line feed, the line feed is also
stored.} Control returns to the user's program at the second location
following the call. The pointer inm ACl is advanced to the character
following the last character read. The count in the right half of ACZ
is vpdated, and appropriate bits are set in the left half of AC2. The
bits that cam be set on a successful return are:

Bit 12 RDWBTM The input was terminated because one
of the specified break characters was
typed. This break character is placed
in the input buffer. If this bit is
not set, the input was terminated

because the byte count was exhausted.

Bit 13 PRDABFE Control was returned to the program
because there is no more input and
RD%RIE was set in the call.

Bit 14 FERDEBLE The limit to which the user can backup
for editing hizs input was reached.

If execution of the EDTTY% call is not successful, an error code is

returned in ACL. Control returns to the wuwser's program at the
instruction following the RODTTYR call.

The followino example illustrates the recommended method for reading

data from the terminal. This example is essentially the same as the
one in Section 2.5; however, the EDTTY¥ call (s wsed to cead the
number before the WIN call processes it.

2=10

INFUT AND QUTPUT USING THE TERMIMAL

SEARCH MONEYM
START: RESETH
HERQI ACL,FROMPT
FSOUTR
HREOI ACL,BUFFER
MOVEI ACZ,BUFLEN*S
HERCI AC3,FROMPET
RETTY%
ERJMF ERROR
HRROI ACL,BUFFER
MOVEI AC3, D10
HINE
ERJMF ERROE
HEROI ACL, [ASCIZ/THE OCTAL EQUIVALENT IS5 /]
ESOUTY
HOVEI ACL,.FRIOQU
KOVEI AC3, DE
ROUTE
ERJME ERROR
HALTE%
JRET START
FROMEFT : ASCIEZSPLEASE TYPE A DECIMAL NWUMBER:
BUFLEN==10
BUFFER: BLOCK BUFLEMN
ERROR: HEROI ACL, [ASCIEZ/S
TERRORE-TYFE START TO BEGIN AGAIN/S]
PEOUTR
HALTF#
JRET START
END START

2.10 SUMMARY

Data transfers of secuential bytes or text strings can be made to and
from the terminal. The monitor calls for transferring bytes ace PRINW
and PBOUTY and for transferring strings are BSOUTR and EDTTYSR. The
MINE and HNOUTE wmonitor calls can be used for reading and writing a
number. In general, the user's proaram must specify & source Efrom
which the data is to be obtained and a destination where the data is
to be placed. In the case of tersinal I/0, the symbol .FRIIN
represents the wser's terminal as the source, and the symbol .FRIGU
reprezents the uvser's terminal as the destination.

2-11

CHAPFTER 13
USIMG FILES

3.1 OVERVIEW

All information stored in the DECsystem=-20 is kept in files. The
basic wnit of storage in a file i5 a page containing bytes from 1 to
36 bits in lengoth., Thus, a sequence of pages conStitutes a file. In

most cases, files have names. Although all files are handled in the
game manner, certain operations are unavailable for files on
particular devices.

Programs can reference files by several methods:
In a segquential byte-by-byte manner.
In & multiple byte or strinmo manner.

In & random byte-by-byte mannet if the particular
file=storage device allows it.

@ In a page-mapping or sSection-mapping manner for files on

disk.
Byte and string input/foutput are the most common types of operations.

Generally, all programs perform I/0 by moving bytes of data from one
location to another. For exasple, programs can move byktes from one
memory aresd to another, from memory to a disk file, and from the
uger's terminal to memory. In addition, a program can map multiple
5l2=word pages or 5l2-page sections from a disk file inte memory or
vice versa.

Data transfer operations on files reguire four steps:

1. Establishino a correspondence between a file and a Job File
Humber (JFH), because all files are referenced by JFNs.

2. Opening the file to establish the data mode, access mode, and
byte &ize and to set up the monitor tables that permit data
to be accessed.

3. Transferrino data either to or from the file.

4. Closing the file to complete any I1/0, to update the directory
if the tile is on the disk, and to release the monitor table
space used by the file.

TOPS=20 Version 5 i=1 April 1982

USING FILES

Some operations on [iles do not reguire the execution of all four
steps above. Exasples of these operations are: deleting or renaming
a file, or changing the access code or account of a file. Although
these operations do not reguire all four steps, they do reguire that
the file has a JFM associated with it (step 1 above).

It is possible for disk files on the DECsystem=-20 to be simultaneously
redd or written by any number of processes. To make sharing of files
possible, all instances of opening a specific file imn a specific
directory cause a reference to the same data. Therefore, data written
inta a f?le by one process can immediately be seen by other processes
reading the file.

Acceszss to files is controlled by the 6=-digit (octal) file access code
asgigned to a file when it is created. This code indicates the types
of access allowed to the file for the three classes of users: the
owner of ¢the file, the users with group access to the file, and all
other users. (Refer to the TOPS-20 Uger's Guide for more information
on the file access codes.) If the user is allowed access to a2 file he
reguests the type of sccess desired when opening the file with the
OPENFY monitor call (refer to Section 3.4) in his program. If the
access reguested in the OPENFR call does not conflict with the current
access to the file, the wuser is aranted access., Essentially, the
current access to the file is set by the first user who opens it.

Thus, for a user to be aranted access to a specific file, two
conditions must be mek:

1. The file access code must allow the user to access the fille
in the desired manner (e.g9., read, write).

2: The flle must not be opened for a conflicting type of access.

3.2 JOB FILE HUMBER

The Job File Humber (JFH) is one of the more important concepts in the
operating system because it serves as the identifier of a particular
file on a particular device during a process' execution. It is a
gemrall integer assigned by the system upon a2 reguest from the user's
proaram. JFHNs are usually assigned seguentially starting with 1.

The JFN is wvalid for the job in which it is assigned and may be used
by any process in the job. The system uses the JFN as an index into

the table of files associated with the job and always assians a JFH
that is unigue within the job. Even though a particular JFN within

the job can refer to only one file, & single file can be associated
with more than one JFN. This occurs when two or more processes are
using the same file concurrently. 1Im this case, each of the processes
will preobably have a different JFN for the file, but all of the JFHs
will be associated with the same file.

3.3 ASSOCIATING A FILE WITH A JFN

In order to reference a2 file, the first step the uwser program mpust
complete iz to associate the specific fille with a JFH. This
correspondence 15 established with the GTJFN% (Get Job File Humber)
monitor call. One of the arguments to this call is the string
representing the desired file, The string can be specified within the

3=-2

USING FILES

program (i.e., come from memory) or cam be accepted as input from the
ugser's terminal or from another file. The string can represent the
complete specification for the file:

devi<directoryrname.typ.gen;Titemporary) ;PFiprotection) ;A jaccount)

If any fields of the specification are omitted, the system can provide

values for all except the name field. Eefer to the TGPE-E? User's
Guide for a complete explanation of the specification for a file.

Table 3=-1 lists the values the system will assign to filelds not

specified by the input string.

Table 3=-1
Standard System Values for File Specifications

Field Value

Cevice DEK

Directory Directory to which wser ig currently
connected.

Hame Ho defaulkj; this field must be
specified.

Type Wull.

Generation number The highest existing generation number

if the file 15 an input file. The
next higher generation number 1if the
file is am output file.

Protection Frotection of next lower generation of
file, if one exists: otherwise,
protection as specified in the
dictectory.

Aoccocount Account specified when user logged in.

If the strino specified identifies a single file, the monitor returns
a JFH that remains associated with that file until either the process
releases the JFN or the job logs off the system. After the asslgnment
of the JFM is complete, the wuser's program wuwses the JFN in all

references to that file,

The user's program can Set up either the short or the long form of the
GTIJFNE moniter call. The long form of the GTJFN% call reguires an
argument block; the short form does not. The long form of GTJFNY has
functions and flexibility not available in the short form of the call.
The short form of GTJFN® allows & file specification to be obtained
from a strima in memory or from a file, but not from both. Flelds not
specified by the input are taken frowm the standard system walues for
those fields (refer to Table 3-1). This form is sufficient for most
uses of the call. The long fore allows a file specification to be
obtained from both & string in memory and a file. If both are given
&g arauments, the string is used first, and then the file is wuwsed if
pore fields are needed to complete the specification. This form alse
allows the user's program to specify nonstandard values to be used for
fields not given and to reguest the assignment of a specific JFM.

3-3

USING FILES

3.2.1 GTIFN% Monitor Call

The GTJIJFHY moniter call assigns & JFH to the specified file. It
accepts two words of arguments. These argument words are different
depending on the form of GTJIFHY being used. The user's program
indicates the desired GTJFH% forem by setting bit 17(GJI%ESHT) of ACL to
1 for the short form or by clearing bit 17 (GJ%5HT) for the long form.

3.3.1.1 Short Form Of GTJFN% - The short form of the GTJFHY monitor
call requires the followino two words of arguments.

] 17 18 i5

J --l!-.l--'l--l-l!-l!-l!-.l-ll-ll!l!-ll-ll-l.-ll-l!-l-ll---!

ACL [flag bits ! default generation number !

0 EL

J !!l!-l!ll!ll-ll!l!-l!-l!ll-ll-l!-ll-ll-ll-ll-ll-l!-l!-l!

AC2 1 gource designator for file specification per !
I bit 18 (GJWFNS) of ACI I

J --l--l-----l--l--I-l!-l--l--.l--l----.-----.--------.---:

The flag bits that can be specified in ACL are described in Table 3=2.

Table 3i=2
GTJFH%® Flag Bits

Bit Symbol Heaning

LI GJRFOU The file specification given is to be
assigned the next higher generation
number. This bit indicates that a new
version of a file iz to be created and
is normally set 1f the file iz for
uutpul‘. uge.

1 GJRNEW The file specification given must not
refer to an existing file (i.e., the
file must be a new file).

F GJIROLD The £ile specification given must
refer to an existing file. This bit
has no effect on a parse-only JFH.
(S5ee bit GIROFG.)

USING FILES

Table 3=2 (Cont.)
GTJFH: Flag Bits

Bit Symbol Meaning

3 GJEMEG One of the appropriate messages is Eo
be printed after the file
gpecification is obtained. The
message is printed only if the user
types the ES5C key to end his file
specification {i.e., he 1is wusing
recognition input).

[MEW FILE]

[MEW GENERATION]

[OLD GENERATION]

[OK] if GJRCFM (bit 4) is off
[CONFIRM] if GJRCFM (bit 4) is on

4 GJRCFH Confirmation from the user will be
regquired ko wverify that the file
specification obtained is correct. To
confirm the file specification, the
uger can press the RETURN key.

5 GJRTHP The file specified is tc be a
temporacy file.

3 GJENE Only the first file specification in &
multiple logical name assignment is to
be sesrched for the file.

) GJRACC The JFN specified is not to be
accessed by inferior processes in this
job. However, any Process can access
the file by acguiring a different JFHN.
Te prevent the file from being
sccessed by other processes, the
user"s program can Set OFRRTD (bit 29)
in the OPENF call (refer to Section
3.4.1}.

d GJRDEL The file specified is not to be
considered as deleted, even if it is
marked as deleted.

9-10 GJRJFH These bits are off in the short form
of the GTJFN call (refer to Section
3.3.1.2 for their description).

11 GJRIFG The file specification given is
allowed to have one or sore of its
fields specified with & wildcard
character (* or %). This bit 185 wuwsed
to process a group of files and is
generally uwsed for input files. The
monitor verifies that at least one
value exizts for each field that
contains & wildcard and assigns the
JFH to the first file in the garoup.

3-5

USING FILES

Table 3-2 (Cont.)
GTJFH% Flag Bits

Bik symbol Meaning
11 GJVIFG The monitor also verifies that fields
[Conk.}) not containing wildcards represent a

new or old file according to the
setting of GJE¥NEW and GJIROLD.

12 CJROFG The JFM is to be associated with the
given file specification string only
and not to the actuwal file. The
string may contain & 2 wildcard
character (* or %) im one or more of
its fields. It is checked for correct
punctustion between fields, but is not
checked for the wvalidity of any field.
This bit allows a JFN to be associated
with a file specification even if the
file specification does not refer to
an actual file. The JFN returned
cannot be uvsed to refer to am actual
file (e.g9., cannot be used in an OPENF
call) but can be used to obtain the
original input string wvia the JFHS
monitor call (refer to Section 3.7.2).

13 GJRFLG Flags are to be returned in the left
half of ACl on & successful return.

14 GJRPHY Logical names specified for the
current job are to be ignored and the
physical device is to be used.

15 GJEXTH This bit iz off in the short form of

the GTIJFN call (eefer to Section
3.3.1.2 for its description}).

16 GJLFHS The contents of AC2Z are ko be
interpreted as follows:

1. If this bit is on, AC2 contains an
input JFH in the left half and an
cutput JFN in the right half. The
input JPH is wused to obtain the
file specification to be
asgociated with the JFH. The
output JFN is5 used to indicate the
destination for printing the names
of any fields being recognized.
Te omit either JFM, the user's
program must specify the symbol
LHULIO (377777).

2. If this bit is off., ACZ contains a
polinter to a string in memory that
specifies the file tao be
associated with the JFH.

USING FILES

Table 3-2 (Cont.)
GTJFHY Flag Bits

Bik Symbol Meaning

17 GJASHT This bit must be on for the short form
of the GTJFN% call.

18-35 The generation number of the file.
The following wvalues are permitted;
however, 0 is the normal case.

0 toe indicate that the next
higher generation number i% to
be wused if GJEFOU (bit 0) i=s
on, or to indicate that the
highest existing generation
number iz to be wused Lf GIWFOU
is off.

1= to indicate that the specified

ATTITT number is to be wuwsed as the
generation if no genefation
number is supplied.

-1 ko indicate that the nexk
higher generation number is to
be wused if e genecation
number is supplied.

=2 to indicate that the lowest

existinog generation number is
to be used if no generation

number is supplied.

-3 to indicate that all
generation numbers are to be
used and that the JFN is to be
assigned to the ficrst file in
the group 1f no generation
number is supplied. (Bit
GJRIFG must be Set.)

USING FILES

If the GTJFHY call is agiven with the appropriate flag bit set (GJRIFG
oF GJROFG), the file specification given a8 input cam have a wildcard
character (either anm asterisk or a percent sign) appearing iIn the
directory, naéme, type, or genecration nusber field. (The percent sigm
cannot appear in the generation number field.) The wildcard character
iz interpreted a5 matching any existing occurrence of the fleld. For
examole, the specification

<LIBRARY>® MAC

identifies all the files with the file type .MAC in the directory
named <LIBRARY>. The specification

<LIBRARY>MYFILE.FO%

identifies all the files in directory <LIBRARY> with the name MYFILE
and & theee-character file type in which the first two characters are
+FO, Upon completion of the GTJIFN call, the JFN returned is
associated with the first file found in the group according to the
following:

in numerical order by directory number
in alphabetical order by filename
in alphabetical order by file type

in ascending numeécical order by generation number

The GHJFMN% (Get Mext JFM] monitor call canm then be given to assign the
JFH to the next f£ile in the group (refer to Sectiom 3.7.3). HKormally,
a program that accepts wildcard characters in a file specification
will successively reference all files in the group using the same JFN
and not obtain anocther JFN for each one.

1f execution of the GTJFN% call i5 not successful because problems
wepe encountered in performing the call, the JFN is not assigned and
an error code is returned inm the right half of ACl. The execution of
the program continues at the instruction following the GTJFN% call.

1f execution of the GTJFN% call i& Successful, the JFN assigned is
returned in the right half of ACl and various bits are set in the left
half, if flag bits 11, 12, or 13 were on in the call. {The bits
returned on & successful call are described in Table 3-3.) If bie 11,
12, or 13 was not on in the call, the left half of ACl iz zero. The

execution of the program continues at the second instruction after the
GTJFNE call.

i-E

USING FILES

Table 3-3
Bits Returned on GTJFMY Call

Bit Symbol Meaning
0-1 Eeserved for DEC.

2 GJRDIR The directory £ield of the file
specification contained wildcard
characters.

3 GJWNAM The filename field af the file
specification contained wildcard
characters.

4 GJYEXT The file type field of the file
gspecification contained wildcard
characters.

5 GJEVER The generation number field of the
file specification contained wildcard
characters.

& GJRURY The file used has the highest

generation number because a generation
number of 0 was given in the call.

7 GIJENHEY The file wsed has the next higher
gene:atiﬂn number because & qennratinn
number of 0 or -1 was given in the
call.

] GJREULWV The file used has the lawest
generation number because a generation
number of -2 was given in the call.

G GJYPRO The protection field of the file
gpecification was given.

10 GJRACT The account field of the file
specification was glven.

11 GJRTFS The file specification is for a
temporary file.

12 GJAGHD Files marked for deletion will not be
considered when assigning JFHNs in
subsegquent calls. This bit is sekt if
GJWDEL was not set in the call.

17 GJRGIV Invisible files were not considered
when assigning JFHN=s.

USING FILES

Examples of the short form of the GTJFNY monitor call are shown in the
fellowing paragraghs.

The following seguence of instructions is used to obtain, from the
uger's terminal, the specification of an existing fille.

MOVSI ACl, (GJROLD+GJRFNS+GIRSHT)
MOVE AC2,[.PRIIN,,.PRIOU]
GTJFR

The bits specified for AC]l indicate that the file specification given
must refer to am existing file [(GJR0OLD), that the file specification
is to be accepted from the input JFN in AC2 (GJWFNS), and that the
short form of the GTJFNY call is being used (GJRSHT). Because the
riaht half of ACl is zero, the standard ageneration number algorithm
will be used. Im this GTJFN% call, the file with the highest existing
generation number will be used. Because GJWFHS is set in ACLl, the
contents of AC2 are interpreted as containing an input JFW and an
gutput JFH. In this example, the file specificotion iz obtalned from
the terminal (. PRIIN).

The following seguence of instructions is uvsed to obtain, from the
user's tegminal, the specification of an output file and to reguire
confirmation from the user once the file specification has been
obtained.

MOWST ACL, (GJEFOU+GIRMSG+CIACFM+GCILFNS+GCIRSHT)
MOVE ACZ,[.PFRIIN,,.PRICU]
GTJFNY

In this example, the bits specified for ACL indicate that

¢ the file obtained is to be an output file (GJWFOU),

after the file specification i5 obtained, a message 18 to be
typed (GJWMSG),

the user is reguired to conficrm the file specification that
was obtained (GJRCFEM) ,

the [ile specification iz to be obtained from the input JFH
in ACZ (GJRFHNS) ,

the short form of the GTJFN%® call is being used (GJYSHT).

Because the right half of ACl iz zero, the generation number given to

the file will be one greater than the highest generation number
existing for the file. The contents of AC2Z are interpreted as

containing am input JFN and an output JFHN because GIWFNS i set in
ACL.

The following seguence of instructions is used to obtain the name of
an existing file from a location in the user's program.

MOVEI ACL, (GJROLD+GJRSHT)
MOVE AC2, [POINT 7,HAME]
GTJFNL

HAME :ASCIZ /MYFILE.TXT/

3-10

USING FILES

The bits specified for AC] indicate that the file obtained is to be an
existing file (GJROLD) and that the short form of the GTJFHE call is
being used (GJE5HT). Since the right half of ACl is zero, the file
with the highest generation number will be used. Because GJAFHS is
not set, the contents of ACZ are interpreted 83 containima & pointer
to a string in memocry thet specifies the file to be associated with
the JFW. The setup of AC2 indicates that the string begins at
location HWAME in the user's program. The file specification obtained
from location MAME is MYFILE.TXT.

An alternate way of specifving the same file is the seguence
MOVSI ACL, (GJROLD+GJUSHT)

HEROI AC2, [ASCIZ/MYFILE.TXT/]
GTJIFH&

3.3,1.2 Long Form Of GTJFH% - The long form of the GTJFNE monitor
call reguires the following two words of arcuments.

0 17 18 is
!-l--l-ll--.l-llllllll-lllllllllll.ll.!l.ll.lll-ll-l--l-lI_
ACl I 0 i addeess of argument table |

1] 33

l.-.--.---.---.--.l--.l--.l--l--l-ll!l!-ll!ll!-l-'l!-l!ll!ll-J

AC2 1 pointer to ASCIZ file specification string, or 0 1

l.-l-ll--l-ll-ll-ll-ll-ll-ll-l!-l!-l!lll-ll-ll!ll-ll-l!-J

The argument teble for the lomng form is described in Table 3=-4 below.

Table 3-4
Long Form GTJFHE® Argument Block

Word Symbol Meaning
o «GJGEN Flag bits appear in the left half and
generation number appears im the right
half.
1 «GJSRC An input JFH appesrs in the left half

and an cutput JFN appears in the riaght
half. To omit either JFW, the user's
progeam must specify the symbol HULID
(277777 .

2 «GJDEV Fointer to ASCIZ string that specifies
the device to be used when none is
given. If this word is 0, DSE will be
used.

3 GJDIR Fointer to ASCIZ string that specifies
the directory to be used when none is
given. If this word is 0, the user's
connected directory will be used.

3-11

USING FILES

Table 3=-4 (Cont.)
Long Form GTJFN% Argument Block

Word Symbol Heaning

4 «GJIHAM Pointer to ASCIZ string that specifies
the filename to be used when none is
given. If this word is 0, the input
must specify the filename.

5 « GJEXT Fointer to ASCIZ string that specifies
the £ile type to be used when none is
given. If this word iz 0, a null type
will be used.

] LGJERD Pointer to ASCIZ string or 3B2+octal
protection code. This word indicates
the protection to be used when none 18
given. If this word iz 0, the
protection as specified in the
directory will be used.

) GJACT Fointer to ASCIZ string or 3B2+decimal
account number, This word indicates
the account to be used when none is
given. If this word is 0, the account
gpecified when the uvser logaed inm will
be used.

10 « GJJFH The JFH to assign te the Eile
gpecification if £flag bit GJRJFR is

set in word .GJGEM (word 0) of the
argument block.

11-15% Additional words allowed if flag bit
GJEXETH (bit 15) is set in word .GJGEM
(word 0) of the argument block. These
additional words are used when
pecforming command input parsing and
are described in the TOPS-20 Mopitor
Calls Reference Manual.

The flag bits accepted in the left half of .GJGEM (word 0) of the
argument block are basically the same a3 those accepted inm the short

form of the GTJFH% call. The entire set of flag bits is listed below.
For further explanations of the bits; refer to Table 3-2.

Bit symbol Meaning
0 GJREFOU A new version of the file is to be
created.
1 GIJYHEW The file must not exist.
2 GJWOLD The file must exist.
3 GJEMEG A message 15 to be typed if the user
terminates his input with the ESC key.

1-12

USIMG FILES

Bit Symbol Heaning

4 GJRCFM The user must conficm the file
specification.

5 GJETHF The file is temporacy.

& GJANS Only the first file specification 1is
to be searched im a multiple losical
name definition.

7 GJRACC The JFE cannot be accessed by other
peocesses in the job.

& GJRDEL The "file deleted® bit is to be
ignored.

9=10 GJRJIFH The JFE supplied in .GJJFH(word 10) of
the argument block is to be assoclated
with the file specification given.
The settings of bit 9 anmd 10 are
interpreted as follows:

1. If bit 9 is on and bit 10 is off,
an attempt is made to assign the
JFH¥. An error return is given if
the JFN is not available.

2. If bit 9 is on and bit 10 is on,
an attempt is made to assign the
JFH. If it is not available, some
other JFH iz assigned.

3. Por any other combinations of
these bits, the JFN supplied is
ignored.

11 GJRIPG The file specification is allowed to
contaln wildcard characters.

12 GJROFG The JFM is to be associated with the
file specification string and not the
file itself.

13 GJRFLG Flags are to be returned in ACL on
gsuccessful completion of the call.

14 GJEFHY The physical device is to be used.

15 GJEXNTH The argument block contains more than
B words. FRefer to the TOPS-20 Monitor
Calls Beference Mapual.

18 GJAEFNS Thig bit is ignored for the long form
of the GTJFNE call.

17 GJREHT This bit must be off for the long form

of the GTJFRL call.

3=-11

USING FILES

The generation number values accepted im the right half of .GJGEM
(word 0} of the argument block cam be 0, -1, =2, =3, or & specified
number , although 0 is the normal case. FRefer to Pits 1E-35 of Table
3-2 for explanations of these wvalues.

If execution of the GTJIJFHE call is successful, the JFH assigned iz
returned in the riaht half of ACl and various bits are set in the left
half if flag bits 11, 12 or 13 were on in the call. Fefer to Table
3=-3 for the explanations of the bits returned. Execution of the
program continues at the second instructionm following the call.

If execution of the GTJIFH call iz not successful, the JFHN is not
assilaned and am ercor code is returned in the right half of ACl. The
execution of the program continues at the instruction following the
GTJFHNY call.

The following seguence of instructions obtains a specification for an
existing file from the user's terminal, assigns the JFH to the next
higher generation of that file, and specifies default fields to be
uvsed if the wser omits a field when he gives his file specification.

MOVEI ACL,JFNTABR
SETEZ AC2,
GTJFNE

JENTAB ¢ GJRFOU

Wk .PRIIN;.EBRIOU

1]

FOINT 7, [ASCIZ/TRAIN/] jdefault directory
0

POINT 7, [ASCIZ/MEM/S] sdefault file type
Q

1]

1]

The address of the araument table for the GTJIJFNR® call (JFHTAB) is
aiven in the right half of ACl. ACZ contains 0, which means no
pointer to a string is given; thus, fields for the file specification
will be takem only from the user's terminal. The first word of the
argument block contains a flag bit for the GTJFHN% call. This bit

(GJRFOU) indicates that the next higher generation number is to be
agsigned to the file. The second word of the argument block indicates
that the file specification iz to be obtained from the user's
tecminal, and any ocutput generated because of the wvser emploving
recognition iz to be printed on his terminal. If the user does not
supply & directory neéme a5 part of his file specification, Gthe
directory <TRAIN> will be used. And if the uger does not give & file
type, the type MEM will be used. If the user omits other fields from
his specification, the system standard value (refer to Table 3=1) will
be used.

USING FILES

3.3.1.3 Summary Of GTIJFH% - The GTJIFMN% moniter call is reguired to
assoclate a JFN with & particular file. 1In most cases, the short form
of the GTJFN® call is sufficient for establishing this association.
However, the long fore is more powerful because it provides the user's
program more conterol over the file specification that is obtained.
The followino summary compares the characteristics of the two forms of
the GTJFN% monitor call.

Short Form Long Form

Assigns a JFN to a file. Assigns a JFN to a file.
System decides the JFNW User program may regQuest
to assign. a particular JFHK.

Aocepts the file specification Accepts the file specification
from a string in memocy from a strcing in memory
or a file. and a file.

Uses standard system values Allows user-supplied values
for fields not given to be vsed for fields not
in the file given in the file
specification. gspecification.

3.4 OPENING A FILE

Once & JFN has been obtained for 2 file, the user's program must open

the file in order to transfer data. The user's g;agrgm supplies the
JFH of the file to be opened and a word of bits indicating the desired

byte size, data mode, and access to the file.

The desired access to the file iz specified by a separate bit for each
type of access. The file iz szuccessfully opened only if the desired
access does not conflict with the current access to the file (refer to
Section 3.1). For example, 1f the user reguests both read and wrikte
access ko the file, but write access is not allowed, then the file is
not opened for this user. The allowed types of access to a file are:

Fead access. The file can be read with byte, string, or
random input.

@ Write access. The file can be written with byte, string, or
random output.

Append access. The file can be written only with seocuential
byte or dusp output, and the current byte pointer (cefer to
Section 3.5.1) cannot be changed. The initial position of
the file pointer is at the end of the file.

Frozen access. The file can be concurcently accessed by at
most one user writing the file, but by any number of users
reading the file. This is the default access to a file.

Thawed access. The file can be sccessed even If other users
are reading and writing the file.

Restricted access. The file cannot be accessed if another
uger already has opened the file.

@ Unrestricted read access. The file can be read regardless of
what other wvsers miaht be doing with the file.

TOPS=20 Version 5 3-15% April 1982

USING FILES

3.4.1 OPEMF% Monitor Call

The DPENFY (Open File) monitor cell opens a specified file. It
regquires the following two words of arauments.

a 17 1k a5
.! EEEEE ---I-.'---l--l--l-ll-llIl--I-Ill-lllll-ll-ll-ll-l-lI_
AC] ! 0 ! JFN of file to be opened !

K
IR R LD E LR LR R Py

0 56 9 18 30 31 a5
!.lll-ll-l--l--ll-l--l-ll----l-- EEREEEDERDEREERNRER -----.---h!
AC2 I byte idata | 0 i sccess bits ! G !
I =ize Imode | I I I

If the left half of ACl is not zero, the contents of ACl is
interpreted az & pointer t06 & =string and not as a JPFH of a file.
Therefore, if the user's program reguested bits to be returned in ACL
from the GTJFHY% call, it must clear these bits before executing the
OFERF: call.

The byte size (OFRBS5Z) in ACZ specifies the number of bits in each
byte of the f£ile and can be between 1 and 36 (decimal). This field
can be 0 if sSubSeguent I/0 to the file will be performed with the
FMAFP% call (refer to Section 3.5.86).
The file data mode field (OFLMOD) can be one of two values:

Value Meaning

L Mormal data mode of the file (i.e., byte
I/0). Dump I70 is illegal.

17 Dump mode (i.e., unbuffered word I1I/70). Byte
I1/0 is illegal and the byte size is ignored.

The access bits are described in Table 3-=5.

Table 3=5
CGPENFY Access Bits

Bit Symbol Meaning
18 OFLHER Halt on the occurrence of an I/50
device or medium EECOE dur ing

subseguent I/0 to the file. If this
bit is not set, a software intercupt
i5 generated if a device or medium
error occurs during subseguent I/0.

19 OFRRD Allow read access.
20 OF&WER Allow write access.
21 Reserved for DEC.

i-16

USING FILES

Table 3-5 (Cont.]
OFPENFY% Access Bits

Bit Symbol Heaning

22 OFRAFF Allow append access.

23 OF%RDU Allow unrestricted read access.

24 Reserved for DEC.

5 OF 8 THW Allow thawed access. If this bit is
not set, the file is opened for frozen
access.

26 OFRAWT Block (i.e., temporarily suspend) the
progeam wntil access to the file is
permitted.

27 OFLPODT Do not update the access dates of the
file.

28 OFLHWT Return an error if access to the file
cannot be permitted.

29 OFRRTD Allow access to the file to only one
process (i.e., restricted access).

3a OF 4 PLN Do not check for line numbers in the
file.

If bBitse OFRAWT and OF&NWT are both off, an error code is returned if
access to the file cannot be pepmitted (i.e., the action taken is
identical to OF¥NWT being on).

If execution of the OPENF% monitor call is successful, the file is
opened, and the execuotion of the program continues at the second
instruction after the OPENF%® call.

If execution of the OPENFY call is not successful, the file is not
opened, and an error code is returned in ACL. The execution of the
progeam continues at the next instruction after the OPENFR call.

Two samples of the OPENFE call follow.
The seguence of instructions below openg a file for input.

HEREZ ACL,JFHEXT

MOVE AC2, [44B5+0F%RD4+0FRPLN]
OFEMFY

The JFH of the file to be opened i= contained inm the location
indicated by the address in ACl (JFWEXT). The bits specified for ACZ
indicate that the byte size is one word (44B5), that read access is
being reguested to the file (OPRRD), and that no check will be made
for line numbers in the file; i.e., the line numbers will not be
discarded ([OFLFLMN). Because bit OFRTHW is not set, the file canm be
accesged for readinog by any number of processes.

TOPS=20 Version 5 3-17 April 1982

USING FILES

The following seguence of imstructions cam be used to open a file for
output.

MOVE ACL,JFH
MOVE AC2, [TBS+0FVHER+OF ¥ WR+OF W AWT)
OFENF4

The right half of ACl contains the address that has the JFH of the
file to be ooened. The bits specified for ACZ indicate that the byte
size is 7-bit bytes (7B5),. that the program is to be halted when an
I/0 error woccurs in the (file (OFRHER), that write access is being
reguested to the file [(OF%WE), and that the program is to be blocked
if access cannot be granted (OF%AWT). EBecause bit OF4THW is not set,
if another user has been granted write access to the file, this user's
program will be blocked until access can be granted.

1.5 TRAMNSFERRING DATA

Data transfers of seguential bytes are the most common form of
transfer and can be used with any file, For disk files, nonseguential
bytes and entire pages can also be transferred.

3.5.1 File Pointer

Every open file is associated with a pointer that indicates the last
byte rcead from or writtem to the file. When the file is initially
opened, this pointer is normally positioned before the beginning of
the file so that the first data operation will reference the first
byete in the file., The pointer is then advanced throuwgh the file as
data is transferred. However, if the file iz opened for append-only
access (bit OFRAPF set in the OPENF% call), the pointer iz positioned
after the last byte of the file. This allows the first write
operation to append data to the end of the file.

For disk files, the pointer may be repositioned arbitrarily throughout
the file, such as in the case of nonseguential data transfers. When
the polnter is positioned bevond the end of the file, an end-of-file
indication is returned when the program attempts a read opecation
uging byte input. When the program performs a write operation beyond
the end of the file usina byte output, the end=-of=file indicateor is
updated to point to the end of the new data. However, 1if the program
writes pages beyond the end of the file with the PHAPY monitor call
(cefer bto sectionm 3.5.6), the byte count is not wupdated. Therefore,
it is possible for a file to contain pages of data beyond the
end-of-file indicator. To allow seguential I/0 to be performed later
to the file, the program should update the byte count before closing
the file. (Refer to the CHFDBY% monitor call description im the
TOPS-20 Monitor Calls Reference Manual.)

3=18

USIMG FILES

3.5.2 BSource And Destination Designators

Becauvse I/0 operations occcur by moving data from one location to
another, the user's program must supply a source and & destination for
any 170 ocperation. The most cosmonly-used source and destination
designators are the following:

1. A JFN associated with a particular file. The JFN must be
previously obtained with the GTJFN% or GHNJFN% monitor call
before it can be used.

2. The primary input and ocutput designators PRIIN and LFRIOU,

respectively (refer to Section 2.2). These designators
ghould be used when referring to the terminal.

3. A byte pointer to the beginning of the string of bytes in the
program's address sSpace that is beimg read or weitten. The
byte pointer can take one of two forms:

A word with & -1 in the left half and an address im the
right half. This form is used to designate & T-bit AEBCIZ
gtring starting im the left-most byte of the specified
address. A word in this form is functionally eguivalent
toc a word assembled by the FOINT 7,ACE pseudo-op.

& A full word byte pointer with a byte size of 7 bits.

Most sonitor calls dealing with strings deal specifically with ASCII
strings. MHormally, ASCII strings are assumed to terminate with a byte
of 0 (i.e., are asgsumed to be ABCIZ strings). Howewver some calls
optionally accept anm explicit byte count andfor terminating byte.
These calls are generally ones that handle non-ASCII strinos and byte
sizes other than 7 bits.

3:5.3 Transferring Seguential Bytes

The BINR (Byte Input) and BOUTH (Byte OQutput) monitor calls are wused
for seguential byte trangfers. The BIN% call takes the next byte from
the given source and places it in ACZ. The BOUT% call takes the byte
from AC2 and writes it to the given destination. The size of the byte
iz that aiven in the OPENF% call for the file.

The BIM% monitor call accepts a source designator in ACl, amd upon
successful execution of the call, the byte is right=justified in ACZ.
If execution of the call is not successful, an illeaczl instruction
trap is ogenerated. Control returns to the wser's program at the
instruction following the BEIN%E call.

The BOUT: monitor call a2ccepts a destination desionator in ACL and the

byte to be output, right-justified in ACZ2. Upon successful execution
of the call, the byte is written to the destinstion. If execution of
the call 1is not Succesgsful, an illegal instruction trap is generated
Control returng to the user's proaram at the instruction fellowing the

BOUTY call.

1-1%

USING FILES

The following seguence shows the transferring of bytes from an input
file to an output file. The bytes are read from the file indicated by
INJFH and written to the file indicated by QUTJIFN.

LOOF: MOVE 1,INJFN iget Source designator from INJFH

BIN% ;tead a byte ftrom the Source

ERJHF DOWE scheck for end of file, if O
LOOp2: HOVE 1,0UTJFNM jget destination from OUTJEN

BOUTR rweite the byte to the destination

JEST LOOF jcontinue until 0 byte 18 found
DONE: GTSTSH jobtain status of source

TLRN 2, (GSLECQF) itest for end of file

JEST NOTYET ino, test for O in input file

Z ives, process end of file condition
MOTYET:MOVEI 2,0 70 in input file

JEST LOOP2

3.5.4 Transferring Strings

The SIN%® (String Input) and SCOUTR (String Output) moniter calls are

used for string transfers. These calls transfer either & string of &
specified number of bytes or & string terminated with a specific byte.

The SIN% monitor call reads a string from the specified source inte
the program's address space. The call accepts four words of arguments
in AC]l throuwsh ACH.

AC1l: source designator

AC2: pointer to area in program's address space
AC 3z count of number of bytes to read, or O

ACq: byte on which to terminate input (optional)

The contente of ACIY are interpreted as the number of characters ko
raad.

o If AC3 is 0, then reading continues until a 0 byte is found
in the input.

If AC3 iz positive, then reading continues until either the
gpecified number of bytes is read, or & byte egual to that
given in AC4 is found in the input, whichewver occurs first.

o If ACY iz negative, then readina continuves until minus the
speciflied number of bytes is read.

The contents of ACY4 needs to be specified only if the contents of AC3
iz & positive nusber. The byte in AC4 iz right-justified.

The input is terminated when one of the following occurs:
The byte count becomes Zero.
@ The specified terminating byte i= reached.
@ The end of the file is reached.

An ercor occurs during the transfer (¢.9., a data ercror
QCCULE) .

3-20

USING FILES

Control returns to the user's program at the instruction following the
SINg call. If anm error occurs (including the end of the file is
reached) , an illegal instruction trap is generated. In addition,
several locations are updated:

1. The position of the file's pointer is updated for subseguent
I/0 to the file.

2. The pointer to the string inm ACZ is updated to reflect the
last byte read or, 1f AC3 contained 0, the last nonzero byte
read.

3. The count im AC3 is updated, if pertinent, by subtracting the
number of bytes actually read from the number of bytes
requested to be read (i.e., the count is updated toward
zero). From this count, the user's program can determine the
number of bytes actually transferred.

The SOUT% monitor call writes &2 string from the program's address
gpace ko the sSpecified destination. Like the 5IN%® call, this call
accepts four words of arguments im ACL through AC4H.

ACL: destination designator

AC2: pointer to string to be written

AC3: count of the number of bytes to write, or 0
AC4: byte on which to terminate output (optional)

The contents of AC3 and AC4 are interpreted in the Same manner as they
are in the SIN% monitor call.

The transfer is terminated when one of the following occurs.
The byte count becomes Zero.

The specified terminating byte is reached. This terminating
byte is written to the destination.

& An error occurs during the transfer.

Control returns to the user's program at the instruction following the
SOUTR call. If am egror occurs, an illegal instruction trap is
generated, In addition, the position of the file's pointer, the
pointer to the string in ACZ, and the count in AC3, if pertinent, are
alsc updated in the same manner 3% in the SINY moniter call.

The following code Seguence Shows transferring a string from an input
file to an output file. It is the same procedure as at the end of
Section 3.5.3, but it uses SIN% and SOUT% calls instead of EIN% and
BOUTR calls.

3=21

USING FILES

LOOF: HOVE 1+INJFN fget source fram INJFHN
HRROI Z+.BUF12B irointer to strinsg to résd imto (128
fword bufferd
HOYNI J. 012825 pinrut & maxisys ol S40 bwtes
SIMNX itransfer until end of buffer or end of
PTE e
ERCAL EOFQ F@Frrar SocuPPad
ADDI T«"D12BRS idetermine nedative nuaber of Bwles Lransferred
HOVM I3 icanvert to positive
HOVE 1«0OUTJFN igdet destimation from OUTJFN
MERDI ZT+BUFi2® feginter Lo string to write from
SOUTY ftranafer a4 many bytes a5 read
EQF@: MOVE L+«INJFMN
GTETEX fobtain status of source
TLHKR 2 {GESIEQF ¥ itest for end of file
KET inoe: continue corwindg

3.5.5% Transferring Honseguential Bytes

hg discussed in Section 3.5.3, the BIN% and BOUTH® calls transfer bytes
seguentially, starting at the current position of the file's pointer.
The RIN® (Random Input) and ROUTR (Random OQutput) smonitor calls allow
the wuser's program to specify where the transfer will begin by
accepting a8 byte number within the file. The size of the byte iz the
gize given in the OPENF% call for the file. The RIN% and ROUTY calls
can only be used when transferrina dats to or from disk files.

The RIN% monitor call takes a byte from the specified location im the
file and places it intoc the accumulateor., The call accepts the JFH of
the file in ACl and the byte number withinm the file im AC3. Upon
successful completion of the call, the byte is right-justified im AC2,
and the file's pointer iz updated to point to the byte following the
one just read. If an error occurs, an illegal instruction trap is
generated. Control returns te the wvser's program at the instruction
following the RIN® call.

The ROUTE® monitor call takes a byte from the accumulator and writes it
into the specified location in the file., The call accepts the JFN of
the file in ACl, the byte to write right-justified in ACZ, and the
byte number withinm the file in AC3. Upon successful completion of the
call, the byte is writtem inte the specified byte in the file, and the
file's pointer is updated to point to the byte following the one just
written. If anm error occurs, an illegal instruction trap is
generated. Conteol returns to the user's program at the instruction
following the ROUT® call.

3.5.6 Mapping Pages

Up to this point, monitor calls have been presented for transferring

bytes and strings of data. The next call to be discussed is used to
transfer entire pages of data between a file and a process.

Both files and process address spaces are divided into pages of
sl2(decimal) words. A page within & file can be identified by one
word, where the JFN of the file iz in the left half and the page
number within the file is in the right half. A page within a process
address space can also be identified by one word, where the identifier
of the process (refer to Section 5.3) is im the left half and the page
number within the process' address space iz im the right half. Each
one-word identifier for the pages in the process address space is

3-22

USING FILES

placed in what is called the process paage map. When identifiers for

file pages are placed in the process page map, references to the

process page actually refer to the file page. The following diagram

éiluat:ates & process map that has identifiers for pages from two
les.

File 1
Procean Map
T |Page 1 Page 1
File 2
nz [Page Page 2

Lt S L

The FMAFY (Fage Mapping) monitor call is wuwsed to map one of more
entire pages from a file to a process (for input), from & process to &
file (for output), or from one process to another process, In
general, thigs call chanoes the entries inm the process map by accepting
file pace identifiers and process page identifiers as arguments.
Mapping pages between & file and a process is described below;
mapping pages between two processes 1s described im Chapter 5.

3.5.6.1 Mapping File Pages To A Process - This use of the FMAFY call
changes the map of the process 50 that references to pages in the
process reference pages in a file, This does not actually cause data
te¢ be transferred; it simply changes the contents of the map. Later
when changes are made to the actual page in the process, the changes
will alse be made to the page in the file, if write access has been
gspecified for the file.

Hote that yYou cannct map file pages to pages im a process section that
does not exist in the the process map. If you use PMAPRE to input file
pages to pages in & ponexistent section of & process;, the monitor
aenerates an illegal imstruction trap.

In addition, you can map one or more file sections (of 512 pages each)
into a process. See Section B.3.1 for details.

The PMAP% call accepts three words of argueents in ACL through AC3.

ACL: JEM of the file in the left half, and the page number in
the file in the right half

RC2: process identifier (pefer to Sectiom 5.3} in the left
half, and page number in the process in the right half

AC3: repetition count amd access

TOPE=20 Version 5 1-23 April 1982

USING FILES

The repetition count and access bits that cam be specified in AC3} are
described below.

Bit Symbol Meaning

Li] FMRCNT Fepeat the mapping operation the number of times
gspecified by the right half of AC3. The file page
number and the process page number are incremented
by 1 each time the operation is performed.

F FHiRD Allow read access to the page.

3 FMEWER Allow write access to the page.

9 FHACPY Create a private copy of the page if the process
writes inta the page. This is called

copy-on-write and causes the map to be changed so
that it identifies the copy instead of the
original. Write access is allowed to the copy
even if it was not allowed to the original. This
allows & process to change & page of data without
changing the data for other processes that have
also mapped the page.

18-35 The number of times to repeat the mapping
operation 1f bit 0{FMRCKT) 15 set.

With this use of the PMAPY call, the present contents of the page in
the process are removed. If the page in the file is currently
nonexistent, it will be created when it is written.

Thiz use of the FMAPY call is valid only if the file is opened for at

least read access. If write access is requested in the PMAP%Y call, it
iz not oranted unless it was also specified inm the OPENF% call when
the file was opened.

A file cannct be closed while any of its pages are mapped into any
PLOCESE, Thus, before a file is closed, its pages must be unmapped
[refer to Sectionm 3.5.6.3).

After execution of the PMAPY call, control rceturns to the user's
progeam at the instruction following the call. If an error occurs, an
illegal instruction trap is generated.

3.5.86.2 Mapping Process Pages To A File - This uvse of the PMAPR call

actually transfers data by moving the specified page in the process to
the specified page in the file. The process map for the page is now

empty. Both the pace in the process and the page in the file must be
private; that is, no other process can have the page mapped into its
address space. The ownership of the process page is transferred to

the file page. The previous contents of the page in the file are
deleted.

The three words of arguments are as follows:

BC1: process identifier (refer to Section 5.3) in the left
half, and page number in the process in the right half

RC2: JFH of the file in the left half, and the page number in
the file in the right half

AC3: repetition count and access (refer to Section 3.5.6.1)

3-24

USING FILES

The access reguested in the PMAPY call is granted only if it does not
conflict with the access specified in the OFENF% call when the file
was opened.

This use of the FMAPY call does not automatically update the files
byte count and the byte Size. To allow the file to be read later with
seguential I/0 monitor calls, the program should update the files byte
count amd the byte size, (Refer to the CHFDBY monitor call im the

TOPS=20 Monitor Calls Reference Manual).

3.5.6.3 Unmapping Pages In A Process - Az stated previously, a (file
cannot be closed if any of its pages are mapped in any process. To
unmap & file's pages from & process;, the program msust execute the
SMAP% call, or the following form of the PMAPRE call:

ACl: =1

ACZ: process identifier in the left half, and page number im
the process im the right half.

AC2: the repeat count for the number of paases to remove from
the process (refer to Sectiom 3.5.6.1).

3.5.7 Mapping File Sections to a Process

A section of memory is5 a unit of 512 pages of process address space.
File sections alsc contain 512 pages. The first page of each flle
section has a page number that iz an integral multiple of G512. Like
memory pages, sections can be mapped from one process to another, from
a process to itself, or from a file to a process. Chapter B describes
the SMAPY call completely.

The SMAFY (Section Mappina) monitor call is similar to the PMAPY call.
The SMAFL% call maps one or more secktions from a file to a process (for
input) , or from one process to another pProcess. Toe map & ProcCess
gection to a file, you must use the FMAF% call as described in Chapter
5 to map each page.

Mapping a file section to a process section with SMAP% does not cause
data to move from the d4isk to memery . Insteaa, SMAPY changes the
contents of the process memory map 50 that the process section polntet
points to a file section. The monitor transfers data only when your
program references & memory page to which a file page is mapped.

To map a file section to a process section, SKAPY reguires three
arguments:

ACL: gource identifier: a JFH in the left half, and a file
section nueber in the right half. If several contiguous
gections are to be mapped, the number im the right half is
that of the first section in the group of contiguous
sections.

AC2: destination identifier: process identifier im the left
half, and a process sectlion number in the right half. If
several contiguous sections are to be mepped, the number
in the right half is the number of the first section into

which SMAPR maps 2 file section.

TOPS=20 Version 5 1-25 April 1982

USING FILES

AC3: flags that control access to the process section in the
left half, and, in the right half,; the nusber of sections
to map into the process, The number of secticons to map
cannot be less tham 1 nor more than 32.

The flags in the left half of ACI can be the following:

Bit Symbol Heaning

2 SMYERD Allow read access,

3 SMWWE Allow write sccess.

4 SHMAEX Allow execuke BCCESS.

3.6 CLOSING A FILE

Once data has been transferred to or from a file, the user's program
must close the file. When a file is closed, the system automatically
verforms the following:

1. Updates the directory information for the file. For example,
for & file +to which seguential bytes had been written, the
byte size and byte count are updated when the file is closed.

2. HReleaces the JFH associated with the file. Bowever, the
uger's program can ceguest toe close the file, but retain the
JFH asgsignment. This is wuseful if the program plans to
regpen the sSame file later, but does not want to execute

another GTJFH% call.

3.6.1 CLOSF% Monitor Call

The CLOSFY (Close File) monitor call closes either the specified file

or all files that are opened for the process executing the call. The
CLOSF% call accepts one word of argumentg inm ACl - flag bits in the
left half and the JFN of the file to be closed in the right half. The
flag bits are as follows:

Eit Symbol Meaning
o CORMED Co not release the JFH from the file.
& CEZRABT Abort any output operstions currently being done.

That 18, close the file but do not perform normal
cleanup operations (e.g., do not output amy data

remaining in the buffers). If output to a new
disk file that has not been closed is aborted, the

file iz closed and then deleted.

If the contents of ACl is =1, all files that are opened for this
process are closed.

If the execution of the CLOSFY call is successful,; the specified file
ig closed, and the JFM associated with the file is released if CORNEJ
was not set in the call. The execution of the user's program
continues at the second location after the CLOSFY call.

TOPE=20 Version 5 I-26 April 1982

USING FILES

If the execution of the CLOSF% call is not successful, the file is not
closed and an error code is returned in the right half of ACl. The
execution of the user's program continues at the instruction following
the CLOSF% call.

The following seguence illustrates the closing of two files.

CLOSIF: HRREZ 1,INKJFH ;jobtain inpukt JFN
CLOSF% jclose input file
ERJMF FATAL jif error, print message and stop
CLOSOF: HKRRZ 1,0UTJEN jobtain cutput JEN
CLOSFR selose output file
ERJHF FATAL sif error, print message and stop

3.7 ADDITIOMAL FILE IS0 MONITOR CALLS

3.7.1 GTSTS% Monitor Call

The GTSTS54% (Get Status) monitor call obtains the status of a file.
This call accepts one argument word - the JFN of the file in the right
half of the ACl. The left half of ACLl iz zero.

Control always returns to the user's program at the instruction
following the GTSTS call. Upon return, approprlate bits reflecting
the status of the specified JFN are set inm AC2. These bits, and their
meanings, are described in Table 3=6. MHote that if the JFN is illegal
or unassigned, bit 10 (GS%HAM) will not be set.

Table 3I=6
Bits Returned on GTSTS% Call

Bit Symbol Meaning

0 GSROPH The f£ile is open. If this bit iz not
get, the file is not open.

1 GSREDF If the file is open (e.g., GS5%30FK is
set), it is5 open for read access.

2 GEAWRF 1f the file is open, it is open for
WEike access.

3 Feserved for DEC.

4 GSREND I1f the file is open, it iz open for

non-append access (i.e., it pointer
can be reset).

5-6 Reserved for DEC.

7 GSRLNG File has paages in existence beyond
page number 511.

] GSREOF The last read operation to the file
was at the end of the file.

3-27

USING FILES

Table 3-& (Cont.)
Bits Returned on GTSTS% Call

Bit Symbol Meaning

9 GERERR The file may be in error (e.9., the
bytes read may be erronéous).

10 GSANAM & file specificetion is associated

with this JFN. This bit will not be
get if the JFN iz in any way illegal.

11 GSRAST One or more fields of the file

specification associated with this JFN
contain & wildecard character.

12 GERASG The JFM is currently being assigned
{i.e.;, a process other than the one
executing the GTSTS call is assigning
this JFH) .

13 GEWHLT An I/0 error is considered to be a
terminating condition for this JFH.
That is, the OPENF call for this JFKN
had bit OFRHER set.

l4=16 Eeserved for DEC.
17 GSAFRE hecess to the file is restricted to
only one pLOCEsSS.
16=31 Reserved for DEC.
12-15 The data mode of the file (refer to
the OPENF call).
Value Symbol Meaning
1] LGENEM HMormal (seguential) I,/0

10 LG5IMG Image (binary) IS0
17 +GEDMF Dump I/0

An example of the GTSTS% call is shown in the first program in Section
3.9,

3.7.2 JFNS% Monltor Call

The JFHS% (JFN to String) monitor call returns the file specification

currently associated with the specified JFN. The call accepts three
words of arguments in AC1 through AC3.

ACL: destination designater where the file specification

agsociated with the JFH is to be written. This
specificetion is am ASCIZ string.

i-28

OUSING FILES

ACZ: JFH or pointer to strimg (See below)
AC3: format to be used when returmning the specification (see
below)

The contents of ACL can be any walid destination designator (refer to
Section 3.5.2).

The contents of ACZ can be one of two formats. The first format is a
word with either flag bits or 0 in the left half and the JFN in the
right half. The bits that cam be given in the left half of ACZ are
the cnes returned from the GTJFHE call (refer to Table 3-3). When the
left half of ACZ is nonzero (i.e., contains the bits returned from the
GTJFH% call), the string returned will contain wildcard characters for
appropeiate fields and 0, =1, or =2 a8 & generation number if the
corresponding bit is on in the JFHS% call. When the left half of AC2
ig 0, the string returned iz the exact specification for the file
{e.9., wildcard characters are not returned for any fields). If the
JFHM is associated only with a file specification and not with an
actual file (i.e.; bit GJ%0OFG was set in the GTJFNY% call), the string
returned will contain null fields for wunspecified fields and the
actual values for specified fields. The second format allowed for AC2
is a pointer to the string in the prosram's address space that iIs to
be returned upon execution of the call. ERefer to the TOPS=20 Monitor
Calls Reference Manual for the explanation of this format.

The contents of ACY specify the format in which the specification is
writtenm to the destination. Bits 0 throuagh 20 are divided into 3=bit
bytes, each byte representing a field in the file specification. The
value of the byte indicates the format for that field. The possible
values are:

0 Do not ceturn this field when retuening the file

gpecification.

1 Always returm this field when returning the file
specification.

2 Suppress this field if it is the standard system wvalue for

thig field (refer to Table 3-1).

If the contents of AC3 is zero, the file specification is written im
the format

dev:<directoryrname.typ.gen;T

with fields the same as the standard system value (see Table 3-1) not
returned and protection and account fields returned only if bit 9 and
bit 10 in ACZ are on, respectively. The temporacy attribute (;T) is
returned only if the file is temporary.

Table 3-7 describes the bits that can be set in AC3.

3-28

USING FILES

Tabhle 3=7
JFHEY Format Options

Bit Symbol Meaning

0-2 JSADEV Format for device field.

i=5 JERDIR Format for directory field.

-8 JERKAM Format for filemame field. A wvalue of
2 {i.e#.; bit 7 set) for this field is
illeaal.

=11 JERTYF Format for file type field. A wvalue
of 2 (i.e., bit 10 set) for this field
is illegal.

12-14 JSWGENR Format for generation number field.

15=17 JERFPRO Format for protection field.

18-20 JSUACT Format feor account field.

21 JERTMF Feturn temporary file indication ;T if

the file specification iz for &
temporacry file.

22 JERSIEZ Eeturn size of file im pages (see
below) .

23 JSWRCRD Feturn crestion date of file (see
below) .

24 JS5RLWR Feturn date of last write operation to

file [(see below).

23 JSYLED Feturn date of last read operation
from file (see below).

26 JSLFTR AC2 contains a pointer to the string
containing the field to be returned

{refer to the TOPS-20

Eeference for a description of

this use of the JFNSW call).

27=131 Reserved for DEC.

32 JSWPSD Functuate the size and date fields
(see below) in the file specification
Eeturned.

UDSING FILES

Table 3-7 (Cont.)
JFHER Format Options

Bit Symbol Meaning
33 JEATER Flace & tab before all fields retucrned
{i.e., fields whose value is given as

1 in the 3I=hit field}) in the file
gpecification, except for the first
field.

4 JERTEE Flace a tab before 2ll fields that may
be returned (i.e., fields whose wvalue
iz given a5 1 or 2 in the 3=-bit field}
in the file specification, except for
the first field.

35 JERFAF Functuate all fields [gee below)

returned im the file specification

EEﬂTdthe device field throush the ;T
eld.

If bits 32 through 35 are not set, no
punctuation is used between the
fields.

The punctuation wused on each field iz shown below. {The punctuation
i% underscored.)

deviddirectoryname.typ.genh (account) ;Fiprotection) ;T ({temporacy)
y8ize,creation date,write date,read date

Control alwavs returns to the wuser's prooram at the instruction
following the JFHS call. If an error occurs, a software interrupt is
genecated (refer to Chapter 4).

3.7.3 GNJFN% Moniter Call

Occasionally a program may be writtem to perform similar operations on
a aroup of files instead of only on cne file. However, the program
should not reguire the user to give a file specification for each
file. Because the GTIFHY call associates a JFH with only one file at
a time, the program needs a method of assigning a JFH to all the files
in the group. By using the GTJFN% call to imitially obtain the JFH
and the GHJFH% call to assign the same JFM to each subseguent file in
the group, & progrcam can accept a specification for a2 group of files
and process each file in the group individuwally. After the user gives
the initial file specification, the program reguires no additional

input.

Before an exasple showing the interaction of these two calls is given,
-] description of the GHNJFM% (Get Next JFM) monitor call is

appropriate.

The GHIJFN% monitor call assigns @ JFN to the next file im a grouwp of
files that have been specified with wildcard characters. The next
file is determined by searching the directory in the order described
in Section 3.3.1.1 wusing the current file as the first file. This
call accepts one argument word in ACL - the flags returned from the
GTIJFNR® call in the left half and the JFN of the current file imn the

3=31

USING FILES

right half. In other words, the information retuened in AC]l from the
GTJFH%® <¢all is given 2z an argument to the GRJFNR call. Therefore,
the program must save this inforsation for use with the GHJIFNR call.

If execution of the GMJIFN% call is successful, the same JFN is

assigned to the next file in the group. The left half of AC]l contains
various flags and the right half contains the JFN. The execution of
the prooram continues at the second instruction after the GHJFRYE call.

The following bits can be returned inm ACl on a successful GHIJFNY call.
Bit Symbol Meaning

14 GHRDIR A change in directory occureed between
the previous file and this file.

15 GHRNAM A change in filename occurred between
the previous file and this file.

16 GHNREXT A change in file type occurred between
the previous file and this file. If
GHUNAM is on, this bit will alse be on
because the system considers two files
with different filenames but with the
game file eype as a change in both the
name and type.

If execution of the GRJIFN% call is not successful, an error code is

returned in the right half of ACl. Conditions that can cause an errcor
return are:

1. The file currently associated with the JFH must be closed,

and it is not, This means that the program must execute a
CLOSF% call (with CORNRJ set to retain the JFH) before
executing a GHJFN% call.

2. There are no more files in this group. This return occurs on
the first GHJFN% call after all files in the group have been
?Efpped through. The JFN is released when there afe no more

e85.

The execution of the program continves at the next instruction after
the GHJFH® call.

Consider the following situation. The user wants to write a program
that will accept from his terminal a specification for a group of
files and then perform an operation on each file individwally without
reguiring additional input. Assume the user's directory <TRAIN:
contains the following files:

FIRET.MAC.1

FIRST.REL.1
SECOMD.REL. 1
THIRD.EXE.1

As discussed in Section 3.3.1.1, & group of files can be given to the
GTJFN call by supplying a sSpecification that contains wildcard
characters 1n one of more of its fields. Thus, the specification

CTRAINGY ®

would refer to all four files in the user's directory <TRAIN>.

3-32

USING FILES

In his program, the user includes & GTJFHE call that will accept the
above specification.

The call is

MOVSI ACL, (GIJROLD+GIRIFG+GIRFLG+GIUFNS+GIA5HT)
MOVE AC2,[.PRIIN,,.PRICU]
GTJIFHY

and indicates that

1. The file speciflication given must refer to anm existing file
{GJROLE) .

2. The file specification given is allowed to contain wildcard
characters (GJRIFG).

3. Flags will be returned in ACl on a successful call (GJRFLG).
The flags must be returned because they will be given toc the
GHJFM% call as arguments,

4. The contents of AC2Z will be interpreted as containing an
input and output JFN (GJEFKS).

5. The short form of the GTJIFH% call is being used ([GJRSHT).

6. The file specification is to be read from the user's terminal
{.PRIIN,..PRIOU).

When the user types the specification <TRAIN:>®*.* as input, the system
associates the JFHN with one file only. This file is the first one
found when searching the directory in the order specified in Section
3,3.1.1. Thue the JFN returned is associated with the file
FIRST.MAC.1.

After the GTJIFHR® call is successfully executed, AC1 contains
appropriate flags in the left half and the JFH assigned im the right
half. The flags that will be returned in this particular situation
are:

GJRNAM (bit 3) A wildcard character appeared in the name
field of the file specification given.

GJREXT (bit 4) A wildcard character appeared in the type
field of the file specification given.

GJYGHD (bit 12) Any files marked for deletion will net be
considered.

These flags infors the progras of the fields that contained wildcard
characters.

The user's program must now save the contents of ACLl because this word
will be wused as the argument to the GHNIJFHNY® call. The program then
pecforms its desired operation on the first file. Once its processing
is completed, the program is ready for the specification of the next
file. But instead of reguesting the specification from the user, the
program executes the GHNJFHM% call to obtain it. The argument to the
GHJFN% call is the contents of ACl returned from the previous GTJFHR
call., Thus, the call in this case is eguiwvalent to:

MOVE ACL, [GJYNAM+GIJREXT+GIRGHD, ,JFN]
GHIFNE

3-33

USING FILES

Upon successful execution of the GHIJFHE call, the JFN is now
sggocisted with the next file in the group (i.e., FIRST.REL.1l). ACl
containg appropriste flaas inm the left half and the same JFH in the
right half. In this example, the flsg returpned is GHREXT (bit 16) to
indicate that the file type changed between the two files.

After processing the second file, the user's program executes another
GHIJFH% ¢all wsing the original contents of ACL returned from the
GTJFHY call. The origimal contents must be wused becavse this word
indicates the fields containing wildcard characters. If the current
contents of ACL (i.e.,; the flaos returned from the OGNJFHNR® call) are
used, & subseguent GNJFN% call would fail because there are no flags
set indicating fields containing wildcard characters. This second
GHJFN%® call assoclates the JFN with the file SECOND.REL.l. The flags
returned in ACL are GHRNAM (bit 15) and GRIEXT (bit 16) indicating
that the filename and file ¢type changed between the two files.
{Femember that & change in filename implies & chance in file type even
if the twp file types are the same.)

After processing thiz thicrd file, the user's program executes another
GHIJFH%® call vsing the original contents of ACl. Upon execution of the
call, the JFH is now associsted with THIRD.EXE.l, and the {laas
returned ape GHENAM and GHREXT, indicating a change in the filename
and file type,

After processing the file THIRD.EXE.l, the user's program executes a

final GHJFHR call. Since there #re no more files in the group, the
call returns am error code and releases the JFH. Execution of the
user's program continues at the instruction following the GHNJFH%: call.

3.8 BESUMMARY
To read from or write to & file, the user's program must:

1. Obtain a JFN on the file with the GTJPN%® monitor call (refer
to Section 3.3.1).

2. Open the file with the OFENF% monitor call (refer to Section
J.4.1).

3. Transfer the data with byte, string, or page I/50 monitor
calls (refer to Section 3.5).

4. Close the file with the CLOSF% monitor call (refer to Sectionm
3.6.1).

3=34

USING FILES

3.9 FPILE EXAMPLES

Example 1 = This program assigns JFhs, opens an inpukt £file and an
output file, and copies data from the input file to the ocuwtput Eile.
Data is copied until the end of the input file is reached. Refer to
the TOPE=20 Monitor Calls Eeference HManual for explanation of the
ERSTR® monitor call.

ige® PROGRAM TO COFPY IWNFUT FILE TO OUTPUT FILE. =¥

i (USING BINX/BEOUTE AMD IGHWORING MNULL'S?H
TITLE FILEIOD iTITLE OF FPROGRAR
SEARCH ROMSYH FBEARCH SYSTEN JEYS-SYREOL LIBRARY

pexk [THFURE DATA STORAGE AND DEFINITIDNS ®¥E

IHJFN: EBLOCK 1 FSTORAGE FOR INFUT JFH

OUTJFM: ELOCKE 1 FETORAGE FOR OQUTPUT JFM
FDLEN=3J PSTRCK HALS LENGTH X

POLSET! EBLOCK FOLENW {SET ASIDE STORAGE FOR STACK

A== PiJEYS ACTS

Bam?

L==3

HEEE |

Tijm=$ i TEHPDEARY &L %S

Pas]? FPUSH DOWM FPOINTER

Fadd PROGRAM INITIALIZATION #%e

START: RESETX FCLOSE FILES: ETC.
HOVE FPoCIOMD FOLEM POLSTI ZESTABLISH STACK

tasx GET INFUT-FILE k=&

INFIL? HRRDI ALASCIE 7
IMFUT FILE: £13 FFROXFT FOR INFUT FILE
FEOUTXE 0N CONTROLLING TERRINAL
HOVE ArCGJIOLD4GIEFNS#GIEEHT I SEARCH AODES FOR GTJFW
FCEXISTIMD FILE OMLY » FILE-NR'S IW E
i SHORT CaLL 3

HOVE Beo[.PRIIMer .FPRIOU] FGTJFN'E L/50 WITH CONMTEOLLING TERMINAL

GTJFNE iGET JOE FILE MUMEEE ({JFHN}
JRET [FUSHJ FrWARN PIF ERROE: GIVE WAENING
JEST INFILJ PaMbD LET HIM TEY &0AIM
HOVEM As INJFN FSUCCESSs SAVE THE JFH

ikzk GET OUTPUT=FILE ®&x

OUTFIL: HRROI A.CASCIZ -
OUTPFUT FILE? #1 IFRDOMFT FOE OUTFUT FILE
FEOUTX EPRIMT [T
HOVE fe [GIEFOUSGIZASE VO JECFR+0JEFNSHGIESHT IFGTIFN SEARCH MODES
FLOEFAULT TO HEW GENERATION s FRIMT
i HESSAGE + REQUIRE CONFIRHMATION
} FILE-MR'S [N B » SHORT CaLL 1

HOVE Bl FPRIIMs+FEIOU] #4170 WITH CONTROLLING TERHMINAL

GTJFHE PGET JOE-FILE WUHEBER
JEST [FUSHJ F+WARMN iIF ERROR+ GLIVE WARNING
JEST QUTFIL] FAMD LET HIR TRET ALALN
HOVEM a-0UTJFN FBAVE THE JFH

3-35

iNDW: OFEN THE FILES WE JUST GOT

i IHFUT

HOVE A« INHJFH
HOVE Ee[L7BS+OFERD]
OFENFE

JEST FATAL

OQUTFUT

AOVE asDUTJFMN
HOVE B[FES+OFIWE]D
OFENFZ

JEST FATAL

‘88K MAIM LOOF ICOFY BYTES FROM

LOoOr: HOVE fie INJFH
BINX

JUHFE Es»DONE
MOVE A«OQUTJIFN
BOUTX

JRET LOOF

Fexy TEST FOR END OF FILE s
DDME & GTETSR

TLHH B+ {GEZEDF]
JEST LOODP

CLOSIF: HOVE AsINJFN
CLOBFX
JEST FATAL

CLOSOF: HOVE A-DUTJIFHN
CLOGFX
JRET FaTal
HRROI asCaSCLEs
COONEDSD
FEOUTXE
JRET Tap

USING FILES

IRETRIEVE THE INFUT JFHN

iDECLARE HMODES FOE OFENF LF-BIT BYTEE 4 INPUTI

FOFENM THE FILE

FIF EREDE ¢

GIVE MESSAGE AND STOP

fGET THE OUTPUT JFN

i DECLARE HODEES FOR OFENF CP-BIT BYTES 4 OUTPUTI

i0FEN THE FILE

FIF ERREDR ¢

GIVE HESSAGE AMD STOP

INFUT TD OUTFUT ®=kE

FGET THE INFUT JFN

FTAKE A FYTE FEOM THE SOURCE
#FIF G+ CHECE FOR END OF FILE.
FIGET THE DUTFUT JFN

F0UTPUT THE BYTE TO DESTINATION

iLODOF. ETOF OWLY ON & O EYTE (FOUWD
FAT LOOF+2)

0N SUCCESS FINISH UF &%

FGET THE STaTUus OF INFUT FILE-.
FAT END OF FILEY
iNOe FLUSH WULL AaWD CONTINUE COFY

iTESe RETRIEVE INFPUT JFN
FCLOBE IWFUT FILE

I IF ERROKs

GIVE RESSAGE AND STOF

FRETRIEVE OQUTFUT JFM
FCLOSE QUTPUT FILE

ilF ERRDE"

GIVE HESSAGE aND STOF

FEUCCESSFULLY DONE

FPRINT IT
ISTOF

3=36

USING FILES

itds ERROR HAMNDLING 2Ex

FaATALY HEROI A+LASCIIS

L iFATAL ERRORS FRINT 7 FIRET
FUEHJ P:ERRDR {THEN FRINT ERREDR MESSAGE s
JEST TaF 14D STOF

HaEM HEROI ArCABCIZY
xS TWARNINGS FRINT X FIRST
i AaND FaLL THREU *EREOR* BACK TO CALLER

ERROR: PSOUTX iFRINT THE * OR X%
HOVEI @l .FEIDUD iDECLARE PRINCIFAL OUTFUT DEVICE FDE EEROR HESSAGE]
HOVE EBe[.FHSLFes-11 FCURRENT FODRKss L&ST EREOR
SETZ Co» iHO LIHIT.r FULL HESSAGE
ERSTEX FFREINT THE HESBAGE
JFEL i IGNDRE UMDEF IMED ERRDOE WUMEBER
JFCL i IGNORE ERROR DURING EXECUTION OF ERSTR
FOFJ Fe FRETUREN TOD CALLER
ZaF i HALTFX iETOP
JREST START iWE ARE RESTARTABLE
EMD START {TELL LINKING LOADER START ADDRESS

Example 2 = This program accepts input from a user at the terminal and

then outputs the data to the line primter. Refer to Section 2.9 for
explanation of the RDTTY% call.

TITLE LFTFNT - PROGRAM TO FRINT TERMIWNAL IMFUT OM THE FRINTER

FaLL
EEARCH HMACSYH HONSTH
EEQUIRE SYSIRACREL

Tlem]
T2me=p
Tiead
Tdm=q

Fus] 7T

BUFSIZ==200
FDLEN==50

COUNT: BLOCK 1
BUFFER: BLOCKR BUFEIZ

FDL : BLOCK FDLEN
STaART! KRESETXE FRESET IS0+ ETC.
HOVE FeL10WDh PDLEM.FPDLY #SET WP ETACK I
HEREDT T1[ASCIZ/ENTER TEXT TO BE FEINTED (END WITH "Z3:
1 IGET FOIWTER TO PROMFTING TEXT
FEOUTYE 10UTFUT FROMFTING HESSAGE
HERDOI T1-BUFFER IGET FOINTER TO BUFFEF
HOVE TZ»[RDIBRE+BUFSIZI®S] JGET FLAD AND RAX & OF CHARACTER: TO READ
SETIA T3 iND RE=TYFE BUFFER
EDTTYX FINFUT TEXT FROM THE TERMINAL
JEHLT FERRORs STOP
ADD TZeBPUFSIZI®G FCORFUTE NUMBER OF CHARACTERS READ
HOVEM T2.COUNT FEaVE & OF CHARACTERS IWFUT

3-37

USING FILES

i GET A JFW FOR THE PRINTER AMD OPENM THE PRINTER

HOWSEL Tl {GJESHTIGJEFOUY

HREGD T2 LASCIZ FLPTI/]
GTJFMX

JREET JFHERR
HOVE T2.L*BES+0FZIWR]
OFENF X

JEET OFHERR

i MOW OUTFUT THE TEXET WHICH WAS

HRERDOI T2:BUFFER
HOWN T3:COUMT
SOUTH

ERJHF DATEREK

FOUTFUT FILE: SHORT CALL
FRGET FOINTER TD MAME OF FILE
iGET A JFN FOR THE FPRINTER
FEEROR: FRINT ERROR HMESSAGE
FF-BIT BYTESe, WRITE ACCESS WANTED
FOFEN THE FRINTER FOR OQUTFUT
fERRDE: FRINT ERROR HESSAGE

INFUT FROM THE TERHINAL

FGET FOIMTER TO TEXT (PRINTER JFN STILL
FiGET WUMBER OF CHaRACTERS TO OQUTFPUT
FDUTFUT STRING OF CHARACTERS TO THE FRIMTER
FERRDR: FRINT ERROE AESSAGE

IH T1¥

iOUTPUT CONFIRMATION HMESSAGE

SIF COMTIMUEDs GO BACK TD STaART

HERDI Ti:CASCIZ/
ODUTFUT HWAS EFEEM SEMT TO THE FPRIMTEE...
1
FEOUTE
HALTFX iFINIGHED
JEST START
i EREOR EOUTINES
JFHERE: HRREODI T1l.LASCIZ/
¥ COULD MOT GET A JFN FOR THE FREINTER
41
FEOUTE
HALTFX
JRET ET&RT
NFNEER: HMERDI TisCASCIZF
¥ COULD NOT OFEN THE FRIMNTER FOR QUTFUT
|
FEOUTE
HALTF X
JIRET ETRET
DATERE: HMRREDT 11.CASCIZS
¥ DAaTa ERROR DURIMG QUIFUT TO FRINTER
|
FROUTE
HALTFX

JIRET START

END STar

3-38

CHAFTER 4

USING THE SOFTWARE IMNTERRUPT SYSTEM

4.1 OVERVIEW

Program execution wususlly occurs in a seguential manner, whepe
instructions are executed one after another. But sometimes a program
must be able to receive asynchronous signals from terminals, the
monlitor, or other programs, or &5 a result of its own execution. By
using the software interrupt system, the user can specify conditions
that will cause his program to deviate from its seguentizl method of
execution.

An interrupt is defined as a break im the normal flow of control
during & program's execution., The break, or interrupt, is caused by
the occurrence of a prespecified condition. By specifying the
conditions that can cause an interrupt, the program has the capability
of dynamically respﬁndin? to external events and error conditions and
of generating reguests for services. Because the program can respond
to special conditions as they occur, it does not have to explicitly
and repeatedly test for them. In addition, the program's execution is
faster because the program does not have to include a Special test
after the possible occurrence of the condition.

When an interrupt occurs, the system transfers control from the main
program seguence to a previously-specified routine that will process
the interrupt. After the routine has completed its processing of the

interrupt, the system can transfer controcl back to the program at the
point it was interrupted, and execution can continue. See Figure 4-1.

OSING THE SOFTWARE INTERROPT SYSTEM

H

bl B g i

Figure 4=1 Basic Operational Seguence of the Software
Intercupt System

4.2 INTERRUPT CONDITIONS

Conditions that cause the program to be interrupted whenm the interrupt
system fis enabled are:

1. Conditions generated when specific terminal keys are typed.
Therce are 316 possible codes; each one sSpecifies the
particular terminal character or condition on which an

interrupt is to be initiated. Refer to Table 4-2 for the
possible codes.

USING THE SOFTWARE INTERRUPT SYSTEM

2. Invalid instructions {(e.g., I/0 instructions given in wuser
mode) or privileged monitor calls issued by a non-privileged
UsSer.

3. Hemory conditions, such &% illegal memory references.

4. Arithmetic processor conditions, such as arithmetic overflow
or underflow.

5. Certain file or dewvice conditions, such as end of file.
6. Program-genecated software intercupts.

7. Termination of an inferior process.

8. System resource unavailability.

9. Interprocess communication {IFCF) and Engueus /Degue e
interrupts.

4.3 SOFTWARE INTERRUFT CHANNELS AND PRIORITIES

Each condition iz associasted with one of 36 software intecrupt
channels. Most conditions are permanently assigned to specific
channels; however, the user's program can associate sSome conditions
ie.g9., conditions generated by specific terminmal keys) to any one of
the assignable channels. (Fefer to Table 4-1 for the channel
assignments.) When the condition assocliated with a channel occurs, and
that channel has been activated, an interrupt is generated. Control
can then be transferred to the routine responsible for processing
interrvpts on that channel.

The user program assigns each channel to one of three priority lewvels.
Fricrity levels allow the occurrence of some conditions to suspend the
processing of other conditions. The levels are referred to as level
1, 2, or 3 with level 1 having the highest priority. Level 0 is not a
legal priority level.!

I If an interrupt is generated in a process where the priority lewel
iz 0, the system considers that the process is not prepared to handle
the interrupt. The process is then suspended or terminated according
to the setting of bit 17 (SCRFREZ) in its capability word.

4=3

USING THE SOFTWARE INTERRUFT SYSTEM

Table 4-<1

Software Interrupt Channel Assignments

Channel Symbol Meaning
0=5 Assignable by user program
& « ICAOV Arithmetic overflow
T < ICFOV Arithmetic floating point overflow
E Feserved for DEC
9 « IC POV Fushdown list (POL) overflow!
10 « ICEGFE End of file condition
11 « ICDAE Cata error file condition?
12-14 Feserved for DEC
15 LICILI Illegal instruction !
16 « ICIRD Illeos]l memory read!?
17 AICIWE Illegal memory writel
18 Feserved for DEC
19 ICIFT Inferior process termination
20 - ICH5E System resources exhaupsted)
21 Feserved for DEC
22 ICHXF Henexistent page reference
23=35 Aszignable by user program

These channels (called panic channels) cannot be cospletely

deactivated. interrupt generated on one of these channels

An

terminates the process if the channel is not activated.

USING THE SOFTWARE INTERRUPT SYSTEM

The software interrupt system processes interrupts on activated
channels only, and each chanpnel can be activated and deactivated
independently of other channels. When activated, the channel can
generate an interrupt for its associated priority level. An intercupt
for any priority level is initiated only if there are no interrupts in
prooress for the same or higher priority levels. If there are, the
system remembers the interrupt reouvest and initiates it after all

val or hiocher priority level interrupts finish. This means that a
hisher priocity level reguest can suspend a routine processing a lower
level interrupt. Thus, the user must be concerned with several items
when he assigns his priority levels. He pust consider 1) when one
interrupt reguest can suspend the processing of another and 2) when
the processing of a second interrupt cannot be deferred until the
completion of the first. See Figure 4-2.

L 1
Cranned 4
Raastive
m: - e W ww
Chanmed § Wniirg Crannel & interrupt
Indgrmypt Rigaghirag Coniinued
Reuting
vl d - - — — —
Waiting Charral 3§
Fowiting
Wailing
D e = B i el e e —_— -
Execution Continues

InbBiFuRL B

Channel 4
Interrupt on Ehat Has & Interupl o Channel § Channe 15
Channel § Prigrey Level Channed 1% Intarrypt naprnpt
et Hild & o1 Crannesl 4 that Had & Completed Coempletid
Friorty Lavel il Precsity Level
ol X Commpieles ol d N

Figuee 4-2 Chennels and Priority Levels

4.4 SOFTWARE INTERRUPT TABLES

To process interrupts, the wuser includes, as part of his program,
special service routines for the channels he will be using. He must
then specify the addresses of these routines to the system by setting
upg & channel table, In additiom, the user must also include a
priority level table as part of his program. Finally, he must declare
the addresses of these tables to the system.

| —" e = ———

USING THE SOFTWARE INTERRUPT SYSTEM

4.4.1 Channel Table

The channel table, CHNTAB! , contains a one=-word enktry for each
channel ; thus the table has 36 entries. Each entcy cnrrupnnds to a

particular channel, and each channel is associated at any iven time
with only one interrupt condition. {Eefer to Table 4-1 for the

interrupt conditions associated with each channel.)

The CHNTAB table is indexed by the channel number (0 through 35%). The
left half of each entry contains the prierity level to which the
channel is assigned. The right half of each entry contains the
address of the interrupt routine for that channel. If a particular
channel is not used, the corresponding entry in the channel table
should be zero.

The followinag i2 an examele of a2 channel table,

CHNTAB: <2BS5I<CHNOSV>B3I5> jchannel 0O
< 2B <CHR15V>B315> jchannel 1
CABLICCHNZSV>BIS> rchannel 2
<2BS I <CHNISV>BI5> rchannel 3
(1] rchannel 4
0 jchannel 5
C1B5 ! <APRSEV>BI5> ichannel &
0 jchannel 7
L] schannel B
C1BS I <STESREV>BI5> schannel @
L] :channel 10
] jchannel 35

In this exarple, channels 0 through 3 are assigned to priocity level
2, with the interrupt routine at CHNOSY secrvicing channel 0, the
rovtine at CHM1SY servicing chanmnel 1, the routine at CHNZSV servicing
channel 2, and the routine at CHN3ISV servicing channel 3. Channels &
and 9 are assigned to pricrity level 1, with the routine at AFRSRY
servicing channel & and the routine at STESRV servicing channel 9.
All remaining channels are not assiagned.

4.4.2 Priority Level Table

The priority level table, LEVTAE2? , contains a one-word entry for
e#ach of the three priority levels. The left half of each entry is
Zzete. The right half of each entry contains the address in the user's
program where the system will store the flags and program counter (PC)
for the associated priority level. The system must save the value of
the program counter so that it cam return comntrol at the approprlate
point in the program once the interrupt rouwtine has completed
processing an interrupt. If a particular prierity level is not used,
itz corresponding entry in the level table should be zero.

I The channel table can be called any name the user desires; it is a
goeod practice, however, to call the table CHNTAB.

i The user can call his priority lewel table any name he desires;
however, it is good practice to call it LEVTAB.

4-6

USING THE SOFTWARE INTERRUPT SYSTEM

The following is5 & sample of a level table.

LEVTAB: 0, ,PCLEV] jAddresses to save FC for intercupts
0, ,PCLEVZ joccurcing on priocity levels 1 and 2.
0,.0 o priority level 3 interrupts are
iplanned.

4.4.3 Specifying The Software Intercrupt Tables

Before using the software interfupt system, the uvser's proggam must
set up the contents of the channel table and the priority level table.
The proaram must then Specify their addresses with either the 5IR% or
XKSIR% moniter calls.

These ca#lls are similar, but their differences are important. The
SIR%Y call can be used in single-section programs, but the X5IK% call
must be vsed in programs that use more than one section of memory.
The SIEY call works in non-zero sections only if the tables are in the
same section as the code that makes the call. The code that causes
the interrupt mwust also be in that section, as must the code that
processes the interrupt. Because of the limitations of the 5IE% call,
you should wse the X5IRK% call.

The 5IFE% monitor call accepts two words of arguments: the identifier

for the progras (or process) im ACL, and the table addresses in ACZ,
Refer to Sectiom 5.3 for the description of process ldentifiers.

The following example Shows the use of the 51E% call.

HOVEI 1,.FHS5LF jidentifier of current process
HOVE 2, [LEVTAE, ,CHNTAE] saddresses of the tables
S1R%
The XSIR% call accepts the following arauments: in ACl1, the

identifier of the process for which the interrupt channel tables are
to be sety in AC2, the address of the argument block.

The argument block iz & three-word block that has the following
formak:

! Length of the argument block, including this word 1
1

1 Address of the interrupt level table 1
I e I
1 Address of the channel table !

Control always returns to the wuwser's roaram at the instruction
¥ prog

followina the SIRY and XSIB% calls. If the call is svecessful, the
table addresses are stored in the monitor. If the call is not
successful , » software intercupt is generated.

Any changes made to the contents of the tables after the XS5IEY or S5IR%
calls hawve been executed will be in effect at the time of the next
intercupt.

TOPS=-20 Version 5 4=7 April 1982

USING THE SOFTWARE INTERRUPT SYSTEM

4.5 EMABLING THE SOFTWARE INTERRUPT SYSTEM

Once the interrupt tables have been set up and their addresses defined
with the XSIRR monitor c<all, the user's progras must enable the
intercupt system. When the interrupt system is enabled, interrupkts
that occur on activated channels are processed by the user's interrupt
routines. When the interrupt system is disabled, the monitor
procesges interrupts as if the channels for these interrupts were not
activated.

The EIE% monitor call, wsed to enable the system, accepts one
argument: the identifier for the process in ACL.

MOVEI 1,.FHSLF ijldentifier of current process
EIR%

control always returns to the instruction followine the EIR call.

4.6 ACTIVATING INTERRUPT CHAMNHELS

Once the software interrupt system is5 enabled, the chanmels on which
intercupks can occur musEt be activated (refer to Table 4=1 for the
channel assignments}. The channels to be activated have a nonzero

entry in the appropriate word inm the channel table.

The AICY® monitor call activates one orf more of the 36 interrupt
channels. This call accepts two words of arguments - the identifier
for the process in ACLl, and the channels to be activated in ACZ.

The channels are indicated by setting bits in ACZ. Setting bit n
indicates that channel n is to be sctivated. The AICY call activates
only those channels for which bits are set.

MOVEI 1,.FHSLF jldentifier of current process
MOVE 2, [1B<.ICAOV>+]1B<, ICPOV) jactivate channels & and 4
AICE

Control always returns to the instruction following the AIC call.

Some channels, called panic channels, cannot be deactivated by
digsabling the channel or the entire interrupt system. (Refer to Table
4=1 for these channels.}) This is because the occurrence of the
conditions associated with these channels cannot be completely ignored
by the monitor.

If one of these conditions occurs, an interrupt is generated whether
the channel is activated or not. If the channel is not activated, the
process is terminated, and wvsuwally & message is output before control
returng to the monitor. If the channel i=s activated, control is given
to the vser's interrupt routine for that channel.

4.7 GENERATING AN INTERRUPT

A process aenerates an interrupt by producing a condition for which an
interrupt channel is enabled, such as arithmetic overflow, or by using
the IICY% monitor call. This call can generzte an interrupt on any of
the 36 interrupt channels of the process the calling process
gpecifies. See Section 5.10 for a description of the IICY call.

TOP5-20 Version 5 4= April l9g2

USING THE SOFTWARE INTERRUPT SYSTEM

4.8 PROCESSING AN INTERRUPT

When a software Interrupt occurs on a given priocrity level, the
monitor Stores the current program counkter (FC) woerd in the address
indicated in the priority level table (refer to Section 4.4.2). The
monitor them tramsfers control to the interrupt routine associated
with the channel on which the interrupt occurred. The address of this
routine is specitied in the channel table (refer to Sectiom 4.4.1).

Since the user's program cannot determine when an intercupt will
oceur; the interrupt routine 1% responsible for preserving the state
of the pregram so that the program canm be resumed properly. Thus, the
first action taken by the routine is to store the contents of any user
accumulators that will be used during the processing of the interrupt.
After the accusulators are saved, the intercrupt routine processes the
interrupt.

Occasionally, an interrupt routine may need to alter locations in the
main section of the program. For example, & routine may change the
stored PC word to resume execution at a location different from where
the interrupt occurred. Or it may alter a value that caused the
interrupt. It i% important that care be used when writinmg routines
that alter dJdata because any changes will remain when control is
returned to the maim program. For example, if data is inadvertently
stored in the BC word, return to the main sSection of the program would
be incorcect when the system attempted to use the word as the value of
the program counter.

If a higher=priority interrupt occurs during the execution of an
intercupt routine, the execution of the lower=priority routine is
suspended. The value of its program counter is stored at the location
indicated in the priority level table for the new interrupt. When the
routine for this nevw intercupt is completed, the suspended routine is
resumed.

If an interrupt of the =ame or lower priority occurs durinmg the
execution of a routine, the moniter holds the interrupt until all
higher or egual level interrupts have been processed.

The system considers the user's program unable to process an interrupt
on ar activated channel if any of the following 15 true:

1. The priority level associated with the chanmel 15 0.

2. The program has not defined its interrupt tables by executing
an XSIF% or SIR% monitor call.

3. The process has not enabled the interrupt system by executing
&n EIR% monitor call, and the channel on which the interrupt

occurs i & poanic channel.

In any of the above cases, the occcurrence of an interrupt on & panic
channel terminmates the user's program. All other i1ntercupts arce
ianored.

4.8.1 Dismissinmg An Interrupt

Once the processing of an inteprupt is complete, the interrupt routine
should restore the user Accumulaters to their initisl values. Then it
gshould return control to the interrupted code by wusing the DEEREW
monitor call. This call restores the FC word and resumes the program.
The call has no arguments, and must be the last statement in the
interrupt routine.

TOPS=20 Version 5 4=-9 April 1982

UDSING THE SOFTWARE INTERRUPT SYSTEM

If the interrupt=processing routine has not changed the PC of the
user's program, the DEBEER% call restores the program to the same state
the program was in just before the interruwpt occurred. If the progrcam
was interrupted while waiting for I/0 to complete, for example, the
proaras will again be waiting for I/0 to complete when it resumes
execution after the DEBRK% call.

If the PC word was changed, the program resumes execution at the new
FC location, The state of the program is unchanged.

4.% TERMINAL INTERRUPTS

The uger's program can associate channels 0 through 5 and channels 24
throwah 35 with occureences of wvarious conditions, such as the
occurrence of a particular character typed at the terminal or the
receipt of an IFCF message. This section discusses terminal
interrupts: refer to Chapters & and 7 for other types of assignable
intercrupts.

There are 36 codes used to specify terminal characters or conditions

on which interrupts can be initiated. These codes, along with their
asgociated conditions, are shown in Table 4=2,

Table 4-2
Terminal Codes and Conditions
Code Symbol Character or Condition
1] .TICEE CTRLS® or break
1 «TICCA CTEL/A
2 LTICCE CTEL/B
3 +TICCC CTRL/C
4 .TICCD CTRL/D
5 LTICCE CTEL/E
] +TICCF CTRL/F
7 STICCG CTEL/SG
B .TICCH CTRL/H
9 LTICCI CTEL/I
10 LTICCT CTRL/J
11 +TICCK CTRL/K
12 .TICCL CTEL/L
13 «TICCH CTEL/M
14 «TICCH CTRL/N
15 LTICCC CTEL/O

4=10

USING THE SOFTWARE INTERRUPT SYSTEM

Table 4-2 (Cont.)

Terminal Codes and Conditions
Code Symbol Character or Condition
18 .TICCF CTEL/P
17 TICCO CTRL/Q
148 +TICCR CTEL/R
19 .TICCSE CTRL/SS
20 LTICCT CTRL,/T
21 LTICCU CTEL/U
22 LTICCY CTEL/V
213 LTICCW CTEL/W
24 LTICCHE CTEL/X
25 TICCY CTRLAY
26 .TICCE CTEL/Z
27 .TICES ESC key
28 .TICEB Celete (or rubout) key
29 .TICSP Space
30 +TICRF Dataset carcrier off
3l LTICTI TYpein
32 LTICTO Typeout
33-35 Reserved

To cause terminal interruptse to be generated, the uwser's program must
asgiagn the desired terminal code to one of the assignable channels.
The ATI% monitor call is used to assign this coede. This call accepts
one word of arguments: the terminal code in the left half of ACl and
the channel number in the right half.

MOVE 1,[.TICCE, ,INTCHY] j;assign CTRL/E to channel INTCHIL
ATIW

Contrel always returns to the instruction following the ATIW call. If
the current job is not attached to 2 terminal (there is no terminal
controlling the job),; the terminal code assignments are remembered;
they will be in effect when a terminal is attached.

The monitor handles the receipt of a terminal interrupt character in
either immediate mode or deferred mode. In immediate mode, the
terminal character causes the system to initiate an interrupt as soon
a8 the user types the character (i.e., 8% soon as the system receives
it). In deferred mode, the terminal character is placed im the input
stream in Seguence with other characters of the input, unless two of

4=11

USING THE SOFTWARE INTERRUPT SYSTEM

the same character are typed in succession. In this case, an
interrupt occurs at the time the second one is typed. If only one
character enabled in deferred mode is typed, the system initiates an
interrupt only when the program attempts to read the character.
Ceferred mode allows interrupt actions te occur in seguence with other
actions specified in the input [(e.g., when characters are typed ahead
of the time that the program actually reguests them). In either mode,
the character is not passed to the program as data. The system
agsumes that interrupts age to be handled immediately unless a program
has issued the STIWE (Set Terminal Interrupt Word) monitor call.
[Fefer to TOPS=20 Monitor Calls Feference Manwal for a description of
this call.)

4.10 ADDITIONAL SOFTWARE INTERRUPT MONITOR CALLS

Additional monitor calls are available that allow the user's program
to check and to clear various parts of the software interrupt system.
hlso, there is a call vseful for interprocess communication (refer to
the IIC% call im Section 5.10).

4.10.1 Testing for Enablement

The SKEFIRY sonitor call tests the software interfupt system bto see if
it iz enabled. The call accepts in ACl the identifier of the process.
After execution of the call, control returns to the next instruction
if the system is off, and to the second instruction if the system is
&n.

MOVEL 1,.FHSLF jidentifier of current process
SEFIRR rtest interrupt system

return jeystem is off
return ;Eystem 15 on

4,10.2 Obtaining Interrupt Table Addresses

The RIRY and XRIBY monitor calls obtain the channel and priority level
teble addresses for a process. These calls are useful when several
routines in one procesg want to share the interrupt tables.

4.10.2.1 The RIR% Monitor Call - The EIR% momnitor call can be used in
any section of memory, but iz eonly wvseful for obtaining table
addresses if those tables are in the same section of memory as the
code that makes the call. Furthermore, it cam only obtaim table
addresses that have been set by the SIE call.

The call accepts the identifier of the process im ACl. It returns the
table addresses in ACZ. The left half of ACZ2 contalng the
section-relative address of the priority level table, and the right
half contains the section-relative address of the channel table. If
the process has not set the table addresses with the S5IKY monitor
call, AC2Z containg zZero.

TOPS=-20 Version 5 4=12 April 1982

USING THE SOFTWARE INTERRUPT SYSTEM

Control always returns to the instruction following the RIRY call.
The following example shows the use of the RIRY call.

MOVEL 1,.FHSLF jidentifier of current process
EIR% jreturn the table addresses

4.10.2.2 The XRIRY Monitor Call = This call obtains the addresses of

the interrupt tables defined for a process. The tables can be in any
section of memory. The code that makes the call cam alse be in any
section. This call can only obtain addresses that have been set by
the XSIRY call.

The call accepts the identifier of the process in ACL, and the address
of the argument block im AC2Z2. The argument block is three words long,
word zero must contain the number 3. The call returms the addresses
into words one and two. The block has the following format:

]--:-.::-:--:--:--.:--.:-::-::-::-l:--:-.-------- RN Il,!

! Length of the argument block, including this word 1

! Address of the channel teble i

!:-IIII'I-I--II'II'II'II-I'I-II'I-i-l"--ll-ﬂ-'ﬂl--l--l--l--l-!

control always returns to the instruction following the XRIRY call.

If the process hat not set the table addresses with the XSIE% monitor
call, words one and two of the argument block contain zero.

4.106.3 Disabling the Interrupt System

The DIR% monitor call disables the software interrupt system for the
process, It accepts the identifier of the process in ACL.

HMOVEI 1,.FHSLF sidentifier of current process
DIR% jdisable system

Control always returns to the instruction following the CIR® call.

If interrupts occur while the interrupt System is disabled, they are
remembered until the system is reenabled. At that time, the
interrupts take effect unless an intervening CIS% monitor call (refer
ko Section 4.10.6) has been issued.

Software interrupts assigned to panic channels are not cospletely
disabled by the DIER% call. These interrupts terminate the process,
and the superior process is notified if it has enabled channel .ICIFT.
In addition, if the terminal code for CTRLSC (.TICCC) is assigned to a
channel, it causes an interrupt that cannot be disabled by the DIR%
call. However, the CTEL/C interrupt can be disabled by deactivating
the channel assianed ko the CTRELSC terminal code.

TOP5=20 Version 5 4-13 April 1982

USING THE SOFTWARE INTERRUPT SYSTEM

4.10.4 Deactivating a Channel

The DICY monitor call is used to deactivate interrupt channels. The
call accepts two words of arguments: the process identifier in ACL,
and the channels to be deactivated in AC2. Setting bit m im ACZ
indicates that channel n is to be deactivated.

MOVEI 1,.FHSLF sidentifier of cureent process
MOVE 2, [lBE<.ICAOV>+]1B<, ICPOV:] sdeactivate channels 6 and 9
DICH

Control always returns to the instruction following the DIC% call.

wWhen a channel is deactivated, interrupt reguests for that channel are
ionored except for interrupts generated on panic channels (refer to
Section 4.6).

4.10.5 Deassigning Terminal Codes

The DTI% monitor call deassigns a terminal code from a pacticular
channel. This call accepts one argument word: the terminal code in
the left half of ACL, and the channel nusber in the right half.

MOVE 1,(.TICCE, ,INTCHL] jdeassign CTRL/E from chanmel INTCHL
CTI%

Control always returns to the instruction following the DTI® call.
This monitor call is ignored if the specified terminal code has not
been defined by the current job.

4,10.6 Clearing the Interrupt System

The CIS% monitor call clears the interrupt system for the current
process, This call clears interrupts in progress and all waiting
intercupts. This call reguires no arguments, and control always
returns to the instruction following the CIS call. The RESETY monitor
call (refer to Section 2.6.1) performs these zame actions as part of
its initializing procedures.

4.11 BSUMMARY
To use the software interrupt system, the usSer's program must:

1. Supply routines that will process the intercupts.

2. Bet uvup a8 channel table containina the addresses of the
routines (refer to Section 4.4.1) and a priority level table
containing the addresses for storing the program counter (PC)
values (refer to Section 4.4.2).

3. Specify the addresses of the tables with the XSIRY monitor
call (refer to Section 4.4.3).

4. Enable the software interrupt system with the EIRRY monitor
call (refer to Section 4.5).

%. Metivate the desired channels with the AICE® monitor call
irefer to Section 4.6).

TOPSE=20 Version S 4=14 April 1982

4.12

output

STaRT:

GETIF:

GETOF §

OFNIF:

DOFHOF 3

CPYRYT:

DONE 3

FROUTINE TOD HAMDLE "E

TOPS-20 Version 5

USING THE SOFTWARE INTERRUPT SYSTEM

SOFTWARE INTERRUPT EXAMPLE

This progaram copies one file to another. It

filenames from the user.

TITLE SOFTWARE
SEARCH HONSTH
Tim]
T2=2

INTCHI=]

INTERRUFT

RESETX

HOVEL Ti1es.FHELF

HOVEL TZe3d

HOVEH T2 ARGELK

CHOVET T2+«LEVTAR

HOVEH T2r.ARGBLK®1

EADVEI T2+CHWTAE

HOVER T2-ARBBLE#D

EAOVEI T2rARGELE

ESIRY

EIRX

HOVE T2»C1R<INTCHI>#LE<.ICEQF>]
AalCy

HOVE T1+L.TICCEw»s INTCHLY

AaTIx

HREEOI Ti+CASCIZAIWFUT FILE: £1J
FEOUTX

accepts the input

and

The end of file iz detected by a
software interrupt, and CTRL/E is enabled as an escape character.

EXmHPLE

{RELEASE FILES:
iCURKENT PROCESS
FHURBER OF WORDE IN ARG
iFUT MUMBEE 1IN WORD ZERD
iGLORAL ADDRESS OF LEVEL TABLE
FHOVE IT TO ARGELE WORD ONE
iGLOFAL ADDRESS OF CHAMMEL TaBLE
FROVE IT TD ARGELE WORD TW
iGLOBAL ADDRESS OF

ETC.

BLOCK

fEMABLE BYSTEM
IACTIVATE CHANMELS

iASSI6GN CTRLAE TO CHANMEL 1

FPROAFT USER FOR IWFUT WARE

HOVSL Tl (GJEOLD4GIEASGH+EIECFA4GIEFNE4GIESHT

MOVE T2s[.FRIIN«..FRIDL]
GTJFHE

ERJHF ERROR1

HOVEHR TleINJFN

HEEDI Ti,CASCIZSFOUTFUT FILEY #J

FEOUTX

FGET FILENAWE FROHM UBER

#FREOAFT UBER FOR DUTFUT MNAHE

AOVEL T1+{GJEFOU4GIEHECHGIECFAPDJEFNGHGIESHT }

HOVE T2rL.PRIIN»» PREIDUI
GTJFHI
ERJAF ERRORZ
HOVEH T1-OUTJFHN
HOVE Ti:INJFN
HOVE T2.L7BES+0FZRDO]
OFENFX
ERJAF ERFORZ
MOVE T1eDUTJFHN
HOVE T2,L7ES+OFIWRD
OFENFX
ERJAF EREDR3
HOVE T1leIWJFH
EINZ
MOVE T1l«DUTJFN
BOWTE
JREET CPYBYT
HOVE T1«IMJFH
CLOSBFX
JFCL
HOVE T1.0UTJFN
CLOSFX
JFCL
HALTF X

- AFOETES OFPERATION

PGET FILENAHE FROM USER

IOFEN INFUT FILE

FOFEN DUTFUT FILE
IREADR IMFUT BYTE
PMEITE DUTFUT BYTE
¢LODF UNTIL EOF

INFUT FILE

ICLOSE

+CLOSE OUTFUT FILE

April

aRGUHENT ELOCK

1982

USING THE SOFTWARE

CTRLE: ROYEL TRe. .FREIOU
CFOEFX

HEEOI Ti+[ABCIZ/ABDRTED. 2

FEOUTX
CIS%
JEET BTART

IEDUTINE TO HANDLE EDF -

EOFINT: HMOVEH T1sINWTACI
AHOVET T1.DONE
HOVEH T1.PC2
HOVE TI+INTACL

INTERRUPT SYSTEM

iCLEAR OUTPUT BUFFER

I INFORM UEER
+CLEAR SYSTEH

CORFLETES OFERATIODN WNORRALLTY

FEAVE AC'S
fCHANGE FC
FTO DONE
FRESTORE AC'S

DEFRKX iDISHISS IWTERRUFT

i LEVEL TAELE
LENTARE: O

FC2
i
FC2E BLOCK 1
FCHANNEL TAFLE
CHNTAE: O JUNUSED CHANMELS HA&WE 0O
2ESPCCTRLE: BAS FCHANKEL 1 [5 CTELAE
REFEAT “DO8s < ICHANNEL Z-% MOT USED
2ESPCEQOFINT>R3S iCHANKEL 10 IS EOF
REFEAT “D25:<{ ICHAMNEL 11-3% NOT USED

aREGELK: BLOCE

THJFH: FLOCK

OUTJFN: BLOCK

INT&C1: BLOCK

EREORL1: THSG

FINVALID FILE SPECIFICATION
HALTFZ

ERREDRZ: THLRG

FINVALID FILE SFECIFICATION
HALTFX

ERROREIL TREQ

FCANNDT OFEN FILE

'ARGUMENT BLOCK FOR XSIRX

B e =

HAaL TFx
LIT
En TR
TOPS=20 Version 5 4=-16 April 1982

CHAPTER 5

FROCESS STRUCTURE

hs stated in Chapter 1, the TOP5-20 cperating system allows each job
to have multiple processes that can run simultanecusly. Each process
has its own environment called its address space. Associated with the
environment is the program counter (PC) of the process and a
well=-defined relationship with other processes in the job.

The TOPFS-20 operating system schedules the running of processes, not
entire jobs. A process can be scheduled independent of other
processes because it has a definite existence: its begipning is the
time at which it is created, and its end is the time at which it is
killed. At any point in its existence, a process can be described by
its state, which is represented by a status word and a PC word (refer
to Section 5.9).

The relationships among processes in a job are shown im the diagram
below. Each process has one ipmediate superior process (except for
the top-level process) and can have one or more inferior processes.
Two processes are parallel if they have the zame immediate superior.
A process can create an inferior process but not a parallel or

Superior process.

Process
| |
Process PioEs P
1 2 3
I]
Proces Process
4)

(LRt

Process 1 is the superior process of process 4, and process 3 is the
superior of process 5. Processes 4 and 5 are the inferiors of
processes 1 and 3, respectively. Process 2 has no inferior process.
Processes 1, 2 and 3 are parallel because they have the same superior
process (i.e., the top-level process). Processes 4 and 5, although at
the same depth in the structure, are not parallel because they do not
have the zame superior process. Process)1 created process 4 but could
not have created any other process shown in the structure above.

PROCESS STRUCTURE

5.1 USES FOR MULTIPLE PROCESSES

A multiple-process job structure allows:

1. ©One job to have more than one program runnable at the same
time. These programs can be independent programs, esach one
compiled, debugged, and loaded separately. Each program can
then be placed in a separate process. These processes can be
parallel to each other, but are inferior to the main process
that created them. This uwse allows parallel processing of
the individual programs.

2. One process to wait for an event to occur (e.9., the
completion of anmn IS0 operation) while another process
continues its computations. Communication between the two
processes 15 such that when the event occurs, the process
that is computing can be notified via the software intercupt
Bystem. This use allows two processes within a job to
overlap I/0 with computations.

one application of a multiple-process job structure is the following
gituation: a superior process is responsible for accepting input from
various terminals. After receiving this input, the process sends it
to wariouws inferior processes as data. These inferior processes can
then initiate other processes, for example, to write reports on the
data that was received,

Proceas that

i] ™

/

!

3
i
¥

i
z
¥

LT

Another application is that wused for the wuser interface on the
DECSY¥STEM=20. Oon the DECSYSTEM-20, the top-level process in the job

structure 15 the Command Language. This Eruceas services the user at
the terminal by accepting input. When the user runs a program (e.g.,

MACRO, FORTRAN), the Command Language process creates anm inferior
process, places the reguested program in it, and executes it. The
Command Language can them wait for am event to occur, either from the
program of from the user. An event from the program can be its
completion, and an event from the user can be the typing of a certain
terminal key (CTRL/C, for example).

PROCESS STRUCTURE

5.2 PROCESS COMMUNICATION

A process can communicate with other processes in the system in
several ways:

¢ direct process control

software interrupts

« IFCF and ENQ/DEQ facilities

a« memory sharing

5.2.1 Direct Process Control

A process can create and control other processes inferlor to it within

the job structure. The superior process can cause the inferior
process to begin execution and then to sSuspend and later resume
execution. After the inferior process has completed its tasks, the
superior process can delete the inferior from the job sStructure.

Some of the monitor calls wsed for direct process control are:
CFOEE%, to create a process; SFORE%, to start a processy; WFORKY, to
wait for a process to terminate; RFS5TS5%, to obtaim the status of a
PEQCESS§ and EKEFOEE%, to delete a process., Refer to the TOPR5S-20
Monitor Calls Reference Manual for descriptions of additional moniter
:-EIIE aenllnq HIE“ Frocess Eﬂ-l‘ll‘.l’t,‘.l]..

5:.2.2 Boftware Interrupts

The software interrupt facility enables a process tao receive
asynchronous signals from other processes, the system, or the terminal

uger of to receive signals as a resuwlt of its own execution. For
example, a superior process can enable the interrupt system so that it
receives an interrupt when one of its inferiocrs terminates. In

addition, processes within a job structure can explicitly generate
intercrupts to each other for commumication purposes.

Some of the monitor calls used when communication occurs wia the
goftware intercrupt System are: SIRY, to specify the interrupt tables;
EIR%, to enable the interrupt system; AICY%, to activate the interrupt
channels; and IIC%, to initiate an interrupt on a channel. Refer to
Chapter 4 and Section 5.10 for more information.

5.2.3 IPCF And ENQ/DEQ Pacilities

The Inter=-Process Communication Facility (IFCF) enables processes and
jobse to communicate by sending and receiving informational messages.
The MSENDY call is used to send a message, the MRECVE call is used to
receive a message, and the MUTILY call is used to perform utility
functions. Refer to Chapter 7 for descriptions of these calls.

PROCESS STRUCTURE

The ENQ/DEQ facility allows cooperating processes to share resources
and facilitates dynamic resource allocation. The ENDQR call is used to
obtain a resource, the DEQ% call is used to release & resource, and
the ENQC% call is used to obtain status about a resource. Refer to
Chapter & for descriptions of these calls.

S:2:.4 Memory Sharing

Each page or section in a process' address space is either private to
the process or shared with other processes. Pages are shared among
processes when the same page is represented in more than one process®
address space. This means that two or more processes can identify and
use the same page of physical storage. Ewven when Several processes
have identified the same page, each process: can have a different
access to that page such as access to read or write that page.

& type of page access that facilitates sharing is the copy-on-write
ACCEES. A page with this access remains shared as long as all
processes read the page. As soon as a process writes to the page, the
system makes a private copy of the page for the process doing the
writing. Other processes continue to read and execute the original
PAJE . This access provides the capability of sharing as much as
possible but still allows the process to change its data without

changing the data of other processes. A monitor call used when
sharing memory is PMAP., Refer to Section 5.6.2 for more information.

5.3 PROCESS IDENTIFIERS

In order for processes to communicate with esach other, a process must
have an identifier, or handle, for referencing another process. When
& process creates an inferior process, it is given a handle on that
inferior. This handle is a number im the range 400001 to 400777 and
iz meaningful only to the process to which it is givenm (i.e., to the
BUpPECiof PpProcess). Far example, if process A creates process B,
process A is given a handle (e.g., 400003) on process B, Process A
then specifies this handle when it uses monitor calls that refer to

process B. However, process B is not known by this handle to an
other process in the structure, including itself. The handle 40000

may in fact be known to process B, but it would describe a process
inferior to process B. For this reason, process handles are sometimes

called "relative fork handles® because they are relative to the
process that created them.

There are several standard process handles that are never assigned by
the system but have a specific meaning when used by any process in the
structure. These handles are used when a process needs to communicakte
with a process other than its immediate inferior or with multiple
processes at once. These handles are described in Table 5=1.

TOPS-20 Version 5 By April 1982

PROCESS STRUCTURE

Table 5-1
Process Handles

Humber Symbol Meaninag
400000 . FHSLF The curcent process (or self).
=1 « FREUP The immediate superior of the current
process.
=2 . FRTOP The top=level process imn the job
Structure.
=3 « FHEAT The current process and all of its
inferiors.
=4 « FHINF All of the inferiors of the curcent
PEOCESS.,
=5 - FHJOB All processes in the job structure.

Conslder the job structure below.

" € o
— A —
r“J“‘1

The following indicates the specific process or processes being
referenced If process E gives the handle:

+FHSLF refers to process E

-FHSUP refers to process D

- FHTOP refers to process A

«FHSAL crefers to processes E, G, and H
. FHINF refers to processes G and H
«FHJOB refers to processes A through H

The process must have the appropriate capability enabled in its
capability word te use the handles .FHSUP and .FHTOF (refer to S5ection
5.5.1).

FROCESS STRUCTURE

Frocess E can reference one of its inferiors (e.g., G) with the handle
it was given when it created the inferior. Process E can reference
other processes in the structure (e.g., F) by executing the GFRES
monitor call to obtain a handle on the desired process. Refer to the
TOPS-20 Monitor Calls Feference Manual for a description of the GFRES
call.

5.4 OVERVIEW OF MONITOR CALLS FOR PROCESSES

Monitor calls exist for creating, loading, starting, suspending,
resuming, interrupting, and deleting processes. When a process 1s
created, its address space iz assigned, and the process is added to
the job structure of the creating process. The contents of its
address space can be specified at the time the process is created or
at a later time. The process can also be started at the time it is
created. A process remains potentially runmnable uwntil it i85
explicitly deleted or its superior is deleted.

M process may be Suspended if one of the following conditions occurs:
1. The process executes an instruction that causes a software
interrupt to occur, and it is not prepared to process the
interrupt.
2. The process executes the MALTF monitor call.

3. The superior process reguests suspension of its inferior.

4, The superior process (s suspended. When & process is
suspended, all of its inferior processes are also suspended.

2.5 CREATING A PROCESS

A process creates an inferior process by executing the CFORER (Create
Process) wmoniter call. {The term fork is synonymous with the term
process.) This sonitor call can &lso be used to specify the address
space, capabilities, ACs, and PC for the inferilor process and to starct
the execution of the inferior.

The CFORKY call accepts two words of arguments in AC1 and ACZ.

ACL: characteristics for the inferior in the left half, and PC
address for the inferior inm the right half.

ACZ: address of a 20(octal) word block containing the AC values
for the inferior.

=6

FROCESS STRUCTURE

The characteristics for the inferior process are defined by the
following bits:

Bit Symbol Meaning

0 CERMHAP Eet the map of the inferior process to the
same a5 the map of the superior (i1.e.,
creating) process, This means that the
superior and the inferior will share the same
address space. Changes made by one process
will be seen by the other process.

If this bit is not on im the call, the
infericr's map will contain all zeros.

1 CRRCAP et the capability word of the inferior
process to the same 35 the capability word of
the superier process. (Refer to Section
5.5.1 for the description of the capability
word.)

If this bit is mnot en in the call, the
inferior will have no special capabilities.

2 Feserved for DEC (must be zero).

3 CRYACS Set the ACs of the inferior process to the
values beginning at the address given in ACZ.

If this bit is not om im the call, the

inferior's ACs will be set to zero, and the
contents of ACZ iz fgnored.

4 CRYST et the PC for the inferior process to the
address given in the right half of AC]l and
start execution of the inferiocr.

If this bit is not on in the call, the right
half of ACl is ignored, and the inferior is
not started.

If execution of the CFORKY call ls not swveccessful, the inferior
process is not created and an ercor code is returned in ACl. The
execution of the program in the superior process continues at the
instruction following the CFORK%® call.

If execution of the CFORK% call is successful, the inferior process is
created and its process handle is returned im the right half of ACL.
This handle is then used by the superior process when communicating
with its inferior process. The execution of the préegram 1n the
superior process continues at the second instruction following the
CFORES call.

5=7

FROCESS STRUCTURE

Assume that process A executes the CFORKY monitor call twice to create

two parallel inferior processes, This is represented pictorially
below.

M* [:]

by Execuling & CFORR

Proceds B

Mote that process A has been given two handles, one for process B and
one for process C. Process A can refer to either of its inferiors by
giving the appropriate handle or to both of its inferiors by giving a
handle of -4 (.FHINF).

5.5.1 Process Capabilities

When a new process is created, it is aiven the same capabllities as
its superior, or it is given no special capabilities. This is
indicated by the Setting of the CRRCAF bit in the CFORKE%® call. The
capabilities for a process are indicated by two capability words. The
first word indicates if the capability is available to the process,
and the second word indicates if the capability is enabled for the
process. This second word is the one being set by the CRRCAF bit in
the CFOREY call.

Types of capabilities represented in the capability words are job,
process, and uyser capabilities, Each capability corresponds to a
particular bit in the capability words and thus can be activated and
protected independently of the other capabilities. Refer to the
TOP5=-20 Monitor Calls Reference Manual for more information on the
capability words.

5.6 SPECIFYING THE CONTENTS OF THE ADDRESS SPACE OF A PROCESS

Once a process ls created, the contents of its address spece can be
specified. Thigs cam be accomplished by one of three ways. AS
mentioned in Section 5.5; bit CRYMAF can be set in the CFORER® call to
indicate that the address space of the inferior process is to be the

3-8

PROCESS STRUCTURE

game¢ as the address space of the creating process. Inm additiom, the
creating process can execute the GETY monitor call to map specified
pages from a file into the address space of the inferior process.
Finally, the <creating process can execute the PMAPY monitor call ko
rap specified pages from another process into the address space of the
inferior process,

If the creating process does not sgpecify the contents of the
inferior's address Space, the address space will be filled with zeros.

5.6.1 GET Momitor Call

The GET% monitor call is used to map pages from a F£file into the
address space of the specified process,., The file must be & saved file
that was created with either the SAVER® or S5SAVER® monitor calls (refer
to the TOPS-20 Monitor Calls Reference Manual).

The GET% monitor call accepts two words of arguments in ACl amd AC2.
The first word specifies the handle of the desired process and the JFN
of the desired file. The second word specifies where the pages from
the file are to be placed in the address space of the process. Thus,

ACL: process handle in the left half, and JFN im the right
half. If GTHRDR (bit 1%) is on, AC2Z is used for the
memory limits. If GTRADE is not on, all existing pages in
the file are mapped into the process.

ACZ: number of lowest page in the left half and number of
highest page in the right half. These page numbers arce
for the address space of the process and are used to
contrel the portions of memory that are loaded. These
values are specified only if GTHADR is on in ACL.

When the pages of the file are mapped inte pages in the process'
address space, the previous contents of the process pages are
overwritten. Any full pages in the process that are not overwritten
are unchanged. Any portions of process pages for which there is no
data in the file are filled with zeros.

For example, a GET% call executed for & file that contains 2 1/2 pages
sets up the process' address space as shown in the following diagram.

L - Lo
Page 1 | Dues Data Page 1
QET
.;" Call
Puge 2 | Data Daza Page I
Page 1 | Deta Data Page 3
''''' EOF
]
Poly 812 | Unchanged
e

59

PROCESS STROUCTURE

After execution of the GET call, control returns to the user's program
at the instruction following the call. If an error occurs, a software
interrupt is generated, which the program can process via the software
interrupt system.

5.6.2 PMAPR: Monitor Call

The PHAPY monitor call is used to map pages from one process to the
address space of a second process. Data is not actually tramsferred;
only the contents of the page map of the second (i.e., destination)
process are changed.

The PHAPY monitor call accepts three words of argueents in ACL through
AC3. The [irst word contains the handle and page number of the first
page to be mapped in the sSouwurce process (i.e., the process whose pages
are being mapped). The sSecond word contains the handle and page
number of the first page to be mapped in the destination process
{i.e.,the process into which the pages are being mapped). The third
word containg & count of the number of pages to map and bits
indicating the access that the destination process will have to the
pages mapped. Thus,

ACl: source process handle in the left half,; and page number in
the process in the right half.

ACZ: destination process handle in the left half, and page
number in the process in the right half.

AC3: count of nusber of pages to map and the access bits.

The count and access bits that can be specified in ACY are described
below.

Bit Symbol Heaning

i FHRCHT Eepeat the mapping operation the
number of times specified by the right
half of AC3. The page nuembers in both
processes are incremented by 1 each
time the operation is performed.

2 PHRED Allow read access to the page.

3 PMAWR Allow write access to the page.

9 FHICPY Allow copy-on=write access to the
PAJE .

18-35 The number of times to repeat the
mapping operation if bit 0 (BMRCHT) is
sEat.

5-10

PROCESS STRUCTURE

Upoen sSuccessful execution of the PMAPY call, addresses in the
destination process actually refer to addresses in the source process.
The contents of the destination page previous to the execution of the
call have been deleted. The access reguested in the PMAPE% call is

ranted if it does not conflict with the current access of the
estination page (i.e., &an AND operation ig performed between the

gpecified access and the current access). Conktrol rceturns to the
user's program at the instruction following the PMAPY call. If an
error occurs, an illegal instruction trap is generated, which the
program can process via the software interrupt system or with an ERJMP
or ERCAL instruction.

5.7 GETARTING AN INFERIOR PROCESS

A program in am inferior process can be started inm one of two ways.
As mentioned in Section 5.5, the superior process can specify in the
CFORE® call the PC for the inferior process and start its execution.
Altermatively, the superior process, after executing the CFORER call
to create an inferior process, can execute the SFORK% (Start Process)
monitor call to start it.

The SFOEK% monitor call accepts two words of arguments in ACL and ACZ.
The first word contains the handle of the desired process. The
address of the PC word at which the process is to be started is in the
second word. Thus,

ACl: process handle
ACZ2: address of inferior's PC

The process handle given in ACl cannot refer to a superior process, to
more than one process (e.g., .FHINF), or to a process that has already
been started.

After execution of the SFORE% call, control returns to the user's
program at the instruction following the call. If an ercor occurs, a
software interrupt is generated, which the program can process via the
software interrupt system.

5.8 INFERIOR PROCESS TERMINATION

The superior process has one of two ways in which it can be notified
when its inferiors terminate execution: via the software interrupt
system or by executing the WFORKER monitor call. An inferior process
will terminate normally when it executes a HALTF® monitor call.
Alternatively, the process will terminate abnormally when it executes
an instruction that generates a software interrupt, sSuch as an illegal
instruction, and it has not activated the appropriate channel.

By activating channel .ICIFT (channel 1%} for inferior process
termination and enabling the scftware interrupt system, the superior
process will receive an interrupt when one of its inferiors
terminates. (Refer to Section 4.6 for information on activating
channel .ICIFT.) The imterrupt occurs when the first pracess
terminates, Use of the interrupt system allows the superior to do
other processing wuntil am interrupt occurs, indicating that an

inferior process has terminated.

£=11

PROCESS STRUCTURE

In some cases, however, the superior cannot do additional processing
uptil either & specific process or all of its inferior processes have
completed execution. If this is the case, the superior process can
execute the WFORKY (Wait Process) monitor call. This call blocks the
guperior until one or all of its inferiors have terminated.

The WFORKS® monitor call accepts one argument in ACl, the handle of the
degsired process. This handle can be .FHINF (-4) to block the superior

until all inferiors termimate, but cannot be & handle on a superior
process.

After execution of the WFORKS monltor call, control reeturmse to the
user's program at the instruction following the call, when the
specified process or all of the inferior processes terminate. If an
BECOE OCCUES, it generates a software interrupt, which the program can
process via the software interrupt system.

5.9 IMFERIOR PROCESS STATUS

The superior process can obtaim the status of one of its inferiors by
executing the RF5T5% (Read Process Status) monitor call. This call
retuens the status and PC words of the given inferior process.

The RFSTS% monitor call accepts one argument im ACLl, the handle of the
desired process., This handle cannot refer to a superior process or to
more than oné process.

After execution of the RFS5TS% call, control returns to the user's
program at the instruction following the call. If the RPFSTS4 call is

guccessful , ACl contains the status word of the given process and AC2
contains the PC word. The status word is shown in Table 5-2.

Table 5-2
Procese Status Word

Bit Symbol Meaning

1] REFAFRE The process is suspended (i.e., frozen).

If this bit is not on, the process is not
suspended.

1-17 RFR5TS The status of the process,
Value Symbol Meaning
L1 « EFEUH The PrOCess is
runnable.
1 LHRFICG The process is halted

waiting for I/0

2 - RFVET The process is halted
by a HFORK%® or HALTF%
monitor call or was
never started.

FROCESS STRUCTURE

Table 5=2 (Cont.)
Frocess Status Word

Bit Symbal Meaning

Value Symbol Meaning

3 « RFFFT The process is halted
by the occurcence of &
software interrupt for
which it Was not
preparced to handle.
The right half of the
status word conktains
the number of the
channel on which the
intercupt occurced.

4 s RFWAT The process is halted
waiting for another
FLocess ko terminate.

5 LRFTIM The process is halted
for a specified amount
of time.

18-35 RFASIC The channel number on which am interrupt
accurrced, which the process was not

prepared to handle (see process status code
-RFFFT aboave).

If an error occurs during execution of the RFS5T3% call, a software
interrupt iz generated, which the program can process via the software
intercupt system.

5.10 PROCESS COMMUNICATION

A gsuperior process can communicate with its inferiors by sharing the
game pages of memory. This sharing is accomplished with the CFORER
{bit CREMAP) or the PMAPY monitor call. When the superior executes
either of these calls, both the superior and the inferiocr share the
same pages. Changes made to the shared pages by either process will
be seen by the other process.

Alternatively, processes can communicate wia the socftware interrupt
system. The sSuperior process can cause a software interrupt to be
generated in an inferior process by executing the 1IC% (Initiate
Interrupt on Channel) monitor call. For this type of communication to
occur , the inferior's interrupt channels must be activated and its
interrupt system enabled.

5-13

PROCESS STRUCTURE

The IIC% monitor call accepts two words of arguments in AC1 and AC2.
The handle of the process to receive the interrupt is given in the
right half of ACl. ACZ contains a 36-bit word, with each bit
representing one of the 36 software channels. If a bit is om in AC2,
a software interrupt is initiated on the corresponding channel. For
example, 1f bit 5 iz om im ACZ, an interrupt is initisted on channel
2. Thus,

ACl: process handle in the right half

AC2: 3b-bit word, with bit n on to initiate a software interrupt
on channel n

The process handle given cannct refer toc a superior process orf to more
than one process.

After execution of the IICY call;, contrel returns toe the user's
program at the instruction following the call. If an error occurs, it
generates a software interrupt, which the program canm process via the
software interrupt system.

5.11 DELETING AN INFERIOR PROCESS

A process 1s deleted from the job structure when the superiocr process
executes the EFORE%® (Kill Process) monitor call. When a process ls
deleted, its address space, its handle, and any JFNs acguired by the
process are rceleased. If the process being deleted has processes
inferior to it, the inferices are also deleted. For example, in the
structure:

- JOURAT

if process A deletes process B by executing a KFORE% call, process C
iz also deleted.

The EFORK% monitor call accepts one argument in the right half of ACL,
the handle of the process to be deleted. This handle cannot refer to
a superior process, to more thanm one process [(e.g., .FHINF), or to the
process executing the call (i.e., .FHSLF). The RESET% monitor call is
used to reinitialize the current process; refer to Section 2.6.1.

After execution of the KFORE% call, control returns to the user's

peogram at the instruction following the call. If an ecfror OCCUrs, &
software interrupt is generated, which the program can process via the
software interrupt system.

5-14

PROCESS STRUCTURE

5.12 PROCESS EXAMPLES

Example 1 = This program creates an inferior process to provide timing

intercupts.

TITLE TIAINT = EXAHMFLE OF USING aN INCERIOR FROCESS 7O PREOVIDE TIRING INTERRUFTS

SEARCH HONEYR+ RACSTYH
+REQUIRE SYSIHACKEL

Tl==]
T2mm2
T3==3
|f==q

START! REBETX
HOVE FoLIDWD SH0:FIL]
MOVE TleCRIMA&F
CFORKE

JEHLT
HOVEM T1.HANDLE

FRELEASE FILEEBs ETC.

FINITIALIZE PUSH-DOWM LIST IN CaSE OF ERRODES
FHAKE NEW FROCESS SHARE THIS FROCESS'S HERDRY
FCREATE A WEW PROCESS

FUNEXFELTED EREOR.

FSAVE FROLESE HANDLE

i HERE TO START THE INFERIDR FROCESS

STPROCE SETIE TA«FLAD
HOVE Ti1:.HANDLE
ROVET T2eSLEEF
SFORKX

AAIN FROCESEING LODOF
LOOF: als T4

SKIFN FLAD
JREST LOOF

FINITIALIZE COUNTER ANl FLAG

+OET FROLCESS HAWNDLE

FOET ADDRESS AT WHICH TO START HEW FROCESS
ISTART THE MEWN FREOCESS

i INCREMENT COUNTER
+HAS TIWE ELAFEED YET *
iNO» GO DD AORE FROCESSING

i HERE WHENW LOWER FROCEES HaS INTERRUFTED

TREG <

Counter has reached
HOYE T1ls.FRIOW
HOVE T2sT4
MOVEI T3+« DIL1D
NOUTX

JSERK

THEG <

JEST ETPROC
i PROGRAN FERFORHMED EFY INFERIDE
SLEEF: HOVE Tl."DI0OEDLI000
DISHSX
SETOM FLAG
HA<FX
i CONSTAMTS aMND VARIABLES
PIL 2 ELOCKE 50
HANDLE: FLOCK 1
FLAG! ELOCK 1

END STaRT

FOUTPUT FIRET P&RT OF HESSAGE
IGET FPRIMARY OQUTFUT JFM

YGET COUNTER WALUE

FUSE DECIRAL RADILX

#0UTPUT CURRENT COUMTER VaLUE

FUNEXFECTED EFROE

FCONTINUE COUMTIMNG

FROCESS TD WAIT FOR DNE-HALF MIMNUTE
ISLEEF FOR OME-HALF HMINUTE

FIDTSKHISS FOR SPECIFIED TIHE

i TELL SUFERIOR FPROCESS 30 SECOMDE HAVE ELAFSED
FFINISHED

FFROCESS HANDLE

PROCESS STRUCTURE

Example Z - This program illustrates how an inferior process may be
used as a source of timer intercupts. The main Erngrn increments &
counter. It has an inferior process running for the socle purpose of
timing 10 second intervals. Each time the inferior process has timed
10 seconds, it stops and interrupts the main program. The main
program then reports how many more btimes it has incremented the
counter since the last 10 second interrupt.

SEARCH HOWEYRAr RACSYH
+REQUIRE EYSIMaCEEL

Tie=]
T2wm
Tim=}
F T

STakT: RESETX VRELEARSE FILES. ETC.

BET UF THE INTERRUFT SYSTEH

HOWE The .FHELF JGET DUR PROCESS HAWDLE

HOVE T2+LLEVTAE: fCHNTABJHGET TABLE ADPRESSES

EIRX FGET INTEERUFT TABLE ADDRESSES

HOVE T2«1B<.ICIFT PGET PEOCESS-TERMINAT ION-CHANMEL EBIT
wICK FACTIVATE FROCESS TERAIMATION CHAMNNEL
E1R% VENHARLE THE SYSTER.

i CREATE AND START THE INFERIOR FROCES:

HOWE Tl CREMAF+CRESTHSLEEF

CFORKX #CREATE AWD ETART TIHER AT *SLEEF®
ERJAF [JSHLT 1] VUNEXFECTED ERROK.
HOWEM TI«HANDLE VSAVE FROLESS HANDLE

FINITIALIZE THE COUNTER

STFREQCY SETIE T4:0LDT4 fCLEAR THE COUNTEER

PRAIN LOOF OF FPROGRAH WHICH JUST REEFS COUNTING. (HEAL
FAFFLICATION WOULD FRESUMAFLY HWAVE & RADRE USEFUL AAIN FROGRAR.)

LOOF3 ADJA T4« LDOF FJUST KEEFP INCREMENTIMNG. . .

+ HERE WHEN LOWER FROCESS MaS INTERRUFTED

FEOINT: MODVER 17¢TACS+17 FSAVE AC 17

HOVEL 17.1lACS iMAKE FOINTER FOR REST OF ACS

BFLT 17+ TACS+1& +SAVE REST OF ACE

TREG <NUREER OF COUNTSD >

HOVEI Ti..PRIOU PGET PRIMARY OUTFUT JFM

EXCH T4:0LDT4 FEAVE HNEW COUNTER VaLUE.

SUE T4:0LDT4 #FIND WUREER OF COUMTE SINCE LAST TIHE
AOVH T2:T4 FMAKE IT FOSITIVE

HOVET T3.“D1O PiUSE DECIMAL RADIX

HOUTZ FTYFE HURBER OF COUNTS SINCE LAST TIHE

ERCAL [JSERR FUNEXFECTED WOUT FAILURE

EET 1 iRETURN
THIG
+END THE LINE

HOWE T2rHANDLE FGET HANDLE OW TIHER FROCESS.
ROVEI T2+5LEEF FGET THE FC WE WAMT TO START IT AT.
SFORKX FRESTART THE TIHER.
HOWSE 17+1ACS FGET FOINTER TO SAVED ACS
BLT B7el? FRESTORE SAVED AChH
DEERKT tIIERIEE INTEREUPT

=16

PROCESS STRUCTURE

#THE FOLLOWING LODF IS EXECUTED AE A LOWER FROCESS TO DO THE
FTIRIMG, IT SLEEFS FOR 10 SECONDS AND THEN STOFS.

SLEEF: HOVY Tle®D10®~01000 iGET 10 SECONDE
DISHIX ISLEEF
HALTFX PSTOF AND INTEREUFPT THE HalW FROGRAM

i CONSTANTS AND VARIAELES

CHHTAB: REFEAT “D1%. <EXF Q ICHANMELS 0-18 ARE NOT USED
LeeFEOINT PIFEQCESS TERMINATION INTERRUFT CHaMKEL
REFEAT “D15.<EXF @ FREARINING CHAMMELS ARE ~0T USED
LEVTAE: RETFCI IRETURN FPC STORED AT RETFC1I FOR LEWVEL 1
a FLEVEL 2 MOT USED
L] FLEVEL X NOT USED
HANDLE: BLOCKE 1 iFROCESE HANDLE
RETFCI: BFLOCK 1 IRETURN PC STORED HEKE oM INTERRUFTE
oLDT4: FLODCE 1 THOLDS TIWMER VALUE AT L&ST INTERRUFT
TACS: BLOCK 20 PETORAGE FOR ACS DURING INTERELKFTS
EWD START

5-17

PROCESS STRUCTURE

Example 3 - This program creates an inferior process which waits wntil
a line has been typed on the terminal.

TITLE FREKDODC = EXAAFLE OF USIRG AM INFERIDRE FPROCESS TO WAIT UNTIL & LIME IS TYFED

SEARCH HOMSYH. HACEYH
REQUIRE SYSIMACREL

Tl==j}
T2um2
Tid==]3
Tda=g
Faa]F
ETART: RESETX IRELEASE FILESe ETC.
AOVE FoLI0OWD SO.FDL] FINITIALIZE FUSH-DOWW LIST IM CASE OF ERRORES
HOVY T1:CERXHAF +HAKE WEW FEOCESE SHARE THIS FROCESS'S HEMORY
CFORKE FCREATE A WEW FROCESS
JEHLT FUNEXFECTED EREOR .
SETIR THarFLAG FINITIALIZE COUNTER AND FLAG
HOVET T2+GETCOH FGET ADDRESS AT WHICH TD START MEW FREOCESS
SFORKE FSETART THE MEW FREOCESS

? HAIN FROCESSING LOOF

LDGF: wOE T4 iINCREMENT COUNTER
SKIFN FLAG tHAS A LINE BEEW INFUT YET ¥
JREET LODDF fHNDs OO DD AORE FROCESSING

i MERE WHMEN INFERIOER PROCESS HAS IWFUT A& LINE OF TEXT

THSG
Counter has resched > P0UTFUT FIREET P&RT OF HMESSAGE
HOVE Tl..PRIOU FGET PRIHARY OUTFUT JFHN
HOWE T2:T4 PGET COUNTER WaLUE
HOUVET T3."D10 FUSE DECIMAL RADIX
HOUTZ IDUTFUT CURRENT COUNTER VALUE
JSERRE fUNEXFECTEDR ERROE
THSE
Echo checki FOUTPUT FIRET PaRT OF HESSAGE
HEROI T1sBUFFER FGET POINTER TO BUFFER
FEOUTY FOUTFUT TEXT JUET ENTERED
HaL TFX ISTOF
JEST START PIN CASE FROGRAM CONTINUED

f FROGERAR FERFORHED EY INFERIDR FROCESS TO INFUT A& LINE OF TEXT

GETCOR: HRRODI Ti-BUFFER VGET POINTER TO TEXT BUFFEE
HOWELI T2."D0120 FGET COUNT OF HaX & OF CHARACTERS
GETIA T3 #ND RETYPE BUFFER
ROTTYX iREAD & LINE FROM THE TERHMINAL
JEERK FUNEXPECTED ERROE
SETOR FLAG #TELL SUFERIDE FROCESS A LINE HAS BEEM IMPUT
HALTFX FFINISHED

I CONSTAMTE AND VARTABLES
FIL & BLOCE 50

BUFFER: BLOCK 50
FLAG:E BELOCK 1

END STaRT

5-18

CHAPTER &
ENQUEUE/DEQUEUE FACILITY

6.1 OVERVIEW

Many times vsers are placed in situations where they must share files
with other users. Each user wants to be guaranteed that while reading
a file, other users are reading the same data and while writing a
file, no users are also writing, or even reading, the same portion of
the file.

Consider a dats file used by members of an insurance coBpPany. When
many agents are reading individuwal accounts from the data file, they
can all access the file simultanecusly because no one is changing any
portion of the data. However, when an agent desires to modify or
replace an individual account, that portion of the file should be
accessed exclusively by that agent. HNone of the other agents wants to
acgeaa accounts that are being changed wntil after the changes are
made.

By using the ENQ/DEQ facility, cooperating users can insure that
resources are shared correctly and that one user's modifications do
not interfere with another user's. Examples of resources that can be
controlled by this facility are devices, files, operations on files
{#.9.; READ, WRITE), reccrds, and memory pages. This faclility cam be
used for dynamic resource allocation, computer networks, and internal
monitor gueueing. However, control of simultanecus updating of files
by multiple users is its most common application.

The EHQ/DEQ facility insures data integrity among processes only when
the processes cooperate im thelr wuse of both the facility and the

physical resource. Use of the facility does not prevent
non-cooperating processes from accessing a resource without first
engueveing ik, Nor does the facility provide protection from

processes using it in an incorrect manner.

A resource is defined by the processes usfing 1t and not by the System.
Because there is competition among processes for use of a resource,
each resource is associated with a gueue. This gueue iz the ordering
of the reguests for the rescurce. When & reguest for the resource is
granted, a lock occurs between the process that made the reguest and
the rescurce. For the duration of the lock, that process is the owner
of the resource. Other processes requesting access to the resource
are placed in the gueue until the owner relinguishes the lock.
However, there can be more than one owner of a resource at a time;
this is called shared ownership (refer to Section 6.2).

6-1

ENQUEUE/DEQUEUE FACILITY

Processes obtain access to a specific resource by placing a reguest in

the ogueuve for the rescurce, This reguest is generated by the EHQR
monitor call. WwWhen finished with the resource, the process then

izsues the DEQR monitor call. This call releases the lock by removing
the recguest from the gueuve and makes the resource avallable to the
neéxt waiting process. This cycle continues until all reguests in the
aueye have been satisfied.

6.2 REBQURCE OWMERSHIP

Ownership for a resocurce can be requested as either exclusive or
shared, Exclusive ownership occurs when 2 process reguests sole use
of the rescource., When a process is granted exclusive ownership, no
other process will be allowed to use the resource until the owner
relinguishes it, This type of ownership should be reguested i1f the
process plans on modifying the resource (e.d., the process is updating
& record in & data file). Shared ownership occurs when a process
regquests a rescurce, sSpecifying that it will share the use of the

resource with other processes. When a process is given Shared
ownership, other processes also specifying shared ownership are
gllowed to simultaneously wse the resource. Access to a resgurce

ghould be shared as long &z any one process is not modifying the
resource.

Twe conditions determine when & lock te a resource 15 given to &
pProcess:

1. The position of the process' reguest in the gueue for the
CESOUECEe.

2: The type of ownerchip specified by the process' reguest,

Because each resource has anly one gueue associated with it, requests
for both exclusive and shared ownership of the rescurce are placed in
the same gueue. PReguests are placed in the guewe in the order im
which the EHN{ facility receives them, and the first reguest in the
gueue will be the first one serviced (except in the case of single

reguests for multiple resources; refer to Sectiom 6.4.1). In other
words, the ENQ facility processes reguests on a first in, first out
basis. If this first reguest i for shared ownership, that reguest

will be Serviced along with all following shared ownership reguests up
te but not including the first exclusive ownership reguest. If the
first reguest 15 for exclusive ownership, no other processes arce
allowed use of the resource until the first process has released the
lock.

Consider the following gueue for a particular resource.

[-l.-ll-l!-ll-.---.-l--l--.l--l--.l--ll--.ll..l--l-l..l--l!

! reguest 1 [(shared) I

| o e e YT T re P e P P PR r ey oy |
H

! cequest 2 (shared) !

1 request 5 (shared) !

j R R LT R R E et

£=2

ENQUEUE/DEQUEUE FACILITY

Reguest 1 will be serviced first because it is the first reguest in
the gueue. However, &ince this reguest is for shared ownership,
request 2 can also be serviced. Feguest 3 cannot be serviced umtil
the processes with reguest 1 and reguest 2 release the lock on the
resource. Eventuwally the lock is released by the two processes, and
the first two reguests are removed from the gueue. The gueue now has
the following entries:

! reguest 4 (shared) 1

Reguest 3 is now first in the guewe and is given a lock on the

resource. Because the reguest is for exclusive ﬁunecshiﬁ, no ethet
reguests will be serviced. nce the process associated with reguest 3

releasege the lock, both reguest 4 and reguest 5 can be segviced
because they both are for shared ownership.

6.3 PREPARING FOR THE ENMQ/DEQ FACILITY

Before uwsing the EMQSDEQ facility, the user must obtain an ENQ guota
from the system administrator and must obtain the name of the resource
desired, the type of protection reguired, and the level number
associated with the resource.

The EN{ guota indicates the total number of reguests that can be
outstanding for the wuser at any given time. Any reguest that would
cause the guota to be eéxceeded results in am error. The user cannot
use the EHNQ facility if the guota is set to zero.

The resource nameé has a pesning agreed vupon by all users of the
gpecific resource and serves as an identifier of the resource. The
system makes no association between the rescurce name and the physical
regource itself; it is the responsibility of the user's process to
make that association. The system merely uses the resource name to
process reguests and handles different resource names as reguests for
different resources.

The resource name has two parts, In most cases, the first part is the
JFN of the file being accessed. Before using the ENQ facility, the
user must initialize the file wusing the appropriate monitor calls
{refer to Section 3.1). The second part of the name is a modifier,
which is either a pointer to a string or a 33-bit user code. The
string uniguely identifies the resource to all users. The pointer can
either be a standard byte pointer or be in the form

=1, ,ADR
where ADR is the location of the left=justified ASCIEZ text string.
The 33-bit user code similarly identifies the resource by representing

an item such &% a record number or block number. The EMNQ facility
congiders these modifiers as logical strings and does not check for

=1

ENQUEUE/DEQUEUE FACILITY

cooperation among the users. Thus, wsers must be careful when
assigning these modifiers to prevent the occurrence of two different
modifiers referring to the same resource.

The type of protection desired for the resource is indicated by the
first part of the resource nameé. This part of the name can be one of
four values. When the user specifies the JFM of the desired file, the
file is subject to the standard access protection of the system. This
is the most typical case. When the user specifies -1 instead of a
JFH, it means that resources defined within a job are to be accessed
only by processes of that job. Other jobs reguesting resources of the
game name are guewed to a different resource. When the user specifies
=2 instead of a JFN, it means that the rescurce can be accessed by any
job om the system. A process must have bit SCREHQ enabled in its
capability word to specify this type of protection. If the user
specifies -3 instead of a JPFH, it means the same type of protection as
that given when -2 is specified. However, this is reserved for the
monitor and reguires that the process have WHEEL or OPERATOR

capability enabled. Quotas are not checked when =3 is given instead
cf a JFHM.

In addition to specifying the resource name and type of protection,
the wuser also assigns a level number to each resource. The use of
level numbers prevents the occurrence of a deadly embrace situation:
the situation where two orf more processes are walting for each to
complete, but none of the processes can obtain a lock on the resource
it needs for completion. This situation is represented by Figure 6-=1.

PTH-I:‘H
Waiting a
Rponece Process
B Had
Wakting tor'8
Rasource Process
G Had
wnmgﬁﬁ
W
RAegourcs Process
A Han
-

Figure 6-1 Deadly Embrace Situation

Each process is in the gueue waiting for the resource it needs, but no
request is being serviced because the desired resources are
unavailable.

The use of level numbers forces cooperating processes to order their
use of resources by reguirina that processes regquest resources inm amn
ascending numerical order and that all processes assign the same level
number ko & specific rescurce. This means that the order in which
CESOUECES are reguested is the same for all processes and therefore,
reguests for the first resource will always precede reguests for the
second one.

ENQUEUE/DEQUEUE FACILITY

I1f both of the above reguirements are not met, the process reguesting

the resource receives an ereor, unless the spproprisate flag bit is set
(cefer to Section 6.4.1.2),; and the reguest is not placed in the
gueue. Thus, instead of waiting for a resource it will mever get, the
process is informed immediately that the rescurce is not available.

6.4 USING THE EMQ/DEQ FACILITY

There are three monitor calls available for the ENQ/DEQ facility:
ENQR, to reguest wuse of & resource; DEQY; to release a lock on a
resource; and ENQCY%, to ocbtain information about the guewves and to
speclfy access to these gueues.

€.4.1 FReguesting Use Of A Resource

The user issues the ENQR monitor call to place a reguest in the gueue
associated with the desired resource. This call is used to specify
the resource name, level number, and type of protection reguired.

A single EWQ% monitor call can be wsed to feguest any number of
regsources. In fact, when desiring multiple resources,; the user should
reguest all of them im one call., This method of reguesting resoUEces
guarantees that the user gets elither none or all of the resources
requested because the ENQ/DEQ facility never allocates only some of
the resources Specified in one call. Because all resources in a
gingle call must be available at the same time, the first user
regquesting a resource (i.e,, the first wuser in the gueue for the
resource) may not be the first uvser obtaining it if other resources in
the reguest are currently not available.

A single call for multiple resources is not functionally the same as a
geries of single calls of those resources. In & single call, the
entire reguest is rejected if an error is returned for one of the

regources specified. In & series of single calls, each reguest that
did not return am error will be gueued.

The END% monitor call accepts two words of arguments in ACL and ACZ.

The first word <ontains the code of the desired function, and the
second contains the address of the argument block. Thus,

ACl: function code

AC2: address of argument block

6:.4.1.1 ENQ% Functions - The functions that can be reguested in the
ENO% call are described in Table 6-1.

ENQUEUE/DEQUEUE FACILITY

Table &=1
ENQ% Functions

Code Symbol Meaning

0 ENQBL Queue Ethe reguests and block the
process wntil all reguested locks are
acguired. This function returns an
errer code only if the ENQR call is
not correctly specified.

1 - ENQAA Queue the reguests and acguire the

locks nn1¥ if all reguested resources
are imsediately available. If the
resources are available, all will be
allocated to the process. If any one
of the respurces is mot awvailable, no
regquests are oguewed, no locks are
acguired, and an error code is
returned in ACL.

2 <ERQSI Queue the reguests for all specified
FESOUECES. I all resources are
available, this function is identical
Lo the ENQBEL function. If all
E@EOUL ChHSE are nok immediately
available, the reguests are gueued,
and & software interrupt is generated
when all regquested resources have been
given to the process.

E| « EHQMA Change the ownership access of a
previously=gqueued reguest (refer to
bit EN%SHE below). The access for

¢ach lock in this regquest is compared
with the access for each lock in the
peguest already gueued. Ho action is
taken if the two accesses are the
same . If the access in this reguest
iz shared and the access in the
previous reguest iz exclusive, the
ownership access is changed to shared
access. Otherwise, an error is
returned 1f:

1. The process tries to change
the ownership aceess from
shared to exclusive. If this
is desired, the process should
issue a DEQ% monitor call for
the shared reguest and then
izsue ancther ENQ% monitor
call for exclusive ownership.

6=6

ENQUEUE/DEQUEUE FACILITY

Table 6-1 (Cont.)
ENQ% Functions

Code

Symbol

Meaning

« ENOMA
(Cont,)

2. Any one of the specified locks

does not have & pending
regquest.

3. Any one of the specified locks

iz a pooled resource (refer to
Sectionm 6.4.1.2).

Each lock specified is checked, and
the access is changed for all leocks
that were correctly given. On
receiving an error, the process
should issue the ENQCY monitor call
to determine the current state of
each lock (refer to Section 6.4.3).

6.4.1.2

Word

EHNQ% Arqueent Elock = The format of the argument block
described below.

g 9 17 14 3

is

]

I Humber of locks [Length of block

Pointer to string or user code

! Humber in pool ! Humber reguested

l ---
N .

Y Repetition of each lock specification

-
! Flaas 1Leyel number ! JFN, =1, =2, or -3

l=mmcc e cmm s s mss s s s s s s s ————————— 1
! Pointer to string or user code

e e e e e e s s s e e e s s s s n e -
1 Number in pool ! Humber reguested

!------:--.--------i-i--'--IIIIlIIIIIII!“IEII!IIIIIII!I]

Symbol

« EHQLN

+ENQID

Meaning

Humber of locks being reguested in the left
half, and length of argument block
{including this word) im the right half.

Humber of software interrupt chanmnel inm the
left half, amnd reguest ID in the right
half.

ENQUEUE/DEQUEUE FACILITY

Word Symbol Meaning

2 « ENQLW Flags and level number in the left half, and
JFE, =1, =2 or =3 (refer to Section 6.3) in
the right half.

3 «ERQULC PFointer to string orf 5B2433=-bit user code
jcefer to Sectiom 6.3).

4 -ERQRS Wumber of resources in the pool im the left
half, and number of resources reguested in
the right half.

Words LENQLV, .ENQUC, and .ENORS (words 2 through 4) are repeated for

each Jlock being reguested. These three words are called the lock
specification.

Software Interrupts

The software interrupt system is used in conjunction with the .ENQS5I
function (refer to Sectionm 6.4.1.1). If all locks are not available
when the user reguests them, the .EN{SI function causes a software
interrupt to be generated when the locks become available. The wser
specifies the software chanmel on which to receive the interrupt by
placing the channel number in the left half of word .ENQID in the
argument block.

When the user is waiting for more than one lock to become available,
he will receive an interrupt when the last lock is awvailable. If he
desires to be informed as each lock becomes available, he can assign
the locks to separate channels by issuing multiple EHQ% calls. The
availability of each lock will then be indicated by the occcurrence of
an interrupt on each channel.

When the user reguests the .ENQSI function, he must initialize the
interrupt system first or else an interrupt will not be generated when
the locks become avallable (refer to Chapter 4).

Eeguest ID

The 18-bit reguest ID is currently not used by the system, but is

stored for use by the process. Thus, the ?tncess can supply an ID to
use as identification for the reguest. Thiz ID is usefu on the
LDEQID fumction of the DEQ monitor call (refer to Section 6.4.2.1).

&=8

ENQUEUE/DEQUEUE FACILITY

Flags and Level Numbers

The left half of the first word of each lock specification (.ENQLV)

used for the following flags.

Bit Symbol
0 ERNY5HE
1 EREBLN
-8
9=17 ERLLVL

Meaning
Ownecrship for this resource is to be
shared. If this bit is not on,
ownership for this resource is to be

exclugive.

Ignore the level number assoclated
with this resource. If this bit is
Zet, sSeguencing erCOLCS im level
numbers are not considered fatal, and

execution of the call continues.

On successful completion of the call,
ACl containg either am error code if a

segquencing ercor occurred, or zero Lf
a seguencing ecror did not occur.
WARNING
A deadly embrace situvation may
occur when level numbers arce
not used. Use of these
numbers guarantees that such a
situwation cannokt arise; for
this reason bit ENRBLN should
not be set.
Reserved for DEC.
Level number associated with this
resource. This number is specified by
the user and must be agreed upon by
all wusers of the resource. In order
to eliminate a deadly embrace
slituation, USErs must request
resources in numerically increasing
order.

is

The reguest is not gueued, and an error is given, if EN%BLN is not set

and

1. The user reguests a resource with a level number less than or

egual to the

far.

2. The level number of this regquest does

not match the

number supplied in previous reguests for this resource.

6=49

highest numbered resource he has regquested 5o

level

ENQUEUE/DEQUEUE FACILITY

Pooled Resources

Word .ENQRS of each lock specification is used ko allocate multiple
copies from a pool of identical resources. Bit EN&SHR, indicatimg
shared ownership, is meaningless for pooled resources because each
resoutce in the pool can be owned by only one process at a time. A
Process CAN Own One Or more resources im the pool; however, it cannot
own more than there are in the pool or more than there are unowned in
the pool.

The left half of word .EHQRE contains the total number of resources
existing in the pool. This number is previously agreed upom by all
users of the pooled resource. The first wuser who reguests the
resource sets this number, and all subseguent reguests must specify
the same number or an error 18 given.

The right half of word .EHNQRS contains the number of resources being
reguested by this process. This number must be greater tham zero if a
pocl of respurces exists and cannot be areater than the number in the
left half. This means that if a pool of rescurces exists, the user
must reguest at least one resource, but cannot reguest more than are
in the pool.

Once the number of pooled resources is determined, the resources are
allocated wntil the pool is depleted or until a reguest specifies more
regsources than are cuccently available. In the latter case, the user
making the reguest is not given any rescurces until his entire reguest
can be satisfied. Subgegquent reguests from other users are not
granted until this reguest is satisfied even though there may be
enough resources to sSatisfy these subseguent reguests. AS users
release their resources, the resources are returned to the pool. When
all resources have been returned, they cease to exist, and the next
reguest completely redefines the number of resources in the new pool.

The system assumes that the resource is in a pool if the left half of
word LENQRE of the lock specification is nonzero. Thus the user
should set the left half to zero if only one resource of a specific
type exists, If this iz the case; then the right half of this word is
a number defiming the group of users who can simultanesusly share the
resgurce. This means that when the resource is allocated to a user
for shared ownership, only other users in the same group will be
allowed access to the resource. The use of sharer groups restricts
access to a resource to & set of processes smaller than the set for
ghared ownership (which is sharer group 0) but larger than the set for
exclusive ownership. (Refer to Section 6.5% for more information on
sharer groups).

6.4.2 Feleasing A Resource

The uger issues the DEQE% monitor call to remove a reguest from the
gueue assoclated with a resource. The reguest is removed whether or
not the user actually owns a lock on the resource or is only waiting
in the gueuve for the resource.

The DEQ%® monitor call can be used to remove any number of reguests
from the gueues. If one of the reguests cannot be removed, the
deguepeing procedure continues until all lock specifications have been
processed. An error code is then returned for the last reguest found
that could not be degueued. The process canm then execute the EHQCE
call (refer to Section 6.4.3) to determine the status of each lock.
Thus, unlike the operation of the ENQ% call, the DEQ%E call will

6=10

ENQUEUE /DEQUEUE FACILITY

degueue a5 many resources as it can, even if an error is returned for
one of the lock specifications in the argument block. However, when a
ugser attempts to degueue more pooled resources than he originally
allocated, an error code is returned and none of the resources are

degueved.

The DEQ% monitor call accepts two words of arguments in ACL amd AC2.
The first word contains the code for the desired function, and the
second word contains the address of the argqument block. Thus,

ACl: function code

AC2Z: address of argueent block

6.4.2.1 DEQ% Functions = The DEQ% functions are described in Table

Table 6-2
DEQR Functions

Code Symbaol Meaning

il - DEQDR Remove the specified reguests from the

gueues. This function iz the only one
that reguires an argument block.

1 « DEQLA Bemove 2l1)l recguests for this process
from the gueues. This action is taken
on a RESET monitor call. AR error
code iz returned if this process has
nokt reguested any resources (i.e., 1if
this process has not issued an ENQR) .

2 +DEQID Remove all reguests that correspond to
the specified regquest identifier.
When this function is specified, the
user must place the 18-bit reguest ID
in ACZ2 on the DEQ% call. This
function allows the user to release a
class of lockse im one c¢call without
itemizing each lock in an argument
bleck. The function should be used
when dequeweing in one call the same
locks that were enguewed in one call.
For example, with this function the
uger can specify the ID to be the same
as the JFW uwsed in the ENQR® call and
thus remove all locks to that file at
anoe .

ERQUEUE /DEQUEUE FACILITY

6.4,2.2 DEQ% Argument Block = The format of the argument block for
function .DEQDR is described below.

Word Symbol Meaning

1] « EMQLM Humber of locks being reguested in the left

half, and 1length of argument block
{including this word) in the right half.

1 LENQID Husber of software interrupt channel in the
left half, and reguest ID imn the right
half.

2 «ENQLV Flags and level number in the left half,

and JFM, =1, =2 or =1 (refer to Section
6.3) im the right half.

3 ERQUC Pointer to string or 5B2+33-bit user code
(refer to Section 6.3).

4 .ENORS Humber of resources in the pool in the left
half, and number of resources reguested in
the right half.

Words .EWQLV, .ENQUC, and .ENQRS (words 2 through 4) are repeated for

each reguest being degueued. These three words are called the lock
specification.

6.4.3 Obtaining Information About Resocurces

The uwser issues the ENQC% monitor call to obtain information about the
current Status of the given resources. This call can alsoe be used by
privileged users to perform variows weility fuenctions on the gueue
structure, The format of the ENQCY call is different for these two
uses. (Refer to the TOBS-20 Monitor Calls Reference Manual for the
explanation of the privileged use of the ENQCR call.)

The ENQC% monitor call accepts three words of arguments in ACl through
AC3:

ACl: function code (.ENQCS)

AC2: address of argument block

AC3: address of area to receive status information
The format of the argument block is identical to the format of the
ENOY¥ and DEQ% arqument blocks. The area in which the status is to be

returned should be three times as long as the number of locks
specified in the argument block.

6=12

ENQUEUE/DEQUEUE FACILITY

On successful execution of the ENQCY¥ call, the current status of each
lock specified is returned as a 3=word entry. This 3I=word entry has
the following format.

Il--l--l--l--l.-l--l-l--l--ll-l--ll-ll-ll-ll-l--l!ll-ll-J

1 Flag bits indicating status of lock 1

i Reserved 1 Fegquest ID i

The following flag bits are defined.

Bit Eymbol Meaning
. 1] EMROCE An GrEor has occur red in the
corresponding lock regquest. Bits
18-35 contain the appropriate error
code .,

1 EN®QCO The process issulpg the ENQCR call is
the owner of this lock.

2 ENRQCD The process issuing the ENQCH call is
in the gueue walting for this
resource. This bit will be on when
ENRQCO is on because a reguest remains
in the gueue until a DEQ% call is
giwven.

3 ENSQCX The lock has been allocated for

exclusive ownership. When this bit is
off, there is no way of determining
the number of sharers of the resource.

4 ENRQCE The process issuing the ENQCR call is
in the gQueue waiting for exclusive
ownership to the resource. This bit
will be off if ENRQCQO is off.

5=-8 Reserved for DEC.
8-17 ENWLVL The level number of the resource.
18=-35 EMEJOB The number of the job that owns the
lock. For locks with shared

ownership, this value will be the job
number of one of the owners. Howewver,
this value will be the current job's
number if the curcent job is one of
the owners. If this lock iz not
owned, the value is -1.

If EHRQCE is on, this field contains
the appropriaste error code.

B-13

ENQUEUE/DEQUEUE FACILITY

The 36-bit time stamp indicates the last time a process locked the
respouEce, The time is in the universal date-time standard. If no one
currently has a lock on the resource, this word is zero.

The reguest ID returned in the right half of the third word is either
the reguest ID of the current process 1f that process is in the gueue
or the reguest ID of the owner of the lock.

6.5 SHARER GROUFRS

Processes can specify the sharing of resources by uvsing sharer group
numbers (refer to Section 6.4.1.2). The wse of sharer groups
restricts the ownership for & resource to a set of processes smaller
than the set for shared ownership but larger than the ser for
exclusive ownership.

Sharer group number 0 is used to indicate the group of all cooperating
processes of the resource. This group number is assumed when noe group
is specified in the ENQ% call. To restrict use of the resource, a
group nusber other than 0 must be explicitly specified in the call.

Consider the following example. The resource is the WRITE operation
on a file., There are four types of uses of this resource as shown in
Figure &=2.

Process’ Owe Use of
Ihe Resouice
Bt Allreesd
Wrie S0 Write
Oither
‘e
of e Flesoures
i 2
wirse
Skared, Group 0 ::;Euh““
Hot Aligwed a 4
b Wit Exchusive Ehared, Oeoup 1

Lkl 2

Figure 6-2 Uze of Sharer Groups

In block 1 of the figure, the process owning the lock wishes to allow
all cooperating processes to also lock the resource (i.e., to perform
the WEITE operation). Therefore, im the ENQR® call, the process
specifies the resource can be locked by all cooperating processes. In
block 2 of the figure, the process does not plan on locking the
resource and does not care if other processes lock it. Thus, there is
ne need for the process to use the ENQ/DEQ facility. Im block 3 of
the figure, the process desires to lock the resource exclusively and
does not want other processes to lock it. Thus, the process obtains
exclusive ownership for the resource. In block 4 of the figure, the
process does not want to lock the resource immediately but also does
nét want other processes to lock it becauwse it soon plams to reguest a
lock on the resource. If the process were the only one reguesting
thiz type of use, exclusive ownership would be sufficient, because the
resource would be wvnavailable to others a3 long as the process owned
the lock. However, if other processes desire this same type of use,

6=14

ENQUEUE/DEQUEUE FACILITY

exclusive ownership is not sefficient, because once one process
releages the lock, another process with & different type of uvse could
obtain its own lock. Thus, in this example, sharer group 1 is defined
to include all processes with the same type of use (i.e., all
processes who do not want to lock the resource immediately but alse do
not want other processes to lock it). This elimates the problem of
another user obtaining the resource for a different type of use.

Sharer group 0 should be sufficient for most uses of the ERQSDED
facility. Additional groups should only be needed in those situvations
where & subset of the cooperating processes must have a specific use
of a resource, as in the above example.

&.6 AVOIDING DEADLY EMBRACES

Frocesses can interact in many undesirable ways if improper
communication occurs amasng the processes or if resources are
incorrectly shared. An example of one undesirable sitwation is the
occurrence of a deadly embrace: when two processes are waiting for
each other to complete but neither one can gain access to the resource
it needs for completion. This sitvation can be avoided when processes
consider the following guidelines.

1. Processes should reguest resources at the time they need
them. If possible, processes should reguest resources one at
a time and releage each rescurce before reguesting the next
One .

2. Processes should reguest shared ownership whenever possible.
However, the process should not request shared ownership if
it plans on modifying the resource.

3. When a process needs more than one resource, it should
reguest these resources in one EWQR® call instead of multiple
calls for each resource. The process should also release the

entire set of resources at once with a sinale DEQY call.

4. When the use of one resource depends on the uwuse of a second
one, the process should define the two resources as one in
the ENQ% and DEQ% calls. However, there is no protection of
the resources if they are also reguested separately.

5. Occasionally processes use a set of resources and reguire a
lock on the second resource while retaining the lock on the
first. 1In this case, the order im which the locks are
obtained should be the same for all users of the set of
resources. The same ordering of locks is accomplished by the
processes aﬂsigninq level numbers to each resource. The
regquirements that processes reguest resources inm ascending
numerical order and that all processes use the same level
number for a sSpecific resource ensure that a deadly embrace

gituation will not occur.

6-15

CHAPTER 7
INTEE=FROCESS COMMUNMICATION FACILITY

7.1 OVERVIEW

The Inter-Process Communication Facility (IPCF) allows commumication
among Jjobs and sSysStem processes. This communication occurs when
processes send and receive information im the form of packets. Each
sender and receiver has a Process I. D. (PID) assigned to it for
identification purposes.

When the sender sends a packet of information to another process, the
packet is placed into the receiver's input gueue. The packet remains
in the gueue until the receiver checks the gueue and retrieves the
packet. Instead of periodically checking its input gueue, the
receiver can enable the software interrupt system (refer to Chapter 4)
to generate an interrupt when a packet is placed in its input gueue.

The <SYSTEM>INFO process 15 the information center for the
Inter=Process Communication Facility. This process performs system
functions related to PIDE and names, and any process can reguest these
functions by sending <SYSTEM>INFO a packet.

T.2 QUOTAS

Before wsing IFCF, the uwser must obtain two guotas from the System
administrator: a send packet guota and a receive packet guota. These
guotas designakte, on a per process basis, the number of sSends and
receives that can be ocutstanding at any one time. For example, if the
process has a send guota of two and it has sent two packeks, it cannot
send any more until at least one packet has been retrieved by its
receiver. A send packet guota of two and a receive packet guota of
five are assumed as the standard auotas. If these gquotas are Zero,
the process cannot use IPCFEF.

7.3 PACKETS

Inforsation is transferred inm the form of packets, Each packet is
divided into two portions: & packet descriptor block of four to six
words and a packet data block the length of the message. The format
of the packet is shown in Figure 7=1.

7=1

INTER-PROCESS COMMUNICATION FACILITY

Packet Descriptor Elock

!:--::-::-:t-::-:--l-.:-:--:--.i-HIIIII!I----IIIIIIIIIII]

LIBCFL flags L
e e ————— !
« IFCFS ! FIC of sender I
0 !
+IPCFRE ! FID of receiver |
[!
IFCFP ! length of message 1 address of message 1
! r 1 ADR i
|mmeemccmc e e et e s s s s s s s essssssssme—mem—————————— !
«IPCFD ! sender's connected ! sender's logged in I
1 directory ! directory 1
[i
fIPCEC 1 enabled capabilities of sender |

!--'l--l-----l--l--..-l.-l--l--l--l--l-ll-ll-l!-l--l-----l
Packet Data Block

Il-ll!-l!-ll-ll-l--l--.l-l.--..-----..--..----.l--.l--.-----l.-J

ADER ! mecgage word 1 1

]l-l!-ll!ll!ll!ll-l.-l-----l--.---.l--..-----.-l.-l.-.l--.l--l

1 message word n 1

J--l---l--l--l--l-l.-l.----l.----l.-------.-ll-----.-l.-l

Figure T-1 IFCF Packet

T.3.1 Flags

There are two types of flags that canm be set in word JIPCFL of the
packet descriptor block. The flags in the left half of the word arce
instructions to IPCF for packet communication, and the flags inm the
right half are descriptions of the Jdats message. The flags im the
right half are returned as part of the associated variable (refer to

Section 7.4.2). The packet descriptor bleock flage are described in
Table 7-1.

INTER-FROCESS COMMUNICATION FACILITY

Table 7=1

Packet Descriptor Block Flags

Bit

Symbol

Meaning

B-17
18

19

20-23

IFWCFB

IPRCFS

IPRCFR

IPRCFO

IPRTTL

IPRCPD

IPRJHE

IERMOA

IFWCFP

IFYCFV

Do not bleck the process if there are no
messages in the gueue. If this bit is on,
the process receives an error if there are
no mesSsages.

Use the PID obtained from the addregs in
word LJIPCFS of the packet descriptor block
as the sender's PID.

Use the PID obtained from the address in
word JIPCFE of the packet descriptor block
as the receiver's FID.

Allow the process one send above the send
quota. (The standacd Send guota is Ewo.)

Truncate the message if it iz longer than
the area reserved for it in the packet data
block. If this bit is not on, the process
receives an error if the message is too

long.

Create a FID to use as the sender's PID.
The PID created 15 returned in word .IPCFS
of the packet descriptor block.

Make the PID created be permanent until the
job logs out ({if beth bits IPRCPD and
IPRJWF are on). Make the PID created be
temporarcy wuntil the process executes a
RESET% monitor call (if bit IPICPD is on
and bit IPRJWPF is not on). If bit IPRCED
is not on, bit IPYJWPF is ignored.

Do not allow other processes to use the FPID
created when bit IFRCPD is om. If bit
IPACFD is not on, bit IFANOA is ignored.

Eeserved for DEC.

The packet is privileged. This bit can be

set only by a process with WHEEL capability

enabled. Eefer to the TOPS=20 Monitor
Eeference Mapual for @ description of

this bit.

The packet is a page of 512 (decimal) words
of data.

Eeserved for DEC.

INTER-FROCESS COMMUNICATION FACILITY

Table T=1 (Cont.}
Packet Descriptor Block Flags

Bit Symbol Meaning
24=29 IPRCFE Field for error code returned from <SYSTEM>
INFO.
Code Symbol Meaning
15 LIPCPI insufficient privileges
18 LIPCUF invalid function

67 IPCEN <S5YSTEM>INFO needs name

72 LIPCFF <SYSTEM»INFO froe apace
exhausted

T4 LIFCEF FID has no name or 18 invalid

15 .IBFCON duplicate name has been
specified

76 LIPCHN unknown name has bean
specified

77 LIFCEN invalid name has been
specified

30=-32 IFRCEFC System and sender code. This code can be
set only by a process with WHEEL capability
enabled, but the monitor will eeturn the
code 80 a nonprivileged process can examine
it.

Code Symbol Meaning

1 LIBCCC Sent by <SYSTEM>IBCF

2 IPCCF Sent by system=wide
<SYSTEM>INFO
3 «IPCCP Sent by receiver's
CEYSTEM>INFO
33-35 IPYCFH Field for special messages. This code can

be set only by a process with WHEEL
capability enabled, but the monitor will
return the code S0 that a nonprivileged
Process Ccan examine it.

Code Symbol Heaning

1 .IPCFN Process' input gueue contains
a packet that could not be
delivered to intended PID.

INTER-FPROCESS COMMUNICATION FACILITY

7.3.2 PIDs

Any process that wants to send or receive a packet must cbtain a FPID.
The process can obtain a FID by sending a packet to <S5YSTEM>INFO

reguesting that a PID be assigned. The process must alse include a
symbolic name that is to be associated with the assigned PID.

The symbolic name can be a maximum of 29 characters and can contain
any characters as long as it is tecrminated by a zero word. There
should be mutual vnderstanding among processes as to the symbolic
names used in order to initiate communication. Once the name is
defined, any process referring to that name must specify it exactly
character for character.

Before & process can send a packet, it must know the receiver's
symbolic name or PID, If only the receiver's name is known, the
sender must ask <SY¥STEM>INFO for the FID associated with the name,
since all communication is via PIDs.

The association between a PID and a name is broken:
l. Om a RESETY monitor call.
2. When the process is killed or the job logs off the system.

3. When a reguest to disassociate the FID from the name iz made
to <SYSTEM>INFO.

CSYSTEM>INFO will not allow a name already associated with a FPID to be
assigned again wunless the owner of the name makes the reguest. Hor
will <S¥STEM>INFO assign & PID once it has been wused. This actionm
protects against messages being sent to the wrong receiver by
accident.

The PIDs of the sender and the receliver are indicated by words LIPCFS
and .IPCFR, respectively, of the packet descriptor block.

7.3.3 Length And Address Of Packet Data Block

Word .IPCFP of the packet descriptor block contains the length and the
beginning address of the message. The length specified is one of two
types, depending on the type of message (refer to Sectiom 7.3.5). If
the message is a short-form message, the length is the actual word
length of the message. If the message iz a long-form message, the
length is 1000 {octal) words, i.e., one page.

The address specified is either an address or a page number, depending
on the type of message (refer to Section 7.3.5). When a message is
sent, it is taken from this address. When a message 15 received, it
is placed in this address.

INTER-PROCESS COMMOUNICATION FACILITY

T.3.4 Directories And Capabilities

Words .IPCFD and .IPCFC describe the sender at the time the message
wag sent and are used by the receiver to wvalidate messages sent to it.
These two words are not used when a message is sent, and 1f the sender
of the packet supplies them, they are ignored. However, when a
message is received, if the receiver of the packet has reserved space
for these words in the packet descriptor block, the system supplies
the appropriate values of the sender of the packet. The receiver of
the packet does not have to reserve these words 1f 1t 15 not
interested in knowing the sender's directories and capabilities.

7.3.5 Packet Data Block

The packet data bleock contains the message being sent or received.
The message can be elther & short-form message or & long-form message.

A short=form message is one to n words long, where m is defined by the
installation. {Usually, n is assumed to be 10 words.}) Wwhen a
gshort=form message is sent or received, word IPCFP of the packet
descriptoer block contains the actual word length of the message in the
left half and the address of the first word of the message in the
right half. A process always uses the short form when sending
mesgages to <SYSTEM>INFO.

A long=form message is one page in length (1000 octal words). Whenm a
long-form message is sent or received, word .IPCFP of the packet
descriptor block contains 1000 (octal) in the left half and the page
number of the message in the right half. To send and receive a
long-form message, both the sender and receiver must have bit IPRCFV
(bit 19) set in the first word of the packet descriptor block, or else
an error code is returned.

7.4 SENDING AND RECEIVING MESSAGES

To send & message, the sending process must set up the first four
words of the packet descriptor block. The process then executes the
HSEWND% monitor call. After execution of this call, the packet is sent
to the intended receiver's input gueue,

To receive a message, the receiving process must also set up the first
four words of the packet descriptor block. The last two words for the
directories and capabilities of the sender can be supplied, and the
system will fill imn the appropriate values. The process then executes
the MEECV monitor call. After execution of this call, a packet is
retrieved from the receiver's input gueue., The input gueue is emptied
on a first-message-in, first-message-put basis.

INTER-PROCESS COMMUNICATION FACILITY

7.4.1 Bending A Packet

The MSEND%® monitor call is used to send a message wia IPBCF. Messages

are inm the form of péckets of information and can be sent to a
specified FID or to the system process <SYSTEM:IMFD. Refer to Section
7.5 for information on Sending messages bo <SYSTEM:»INFOD.

The MSEND% call accepts two words of arguments. The length of the
packet descriptor bleck is given in ACl, and the beginning address of
the packet descriptor block is given in ACZ. Thus,

ACl: length of packet descriptor block. The length cannot be
less than 4.

AC2: address of packet descriptor block

The packet descriptor block consists of the following four words:

« IPCFL Flags

- IFCFS Sender's PID

- IFCFR Feceiver's FID

« IFCFP Pointer to packet data block containing the

message being sent.

Refer to Section 7.3 for the detalls on the packet descriptor and
packet data blocks.

The flags that are meaningful when sending a packet are described

below. Refer te Table 7=-1 for the complete list of flag bits.

Table 7-2
Flags Meaningful on & MSENDR Call

Bit Symbol Heaning

1 IFRCFES The sender's PID is given in word .IPCFS of
the packet descripter block.

2 IFRCFR The receiver's PID is given in word .IPCFR
of the packet descriptor block.

3 IFRCFO Allow the sender to send one message above
its send guota.

5 IFRCFD Create a PID for the sender and returm it
in word LIPCFS of the packet descriptor
block. The PID created is to be persanent

and useable by other processes according to
the setting of bits IPRJWP and IPRMOA.

L IFLJWF The FID created is to be job wide and
permanent wntil the job logs out. I this
bit is not cn, the FID created is to be
temporacy until the process executes the
RESET monitor call.

7 IFRNOA The FICD created is not to be wused by other
proCesses.

INTER=PROCESS COMMUMICATION FACILITY

Table 7=2 {(Cont.]
Flags Meaningful on a HMSENDR® Call

Bit Symbol Meaning

18 IPRCFP The message being sent is privileged (refer
to the TOFS-20 Monitor fCalls PReference
Manual) .

18 IERCFV The message being sent is a long-form
message (i.e., a page). The page the
mezsage is being sent to cannot be a sharea
page; it must be a private page.

When bit IPACFS i3 on in the flag word, the sender's PID is taken from
word LIPCFS of the packet descriptor block. This word is zero if bit
IPSCPC is on in the flag word, indicating that & PID is to be created
for the sender, In thi=s case, the FID created is returned in word
+IFCF5.

When bit IPRCFR is on in the flag word, the receiver's FID is taken
from word LIPCFE of the packet descriptor block. If this word is 0,
then the receiver of the message is <SYSTEM>INFO. Fefer to Section
7.5 for information on sending messages to <SYSTEM>INFO.

Oon successful execution of the MSENDR monitor call, the packet is sent

te the receiver's input gueue. Word .IFCFS of the packet descriptor
bleck is updated with the sender's FPID. Execution of the user's
program continues at the second location after the MS5END call.

If execution of the MSENDE call is not successful, the message iz not
gsent, and an error code is returned in ACLl. The execution of the
user's program continues at the imstruction following the MSEHD% call.

7.4.2 PReceiving A Packet

The MRECVE® monitor call is used to retrieve a message from the

process" input gueue. Before a process can retrieve a message, it
must Know if the message 15 a long-form message and alsc must set up a
packet desScriptor block.

The MRECY% monitor call accepts two words of arguments. The length of
the packet descriptor block is ?iuen in ACl, and the beginning address
of the packet descriptor block 1s given in AC2. Thus,

ACl: length of packet descriptor block. The length cannot be
less than 4.

AC2: address of packet descriptor block

INTER=-FPROCESS COMMUNICATION FACILITY

The packet descriptor block cam consist of the following =ix words.
The last two words are optional, amd if supplied by the receiver, the
values of the sender will be filled in by the system.

- I1FCFL Flags

- IPCFS Sender'"s FID

« IPCFR Receiver's PID

« IPCFP Fointer to packet data block where the message is
to be placed.

« IFCFD connected and logged-in directories of the sender.

« IPCFC Enabled capabilities of the sender.

Fefer to Section 7.3 for the details on the packet descriptor and
packet data blocks.

The flags that are meaningful when receiving a packet are described
below. Refer to Table 7=1 for the complete list of flag bits.

Table 7-3
Flags Meaningful om a MRECVE Call

Bit symbol Heaning

1] IFWCFB If there are no packets in the receiver's
input gueue, do not block the process and
return an ercor code 1f the gqueue is empty.
If this bit iz not on, the process walts
until & packet arcives, 1f the gueue is

empty.

2 IFRCFR The receiver's PID is given in word .IFCPR
of the packet descriptor block.

4 IPRTTL Truncate the message if it iz larger than
the &pace reserved for it im the packet
data block. If this bit is not on and the
message is too large, an error code is
returned and no message is received.

1% IFRCEWV The message is expected to be a long-form
message (i.e., a pagel. The page the
message 15 being stored inkte cannet be a
shared page; it must be a private page.

The information in word .IPCFS is not supplied by the receiver when
the HMEECVE call is executed. The system fills in the PID of the
sender of the packet when the packet is retrieved.

Word .IBCFR is supplied by the receiver., If bit IPYCFR is om in the
flag word, then the PID receiving the packet is taken from word .IFCFR
of the packet descriptor block., If bit IPRCFR iz not on im the flag
word, then word .IPCFE contains either =1, to receive a packet for any
PID belonging to this process, or =2, to receive a packet for any FID
belonging to this job. When -1 or -2 is given, packets are not
received in any particular order except that packets from a specific
FID are received im the order in which they were sent. Any other
values in this word cause an error code to be returned.

INTER-FROCESS COMMUNICATION FACILITY

The information in words .IPCFD and .IPCFC is also not supplied by the
receiver. If these two words have been specified by the receiver, the
system fills in the information when the packet is retrieved. wWord
.IPFCFO contains the sender's conrected directory inm the left half and
the sender's loagged-in directory in the right half. Word .IFCFC
contains the enabled capabilities of the sender. These words describe
the sender at the time the message was sent.

On successful execution of the MRECVE monitor call, the packet is
retrieved and placed into the packet data block as indicated by word
 IPCFP of the packet descriptor block. ACl contains the length of the
next packet in the gquewe in the left half and flags from the next
packet in the right half (zee below). This word returmed in ACl 1is
called the associated wvariable of the next packet inm the gueuve. If
there is not another packet in the gueue, ACl contains zero.
Execution of the user's program continues at the second instruction
after the MRECVE call.

The flags returned in the right half of ACl on successful execution of
the MRECVE monitor call are described below.

Bit Symbol Meaning

In-32 IFRCFC System and sender code, Set only by a
privileged process. The packet was sent by
<SYSTEM>IFCF if the code is 1(.IFCCC). The
packet Was sent by the system=-wide
CSYSTEM>INFO if the code is 2(.IFCCF). The
packet WaE sent by the receiver's
<EYSTEM>INFO if the code is 3(.IPCCP).

33=35 IFRCFH Field for return of special messages. If
the field contains 1(.IPCFH}, then the
process' input gueue contains a packet that
was Sent to another PID, but was returned
to the sender because it could not be

delivered.

If execution of the MRECV% call is not successful, a packet 1is not

cetrieved, and an error code is returned in ACl. The execution of the
user's program continues at the instruction following the MRECVE call.

7.5 SENDING MESSAGES TO <£SYSTEM:INFO

The <SYSTEM>INFD process is the central informationm utility fer IPCF.
It performs functions associated with names and PIDs, such as,
assigning a PID or a name or returning a name associated with a PID.

& process can reguest functions to be perforsmed by <SYSTEM>INFO by

executing the MSENDY wmonitor call (refer to Section 7.4.1). The
message portion of the packet (i.e., the packet data block] sent to

¢EYSTEM>INFO contains the reguest being made. In other words, the
total reguest to <SYSTEM>INFD iz a packet consisting of a packet
descriptor block and a packet data block containing the reguest.

T=10

INTER-FROCESS COMMUNICATION FACILITY
Packet Descriptor Block

! flag word !

! sender's PID !

T U P —— ||

! pointer to peguest I

lI-l-III!IIII--biiliih.liﬁi-.--.--.--.---:-:--:--t----l-!

Packet Data Block

1I-l.-l.-l.--FII-IiII!IthIIl.--.--.--'-liIIIIIIIIIIIIII!
1 code H function !

! function argument I

Fefer to Section 7.4.]1 for the descriptions of the words in the packet
descriptor block. The receiver's PID (word .IPCFR) is 0 when sending
a packet to <SYSTEM>INFO.

7.5.1 PFormat Of <SYSTEM>INFOQ Regquests

Az mentioned previouwsly, the packet data block (i.e., the message
portion) of the packet contains the reguest to <SYSTEM>INFOD.

The first word (word .IPCIO) contains a user-defined code in the left
half and the function being reguested in the right half. The
user-defined code is used to associate the response from <SYSTEM>INFO
with the correct reguest. The functions that the process can reguest
of <SY¥YSTEM>INFO are described in Table 7-4.

The second word (word .IFCI1l) contains a PID associated with a process
that is to receive a duplicate of any response from <SYSTEM>IWNFO. If
this word is zero, the response from <SYSTEM>INFO is sent only te the
PrOCEsSS makinq the reguest.

The third word (word .IPCIZ) contaims the argument for the function

gpecified in the right half of word .IPCIO. The argument is different
depending on the function being reguested. The arguments for the

functions are described im Table 7T-4.

INTER-PROCESS COMMUNICATION FACILITY

Table T7=4
<SYSTEM>INFO Functions and Arguments

Function Argument Heaning

SIPCIW name BEeturn the PID associated with the

given name (refer to Section 7.3.2 for
the desceiption of the name).

LIBCIG PID Beturn the name associated with the
given PID.
LIFCII name imn Assign the given name to the FPID
ASCIZ associated with the process making the

regquest. The PID is permanent 1f
IP%JWP was set in the flag word when
the PID was originally created (refer

to Table 7-1).

7.5.2 Format Of <SYSTEM:INFD Responses

Responses [rom <SYSTEM>INFD are in the form of a packet sent to the

rocess that made the request. A copy of the response is sent to the
ID given in word .IBCI1, if any.

The message portion (i.e., the packet data block] of the packet
contains the response from <SYSTEM>INFO. The format of this response
is

! code ! function !

! responese !

The first word (word .IFCIO0) contains the uwser-defined code in the
left half and the functiom that was reguested in the right half.
These values are copied from the wvalues given in the reguest.

The second and third words (words LJIPCI1 and .IPCIZ) contain the
response from the function reguested of <SYSTEM>INFO. The response 1S

different depending on the function reguested. The responses from the
functions are described in Table 7=5,

INTER-FROCESS COMMURICATION FACILITY

Table 7=5
<EYSTEM>INFD Responses

Function Reguested Response

« IPCIW The PID associated with the name given in
the reguest ls returned In word IPCIL.

LIPCIG The name associated with the PID given in
the reguest is returned in word .IPCIL.

LIFCII Ho response is returned.

7.6 PERFORMING IPFCF UTILITY FUNCTIONS

A process can reguest warious functions to be performed by executing
the MUTILY® moniter call. Some of these functions are enabling and
disabling PIDs, creating amd deleting PIDs, and returning guotas.
Several of the functions that can be reguested are privileged
functions., These are described in the TOPS=-20 Mopnitor Calls Eeference
Hanual.

The MUTIL® monitor call accepts two words of argument. The length of
the argument block is given in ACl, and the beginning address of the
argument block 15 given in ACZ.

The aroument block has the following format:

!-.--.l.-l--ll-ll-l!-l!llllllll!rl!ll-l!-l!-l--t----.--.--J

1 function code

! argument for function

The arguments are different, Jdepending on the function being
reguested. Any walues resulting from the function regquested are

returned in the argument block, starting at the second word.

Table 7-6 describes the functions that can be reguested, the arguments
for the functions, and the values returned from the functions.

INTER-FPROCESS COMMUNICATION FACILITY

Table 7-6
MUTIL® Functions

Funckion Meaning

« MUENE Allow the PID given to receive packets. If the
process executing the call is not the owner of
the PID, the process must be privileged.

Argument
FID

Value Returned
Kone

MUDIS Disable the PID given from receiving packets.
I1f the process executing the call is not the
owner of the FID, the Process must be
privileged.

Argument
FID

Value Beturned
None

+MUGTI Return the PID associated with <SYSTEM>INFO.

Argument

FID or job number
Value Returned

FID of <SYSTEM>INFO

. MUDES Delete the PID given. The process executing the
call must own the FID being deleted.

Argument

FID to be deleted
Value Returned

None

< MUCRE Create a FID for the process or job given. 1f
the job number given is not that of the process
executing the call, the Process must be
privileged. The flag bits that can be specified

are IPEJWP and IPIMOA (refer to Table 7-1 for
their descriptions].

Argqument
flag bits in the left half; and process
handle or job number in the right half

Value Returned
PID that was created

INTER-PROCESS COMMUMICATION FACILITY

Table 7=6 (Comnt.)
MUTILY® Functions

Function Meaning
« MUFOJ Return the number of the job associated with the
FID given.
Argument
FID
Value Returned
Job number associated with PID given
«MUFJP Return all PIDS associated with the job given.
Argument
jeb number or PID belonging ko the job
Values Returned _
Two-word entries for each PID belonging to
the job. The first word of the entry is the
PID, and the second word has biets IPRJWFP and
IPENOA set 1f appropriate (refer to Table
T=1 for the descriptions of these bits).
The list of entries returned is terminated
by a zero word.
«MUFSQ Return the send guota and the receive guota for
the PID given.
Argument
FID
Values Returned
Send guota in bits 18-26 and receive
guota in bits 27=35.
« HUFFP Return all PIDs associated with the process of
the PFID given.
Argument
FID
Values Returned
Two=word entries for each PID belonging Eo
the process. The first word of the entry is
the PID, and the second word has bits IPRJWP
and IPYNOA set if appropriate (refer to
Table 7-1 for the descriptions of these
bits). The 1list of entries returned is
terminated by a zero word.
«MUFPQ Return the maximum number of PIDs allowed for

the job given.

Argqument
Job number or PID belonging to the job

Value Returnead
Humber of FIDs allowed for the job given

=15

INTER-PROCESS COMMUNICATION FACILITY

Table T=6 (Cont.)
MUOTIL% Functions

Function Meaning

- MOgRY Return the packet descriptor block for the next
packet in the gueue of the PID given.

Argument
FID, =1 to return the next descriptor block
for the process, orf =2 to return the next
degcriptor block for the job

Values Returned
Packet descriptor block of next packet inm
queue.

«HUAPF hzsociate the PID given with the process given.

Arguments

FID
praocess handle

Value Returned
Hone

-MUPIC Flace the PID given on the software channel
aiven in order to cause an interrupt to be
generated when & packet iz received in the input
gueuws of the PID aiven.

Argument
FID
channel number, or =1 to remove the given
PID from its current channel
Value Returned
Hone

« HUMES Retuen the maxisum packet size for the PID
given.

Argument
FID
Value Returned
Maximum packet size for PID

On sweccessful completion of the MUTILY monitor call, the function
reguested 15 performed, and any value is returned acre in the argument
block. Execution of the user's program continues at the second
location following the MUTIL% call.

If execution of the MUTILY monitor call is not successful, no
regquested function is performed and am error code is returnmed in ACL.
Execution of the user's program continues at the location following
the MUTIL% call.

T=16

CHAPTER 4
USING EXTENDED ADDRESSIMNG

The term "extended addressing™ refers to the size of the addresses
that TOP5-20 wuses on the DECSYSTEM-20 KL processor (model B). Older
versions of TOPS-20 (Release 4 and before)l used half-word (l1B-bit)
addresses; newer wversions (Release 5 and after}) use full=-word
(30-bit) addresses.

This chapter discusses the two main activities associated with us=ing
TOP5-20 monitor calls with extended addressing: writing new programs
for execution in sections of memory other than section zeroc, and
converting existing programs so that they can be executed in sections
other than section zero. This chapter alse contains information on
hardware instructions and macros uwuseful bto MACRD programmers who use
extended addressing.

The discussion in this chapter depends heavily on the material in the
DECsystem-10/DECSYSTEM-20 Processor FEeference Manual. Refer to that
manual for a description of the format of 30-bit addresses, the

algorithm the processor uses to calculate effective addresses, and the
way that individuval machine instructions work.

B.1 OVERVIEW

The TOPS=20 address space is made uwup of 32 (decimal) sections. Each
gection contains 512K pages. An 18-bit address, called a local or
gection-relative address, can reference any word in a given section.
A 30=-bit, or global, address can reference any word im any section of
mMEMOLY

In contrast, TOPS5-20 provided am l1B-bit, 256K-word address space in
release 4 and earlier. This means that:

The Program Counter PC register was 1B bits

e For each instruction executed, the first action taken was the
computation of an 18-bit effective address. The algorithm
for calculating the effective address (including indexing and
indirecting rules) was the same for all imstructions.

The DECsystem-20 supports 30-bit addressing. But the virtuwal address
gpace of TOFS=20 is 32 sections of 256K words each, thus, because
section numbers longer than 5 bits are illegal, the largest legal
address is 23 bits leong. When addressing data, you can view this
address Space as oneé largae memory Aaréa.

TOPS=20 Version 5 B-1 April 1982

USING EXTENDED ADDRESSING

From the point of wview of program execution, however, memory is
divided into 32 discrete sections. A program can have code in more
than one sectiom of memory, and it can execute that code (assuming the
constraints discussed below), but it must change sections explicitly.,
as discussed below.

Compatibility for existing pregrams i3 provided by section 0. A
proaram running in section 0 behaves exactly as though it were being

executed on & system without extended addressing.

E.2 ADDRESSING MEMORY AND AC'S

The PC contains a section field and a word field. When an instruction
isz executed, only the word field is incremented. Column overflow is
never carcied from the word field to the section field. If the last
word of 8 section is executed, and it is not a jump instruction, then
the next instruction is fetched from word 0 of the same section. Thus
a program can only change sections explicitly, by means of a PUSHJ,
JRET, or XJRSTF instruction, and only an XJRSTF can change control
from section 0 to another section.

Because a whole word is reguired to held a 30-bit address, the FC is a
two=word entity. The flag bits are in word one, and the figure below
represents the second word. Figure £=1 shows the format of the

address fields of the PC.

I un= | section 1 word within the I
1 used | number 1 section I

S

Figure 8#-1 Program Counter Address Fields

The word (word=within-section) field consists of 18 bits and thus
represents a 256K-word address space similar to the single-section
address space of release 4 and earlier. The section number field is
12 bits, of which only the right-hand 5 bits are wsed. This provides
room to address 32 separate sections, each of 256K words.

Each section is further divided into pages of 512 words, Jjust as in
earlier releases, The paging facilities allow the monitor to
determine the existence and protection of each section.

The PC's section field determines what section a program is said to be
running if. If the section field contains a zero, the program is
running in section 0. Heo extended addressing features are available
to a program running in section 0. All addresses, when calculated
from section zero, are considered to be 18 bits.

This means that a program executing in section 0 cannot address memory
in any other section. It also means that the program cannot jump from
section 0 to another section unless it uses a monitor call or the
XJRSTF instruction. Furthermore, it means that the program runs
exactly as it would rum on a nonextended machine.

If the section field contains a number between 1 and 32, the program
iz sBaid to be executing in a non-zero section (a section other than
section 0.) The hardware considers addresses to be 23 bits, and the
proaram can use extended addressing features.

TOPS-20 Version 5 8-2 April 1982

USING EXTENDED ADDRESSING

The following paragraphs explain the way effective addresses are
calcuwlated 1in nonzero sections. In addition, see the description in

the processor reference manual.

B.2.1 Instruction Format

The format of & machine instruction is the same as on a nonextended
machine. The effective address computation depends on the address
field (Y, 18 bits), the index field (X, 4 bits), and the indirect
field (I, 1 bit). Figure B-2 show these fields.

0 B9 12 13 14 17 18 is

D A N S S S O O S e s - S - i o e O A S e e S - A " I O T

Figure B-2 Instruction-Word Address Fields

If the instruction does not use indexing or indirection (Lf the I and
¥ fields are zero), the effective address is 18 bits. The section
number, since it is not specified in the address, is taken from the
gection fileld of the PC. The PC section field contains the nusber of
the section from which the instruction was fetched. Such an 1l&-bit
address is called a section-relative address.

The following instruction is an example of an instruction that
evaluates to an lB8-bit effective address.

i,.400/ MOVEM T,1000

The effective address i word 1000 of the current sSection. The

section from which the instruction was fetched is section 3, so the
instruction moves the contents of register T into memory word 3,,1000.

8.2.2 Indexing

The first step in the effective address calculation is indexing. 1f
the X field contains the number of a register, indexing is used. The
calculation of the effective address depends on the contents of the
index register. The feollowing ocutcomes are possible:

« If the left half of the index register contains a negative
nueber or zeroc, the contents of the right half are added to Y
{from the instruction word) ko yield an l8=bit local address.

This is the way indexing is done onm & nonextended machine.
This allows a program to wse the usual AQOBIN pointer and
stack pointer formats for tables and stacks that are in the
game section as the program. HNote, howewer, that 1f the left
half of the index register contains & positive number, the
results are not the Same.

If the left half of the index register contains a positive

number, the contents bits 6=17 of the register are added to Y
to vield a 30-bit glebal address.

TOPS=20 Yersion & B=3 April 1982

USING EXTENDED ADDRESSING

This means that instructiens can reference 30-bit (glaobal)
addresses by means of an index register. If the ¥ field is
0, the instruction refers to the address contained In X. The

Y field can contain a positive or negative offset of
magnitude less tham 2717.

8.2.3 Indirection

If the instruction specifies indirection (if the I field contains a

1}y am indirect word is fetched from the address determined by ¥ and
indexing (if any). Two types of indirect words exist.

£.2.3.]1 Instruction Format Indirect Word (IFIW) - This word contains
¥, X, &snd I fields of the same size and in the same position as
instructions (in bits 13-35%). Bit 0 must be 1, and bit 1 must be 0Op
bits 2-12 are not used.

Figure B-3 shows an instruction-format indirect word.

012 12 131 14 17 18 35

IR Lo ' !

Figure B-3 Instruction-Format Indirect Word

The effective address computation continues with the guantities in
this word just as for the original instruction. Indexing can be

specified and can be local or global depending on the left half of the
index. Further indirection can also be specified.

Hote that the default Section for any local addresses produced from
this indirect word is the section from which the word i1tself was
fetched. This means that the default section cam change during the
course of am effective address calculation that uses indirection. The
default section is always the section from which the last indirect
word was fetched.

8.2.3.2 Extended-Format Indirect Word (EFIW) - This word alza
containg ¥, X, and I fields, but in a different format. Figure B=4
shows an extended-format indirect word.

e B W RN NN RN M NN NN SN N CEN NN S SN M N RN

11l | {emmccmmmmm——= Fm Y o o o 1
eIy X 1 (section) ! [word) 1
I | L ! !

Figure E=4 Extended-Format Indirect Word

TOPS-20 Version 5 B=4 April 1982

USING EXTENDED ADDRESSING

If indexing is specified in this indirect word (bits 2=5% s=et), the
contents of the entire index register are added to the 30-bit ¥ to
produce a global address. This type of indirect word never produces a
local address. The type of address calculation used does not depend
on the contents of the index register specified in the X field.

Hence either ¥ or C{X) can be used as an address or an offset within
the extended address space, just as is done in the l8-bit address
gpace, If further indirection is specified (bit 1 set), the next
indirect word iz fetched from ¥ as modified by indexing (if any). The
next indirect word can be in instruction format or extended format,
and its interpretation does not depend on the format of the previous
indirect word.

B.2.4 AC References

A section=relative address in the range 0=17 (octal) references the
hardware ACs. This 1ls true in every section of memory.

A global address in sectiom 1 im the range 1,,0 to 1,,17 (octal) also

refers to the hardware AC'sS. A global address in any other gection
refers to memory. (In sectiom 0, global addresses are evaluated as
local addresses.) This means that the following behawior occcurs.

1. Simple addresses in the uvsuval AC range reference AC's as
expected. The Iinstruction

MOVE 2,3

fetches the contents of hardware register 3 regardless of
what section the instruction executes in.

2. To make & glebal reference to an AC, the global address must
contain & section number of 1.

3. Arrays cam cCross section boundaries. Global addresses
evaluyated in any section except section 1 always refer to
memory, never to the hardware ACs. For this CEABON ,
incrementing the address &,,777777, for example, yields
address T,,000000, waich is a memory location.

4. AC references are always considered local references; hence
a jump instruction which vields an effective address of 0-17
in any section will cause code to be executed from the ACs.

B.2.5 Extended Addressing Examples

These instructions make local references within the current PC
gaction:

3,400/ MOVE T,1000 t fetches from 3,.1000
JEST 2000 ; jumps ko 3,,2000

The following instructions scan table TABL, which 15 im the cutrent
gection:

MOWSI X,-5IZ
LP: CAMN T,TABL(X) i TABL in current section

JRST FOUMND
AOBJN X,.LP

TOPS-20 Versicn 5 B=5 April 1982

USING EXTENDED ADDRESSING

The followino instructions scan table TABL, which is in section TSEC,
by usina a global address in extended format:

HMOVEI X,0
LP: CAMN T,2|GFIWM TSEC,TABL(X)] ; extended format
JRST FOUND
CAIGE X,51z-1
ADJA X,LEF

The IFIWM maceo creates a pointer that points to an argument, We
assume that the pointer either wuses a global address inm the index
reglister or uses indigection through & word containing a global
address, and so represents a global address. Because the pointer iz a
glebal address, the argument can reside im any non-zerd Section of
MEMS LY « Such & pointer Is ordinarily passed to a subroutine in an
sargument list.

AGELST: IFIWM BVAE(X)

Hote that if indexing or indirection are wsed with an instruction-

format indirect word, as in this example, the address is calculated
relative to the section the IFIW is in.

B.2.6 Immediate Instructions

Each effective address computation yvields a 30-bit address, defaulting
the section 1f necessary. Immediate instructions wuse only the
low=ocrder lB=bits of this as their operand, however, and set the
high-order 18 bits to 0. Hence instructions such as HOVEI and CAI
produce identical results regardless of the section in which they are
executed.

Two immediate instructions retain the section field of their effective
addresses. These instructions are the following.

@ XHOVEI (opcode 415) Extended Move Immediate

& XHLLI (opcode 501) Extended Half Lefr to Left Immediate

B.2.6.1 XMOVEI - The XMOVEI instruction loads the 3I0=bit effective

address into the AC, and sets bits 0-5 to 0. If no indexin? or
indirection is used, the number of the current section is copied (11

the PC to the AC. This instruction can replace MOVEI when a global
address is needed.

The following example shows the use of the XMOVEI instructlion im a
gubroutine ¢all. The subroutine is in section XSEC, but the argument
ligt iz im the same section as the calling program.

XMOVEI AP,ARGLIST
PUSHI B,# [GFIWM XSEC,SUBR]

The subroutine can reference the arguments with the following
instruction.

MOVE T,81(AP)

TOPS=-20 Version 5 B=6 Rpril 1982

USING EXTENDED ADDRESSING

Te construct the addresses of arguments, the subroutine cam use the
following instruction.

EMOVEI T,BZ(AF)

The last ¢two instructions assume that register AP contains the
argument 1list pointer. If the address the calling program placed im
AP is an IFIW, the section number in the effective address is that of

the calling program. If the address the calling program placed in AP
iz an EFIW, the section number in the effective address of the

argument block is determined by the section number the calling program
placed in AP,

The argument list would be found in the caller's section because of
the global address in AF. The section of the effective address is
determined by the caller, and 15 implicitly the same as the caller if
anm IFIW is used as the arglist pointer, or is explicitly given if an
EFIW is used.

8.2.6.2 XHBLLI - The XHLLI instruction replaces the left half of the
accumulater with the section number of the PC, and places a zero in
the right half of the AC. This instruction iz useful for constructing
global addregses.

B.2.7 Other Instructions

The instructions discussed in this section are affected by extended
addressing, but not necessarily inm the way that their effective
addresses are calculated. In addition to the material presented here,
se¢ the DECsystem—-10/DECSYSTEM-20 Processor Reference Manval regarding

the following INSECUCECIONG: "6, BLT; HABLT: =ACT: AJRSTIF, XJEN,
XPCW, SFM.
8.2.7.1 Instructions that Affect the PL - These instructions are

FUSHI, FOFJ, JRS5T. FUSHJ stores a 30-bit FC address; but stores no
flaga. It sets bhits 0=5 of the destination word ko 0.

POPJ restores a 30-bit PC address from the stack, but does not restore
the flags. It also sets bits 0-5% of the destination word te 0.

Wote that JS5R, JSA, JRA, and JSP load and store l8-bit addresses only.
For this reason they are not useful for intersection calls.

B.2.7.2 BStack Instructions = These instructions are FUSHJ, POET,
PUSH, POP, and ADJSP. These instructions uwse a local or global
address for the stack according to the contents of the stack register.
Whether the stack address iz local or global depends on the same rules
a% thoge that govern indexing im effective address calculation. [See
gection B.2.)

TOPS=-20 Version 5 8-7 April 1982

USING EXTENDED ADDRESSING

In brief, if the left half of the stack polinter is 0 or negative
iprier teo incrementing or decrementing), the stack pointer references
a local address. The address in the right half of the stack pointer
is wused to compute the effective address of the stack. The stack
pointer is incremented or decremented by adding or subtracting,
respectively, 1 from both sides,

If the left half of the stack pointer is positive, the entire word is

taken as & global address. The stack pointer is incremented by adding
1, and decremented by subtracting 1.

& stack that contains global addreszses can be wused the same way a
local stack is used. The global stack, however, can contain pointers

to routines in other sections.

To protect against stack overflow and underflow, make the pages before
and after the stack inaccessible. This method must be used because a
global stack has no room for & count in the left half of the pointer
word.

B.2.7.3 Byte Instructions = Instruction format byte polnters are
gection-relative byte pointers. To reference a byte in another
section, you must use either a2 one-word global byte pointer, or a two-
wobd global byte pointer. Monitor calls accept only one-word global
byte pointers as arquments, but programs can use either pointer.

Chapter 1 of the TOPS-20 Monitor Calls FReference Manual describes
one=word global byte polnters, The DELSYSTEM-10/DECSystem=20
Processor Reference Manual describes two-word global byte polnters.

B.3 MAPPING MEMORY

The PMAFY moniter call accepts an 18-bit page number, half of which is
& section nusber. Thus PMAPY can be used to map & page from one
section to another. If the destination section does not exist, the
monitor generates am illegal instructiom trap.

The SHAPY monitor call maps one or more sections of memory. It works
like the PMAF call, but maps sections instead of groups of pages. If
the destination section does not exist, SMAPY creates the section.

Access to the sections in a process map is determined by the Same
algorithm that determines access to a page within a given section. If
& process Section and a page Iin that section have differemnt accesses,
the access privileges are ANDed together. The process reguesting
access to the page gains access only if it has access rights at least
egqual to the AKDed protections.

For example, if a process has read access to a section and maps a page

into that section for which the process has read and write access, the
page iz mapped, but the process gets only read access to the mapped

Ppage.

The following sections describe the SMAPY functions.

TOP5=20 Version 5 B=B April 1982

USING EXTEMNDED ADDRESSING

§.3.1 HMapping Pile Sections to a Process

This function maps one or more sections of a file to a process. All
pages that exist in the source sections are mapped to the destination
sections. Access to the mapped pages is determined by ANDing the
access allowed to the file and the access specified in the SHAPY call.

Although files do not actually have section boundaries, this monitor
call wiews them as having sections that consist of 512 contiguous
pages, Each file section starts with & page number that is an integer

multiple of 512.

This call cannot map a process memory section to a file. To map a
process section to a file, wuse the PMAPY monitor call to map the
section page-by=-page.

Thigs funmction of the S5MAFY call reguires three words of arguments, as
follows:

ACl: source identifier: JFN,,file section number
ACZ: destination identifier: fork handle,,process section number

AC3: flags, ,count

The flags determine access to the destination section, and the count
iz the number of contiguous sections to be mapped. The count must be
between 0 and 37 (octal). The flags are as follows.

B2 (SMYRD) Allow read access

B3 (SMEWR) Allow write access

B4 (SHREX) Allow execute access

Bl8=-315 The number of sections to map. This mnumber must

be between 1 and 37 (octal).

8.3.2 MHapping Process Sections to a Process

The S5MAPE® monitor call also maps sections from one process to another
process, In addition, you can map one section of a process to another
section of the same process. The S5MAPY call maps all pages that exist
in the source section to corresponding pages in the destination
section,

If you map a source Section into a destination section with SHYIKD
se¢t, SMAPY creates the destination section wsing an indirect pointer.
This means that the destination section will contain all pages that
exist in the source section, and the contents of the destination pages
will be identical to the contents of the source pages.

Furthermore, after SHAPY has mapped the destination section, <¢hanges
that occur in the source section map cause the same changes bto be made
in the destination section map. This ensures that both the source
section and the destination section contain the same data.

If SMRIND is not set, SHMAPY creates the new section uwsing a shared
pointer. After 5MAFY maps the destination Section, changes that occur
in the source section's map do not cause any change in the destination
section's map. Thus after a short time the source and destination
sections miaht contain different data.

TOPS=20 Version 5 B=-9 April 1982

USING EXTENDED ADDRESSING

If you reguest & shared pointer (SMRIND not set) to the destination

section, what happens depends on the contents of the source section
when the SHAPY call executes. The outcome is one of the following.

1. 1I1f the source section does not exist, the SMAPR call creates
the section.

2. If the source is a private section, a mapping to the private
gection is established, and the destination process is
co-owner of the private section.

i. If the source section contains a file section, the source
section 15 mapped to the destination section.

4. If the socurce section map is made by means of an indirect
section pointer, SHMAPY follows that pointer until the source
gection iz found to be nonexistent, a private section, or a
seckion of a file.

This SMAPY function reguires three words of argument® im ACl through
F. T

ACL: fork handle in the left half, and a section number in the
ciaght half. This is the source identifier.

RC2: fork handle in the left half, and a section number in the
right half, This is the destination identifier.

AC3z access flags,,the number of contiguous sections to map.
The number of sections mapped, th2 number in the right
half of AC3, must be between 1 and 37.

The flags determine access to the destination section.
The flags are as follows.

BZ{5SMYRD) Allow read access

Bl ({SMEWR] Allow write access

Bd (SMIEX) Allow execute access

B (SMRIND) Map the destination section wusing an indirect

section pointer. Once the destination section map
iz created, the indirect section pointer causes
the destination section map to change in exactly
the same way that the source section map changes.

8.3.3 Creating Sections

Before vou can use a nonzero section of memory, you must create it.
If wour pProgram references a nonzerd section of memocy that does not
exist (that is not mapped), the instructiom that makes the reference
fails.

This SMAF% function reguires three words of arguments in ACl through
AC3, as follows:

ACL: 1]
ACZ: process identifier, ,section number
RCH: flags, ;number of sSections to create

TORS=20 Version 5 g=-10 April 1982

USING EXTENDED ADDRESSIMG

The process handle im AC2 identifies the section to be created (the
destination section.) If more than one section is to be created, this
section is the first of them, and the new sections are contiguous.

The number of sections cannnot be less than 1 nor more than 37
[octal).

The flags in the left half of ACI can be the following:

B2 (SMLRD) Allow read access

B3 [SHIWER) Allow write access

B4 (SHREX) Allow execute access

BE16=-35 The number of sections to create. This number

mustk be between 1 and 37. All created sections
are contiguous.

8.3.4 Unmapping a Process Section

You can use the SHAPY monitor call to unmap one or more sections of
memoEy in & process. The contents of the section are lost.

If the section contains pages mapped from a file, this function does
not cause the unmapped sections to be written back to the file from
which they were mapped. Such pages must be mapped to the file by
means of the PMAPR call.

This function reguires three words of arguments in ACLl through AC3, as
follows.

ACL: =1

BC2Z: fork handle in the left half, and a section number in the
right half. This identifies the section to be unmapped
{the destination section).

AC3: zero in the left half, and, in the right half, the number

of contiguous sections to be unmapped.
The number of sections unmapped must be between 1 and 37.

B.4 MODIFYING EXISTING PROGRAMS

Existing programs can be modified ko rum in any section of memory,
including both section zero and all other sections. The sections that
follow discuss the changes that must be sade to an existing program so
that it rums in a single nonzero section.

& good strategy for conversion of a section-zero program is to move

one module at & time to the new section, debugging each module in the
new section before attempting to move the next module.

Two macros in PROLOG.MAC are wseful in the debugging process: EA.ENT,
which, from section zero, calls a subroutine im another section and
cetuens control to the code in section zeroy; and EOLENT, which, from
any other section, calls a subroutine in section zero and returns
contecl to the code inm the calling section.

TOPS-20 Version 5 B=11 April 1982

USING EXTENDED ADDRESSING

B.4.1 Data Structures

Stacks, tables, and other data structures used in the past have often
contained words with an address in the right half and a count in the
left half. The count could be positive or negative because all
programs ram only in section 0, and when the contents of a word are
evaluated in section 0, only the right half is considered.

In all other sections, the entire word iz considered to be an address.
If the left half of the word is negative, the left half is ignored
when the address is evaluvated, and the address is considered to be a
section-relative address, Thus for a word to contain an addresg in
the right half and a count im the left half, the count must be
negative.

E.4.1.1 Index Words - Be sure the left half of index words contain a
nonpositive guantity. To wuse the left half of an index register to
hold a count, the count must be negative. If the left half is wnused,
it pust be zero so that the effective address is a local address. If
the left half contains a positive number, the effective address will
be global.

B.4.1.2 Indirect Words - To be sure that an indirect word is

evaluated in a nonzero Sfection as & section-relative or local address,
always set bit 0 of the indirect word. Argument lists that produce

section-relative addresses in section zero , for example, will produce
section-relative addresses in any section if bit zero is set.

B.4.1.3 Stack Pointers - As mentioned above, the left half of stack
pointers must contain zero or a negative number to produce sectlon-
relative addresses. A negative number in the left half is considered
to be a count. A positive number in the left half iz considered to be
a2 section number.

B.4.2 Using Monitor Calls

I1f a program runs in a single section, even though that section is not
section =zero, most monitor calls execute exactly the way they do in
gection zero. This is because when no Section number is specified,
the current section is the default.

The GTFDEY call, for example, reguires that AC3I conmtain the address of
the block in which to store the data it obtains from the file data
block. This address can be an 18-bit address regardless of what
gection the monitor call is made from. When the monitor sees that the
address is section=-relative, it obtains the section number from the PC
of the process that makes the call.

The same is true of calls that accept page numbers. If a nine-bit
page number is passed as an argument, the monitor obtains the section
number from the PC of the process that made the call. Monitor calls
arguments are discussed in Chapter 1 of the TOPS5-20 Monitor Calls

Reference Manual.

TOPE=20 Version 5 =12 April 1982

USING EXTENDED ADDRESSING

Another restriction on arguments passed to monitor calls executed in
sections other than section 0 concerns universal device designators,
which have the format Sxxxxx,,XXXxXXX oOr BGXXEXN,,XEXXxXx (.DVDES).
Universal device designators are not legal except in section 0. This
iz because of the existence of one-word global byte pointers, which
can have the same farmat.

Thus monitor calls that accept either a device designater or a byte
pointer when called from section 0 do not accept universal device
designators in any other section. Other device designators, such as
TTDES (0, ,4xxxxx), can be used in any section.

The calls SIRY and RIR% should not be wuwused in sSections other than
gsection zero. These calls work in other sections only 1f all the code
asgociated with these calls exists in the same section as the code
that makes the call.

For example, if an SIR% call is executed in section 4, it executes
coreectly 1if and only if the code that generates the interrupts, the
interrupt-processing routines, and all associated tables are also
located in section 4. Thus, in programs intended to rum in a section
other than section 0, the X5IF% and XRIE% calls, described in Chapter

4, gshould be u=zed in place of SIR% and RIR%.

B.5 WRITING MULTISECTION PROGRAMS

Multisection programs, programs that use more than one section of
memoEY, are similar to single-section programs that rum in nonzero
gections. They allow you to place tables needed for processing
interrupts in any section of memory (See Chapter 4), to use very large
arrays, and to write modules of code that can be dynamically mapped
into a section of memory and executed.

In & sinole-section program, local addresses and byte pointers are
sufficient to specify any word or byte in the program's address space.
In & multisection program, local addresses and byte pointers cannot
specify any word or byte in the program's address space. Most monltor

calls use only one AC per argument, S0 passing two-word global
addresses or byte pointers i5 nmot possible. Thus it i8 necessary to

either keep monitor call arguments in the same section of memory as
the code making the call, or use global arguments or, if applicable,
the global form of the monitor call.

In many multisection programs it is not necessary to Keep all the
arguments reguired by a call in the same section as the code that

makes the call. Global arguments are reguired, and they take several
forms. Chapter 1 of the TOP5-20 Monitor Calls Reference Manual gives

details on the use of these arguments,

The rest of thiz chapter describes the various functions that msonitor
calls provide for multisection programs.

TOPS=20 Version 5 =13 April 1982

USING EXTENDED ADDRESSING

8.5.1 Contrelling a Process in an Extended Section

Like processes that exist only in sectiom 0, processes that exist im
nonzeros sSections can be controlled by moniter calls. Most of the
calls that control such processes are the same calls that control
procesgses that exist only in section 0. There are some calls that you
must use to control. a process that uses memory inm & nonzero section,

8.5.1.1 BStarting a Process in a Honzero Section - You can use most of

the calls described in Chapter 5 to control programs that runm in a
nanzers Section. The SFOREK% monitor call is am exXception, and will

not start a progras in & nonzeéro section.

The XSFEE% monitor call starts a process in any section of memory. IE
the process 15 frozen (by means of the FFORK® call), XS5FREY changes

the double-word PC, but does not resume execution of the process. Ta
cesume the executicn of any frozen fork, use the RFORER call.

The XSFRE% call reguires 3 words of arguments in AC1 through AC3.

ACl: flags,,process handle
Flags:

SFRCON{L1BO) coentinue a process that has halted.
If SF%CON is set, the address im AC3
i5 ignored and the process continues
from where it was halted.

AC2: PC flags,,0

AC3H: address to which this call ig2 to set the BC

The XSFREE% call also starts & process in section zero. To do &0, set
the left half of AC3 to zero and the right half of AC3 to the address
in section 0 at which you want the process to start.

Most other calls consider an address with a zero in the left half to
be a section-relative address, The XSFRE% call, however, useés the

contents of ACY to set the PC. A PC with a zero fn the left half
indicates an address in section zero.

B:+5.1.2 Betting the Entry Vector inm Honzero Sections = The SEVEC
monitor call has room in its argument ACs for only a half-word
address, so it cannot be used to set a process entry wvector to an
address in a nonzero section. The XSVECY call, on the other hand,
uses an AC for the address of the entry vector, and ancther AC for the
length of the entey wvector, and can specify anm entry wvector in any
section of memory.

The XSVECH call reguires three words of argquments in ACL through AC3,

ACL: process handle

RC2: length of the entry vector, or 0

AC3: address of the beginning of the entry wector
The length of the entry vector specified im ACZ must be less than 1000 .
wurga. If ACZ contains 0, TOPS-20 assumes a default length of 2
WOLOdE .

TOFS=20 Version 5 B=14 April 1982

USING EXTENDED ADDRESSING

. £.5%.2 Obtaining Information About a Process

Although the monitor calls described in Chapter 5 work in any section
of memory, several of them can only return information about the
section in which they are executed. The following paragraphs describe
the monitor calls youw can use to obtain infermation about any section
of memOrY.

B.5.2.1 Memory Access Information - Several kinds aof information
about memory are important. Among them are whether a page or section
exists (is mapped), and, if %o, what the access to a page or section
is. The RSMAP% and XRMAFY calls provide this information.

The RSHMAPY monitor call reads a section map, and provides information
about the papping of one section of the address space of a process.

REMAPY requires one word of arguments in ACl: a fork handle im the
left half, and a section number in the right half. It returns the

. access information in AC2.
The map information that ES5MAPY returms can be the following:
-1 ne current mapping present (the section does not
exist)
[i] the mapping is a private section
My m where n 15 a fork handle or a JFH, and m 15 a
section number. If m is a fork handle,
the mapping i5 an indirect or shared
. mapping to another fork's section. If m
iz a JFH, the mapping i858 & shared

mapping to a file section.
The access information bits are the following:

B2 (SMRRD) Read access is allowed

BI[(SHIWE) Write access is allowed
. B4 [SHREX) Execute access iz allowed
BE[EMRIND) The section was created using an indirect pointer.

Although the ESMAPY call does not return information on individual
pages, the dats it does return is useful in preventing error ceturns
from the XFMAPY monltor call.

The XRMAP% call returns access information on a page or group of pages

in any section of memory. Although the RMAPY call returns access data
about a page in the current section, and you can use the REMAPY call

in any section of memory, vyou must use the XEMAPYE call toe obtain
information about pages in any section other tham the current section.
The XREMAPY call reguires two words of arouments in ACL and ACZ.

ACL: process handle in the left half, 0 in the right half

AC2: address of the argument block

TOPS=-20 Version 5 B=15% April 1982

USING EXTENDED ADDRESSING
The argqument block addressed by ACZ2 has the following format:

| =SSN EEEEEETECESESSSSESEEEREEEE |

1 Length of the argument block, including this word 1

l:::::::::-::::::::::-::-::::-:t-::-:--:--t----.illlllﬂ-]

| number of pages in this group on which te return data !

1 address at which to return the data block 1

J--I-ll-lllllllt-llll-ll-ll-ll-l-lt-------------l.l.."-l

5\ . N
" . N,
N, . M,

I -.!-'l!-l!-l--l!-lﬂ-'l-l-.'I---!l--l--l--l-.-----------‘.-.‘l

| number of pages in this group on which to return data !

! address at which to return the data block I

The number of words in the argument block is three times the number of
geoups of pages for which vyou want access data, plus one. Each group
of pages reguires three arguments: the number of pages inm the group,
the number of the first page in the group, and the address at which
the monitor is to return the access data.

Hote that the address to which the moniter returns data should be in a
section of memory that already exists. If it does not exist, the call
will fail with an illegal memory reference.

The access information returned for each group of pages specified in
the argument block is the following:

B2 {RMRRD) read access allowed
BI{EMEWE) write access allowed
B4 {RMREX) execute access allowed
BS (RMRPEX) page exists

B9 (RMYCPY) copy=-on-write access

For each page specified in the argument block that does not exist,
XRMAFY returns & =-1. It also returns a zero flag word for each such
page. The data block. to which XEMAPY returns the access information
should therefore contain twice as many words as the number of groups
of pages about which you want information.

If you execute an XRMAPY call to obtain information about a page inm a
nonexistent sSection, the XEMAPY call fails with an illegal memory
reference. For this reason it is recommended to execute an RSHAFY
call to determine that the section exists before you use XEMAPR to
obtain information about any page withinm that section.

B.5.2.2 Entry Vector Information - To obtain the entry vector of a
process in any section of memory, use the XGVECY call. This call
returns the length of the entry wvector inm ACZ and the address of the
entry wvector in AC3.

The XGVEC% call reguires one word of argument: 4in ACl, the handle of
the fork for which you want the entry vector.

TOPS=20 Version S B-16 Rpril 1982

USING EXTENDED ADDRESSING

B.5.2.3 Page-Failure Information - A page=-fail word, described in the
DECEYSTEM-10/DECsystem=20 PEOCeSSOT Feference Manual, containg
information that allows a program to determine the cause of a page
trap and the address of the instruction that caused the trap. This
information allows a program to corceck the cause of the page-fail
trap. Once the program has corrected the cause of the page-fail trap,
the program can continue execution.

The XGTPFWY% call obtains the page=-fail word from the moniter's data
base, and returns it to the callinmng pregram's address space. The
XGTRPY call reguires two words of arguments in ACl and AC2.

ACL: process handle

AC2: address of the bleock in which to return data

TOP5-20 Version 5 B-=17 April 1%82

APFENDIX A
ERROE CODES AND MESSAGE STRINGS

Many monitor calls returnm am errof number (usuvally in the right halg
of ACl) on a failure return. Thi=z error number indicates the reason
that the call could not perform its intended function. The error
number is associated with a unigue error symbol and message string,
all three of which are defined in the MONSYM file., The ERSTEY monitor
call can be used to translate the returned number into its
corresponding message string. ERefer te the TOPS=20 Monitor Calls
Feference Manual for the description of this call.

LGINX]1 600010 Invalid account identifier

LGINXZ &00011 Directory iz "files-only™ and cannot be logged in to

LGINX3 600012 Internal format of directory is incorrect

LGINX4d 600013 Invalid password

LGINKS 600014 Job iz already logged im

CRJBX1l 600020 Invalid parameter or function bit combination

CRJBXZ 600021 Illegal for created job to enter MINI-EXEC

CRJBX3 600022 Feserved

CRJBX4 600023 Terminal is not available

CRJBXS 600024 Unknown name for LOGIN

CRJBXE 600025 Inmsufficient system resources

CRJBXT &00026 Reserved

LOUTX1l 600035 Illegal to specify job number when logging out own job

LOUTXZ 600036 Invalid job number

CACTX1 600045 Invalid account identifier

CACTXZ 600046 Job is not logged in

EFCTX1 &0005%0 WHEEL or OPERATOR capability reguired

EFCTXZ2 600051 Entry cannct be longer than &4 words

EFCTX3 600052 Fatal error when accessing FACT file

GJFX1 600055 Desired JFN invalid

GJFX2 600056 Desired JFH not available

GIFX3 00057 Wo JFH available

GJFX4 600060 Invalid character in filename

GIFXS 60006l Field cannot be longer tham 319 characters

GJFXE EO0062 Device field not in a valid position

GJFXT E00063 Directory field not in a valid position

GJFXE E00064 Directory terminating delimiter is mot preceded by a
valid beginning delimiter

GJFXS 600065 More tham one name field is not allowed

GJFX10 &00066 Generation number is not numeric

GJFX1l 600067 More than one generation number field iz not allowed

GJFX1Z &00070 More than one account field is not allowed

GJFX13 600071 More than one protection field is mot allowed

GJFXl4 600072 Invalid protection

GJFX15 600073 Invalid confirmation character

GJFX16 600074 Wo such device

GJFXLT 600075 Wo such directory name

GJFXE1E 600076 Mo such filename

GJFE19 &00077 Mo such file type

ERROR CODES AND MESSAGE STRINGS

GIJFX2l 600101 File was expunged

GJFX22 600102 Insufficient system rescources (Job Storage Block Eull)
GJFX23 600103 Exceeded maximum number of files per dicectory
GJFX24 600104 File not found

GIFX2T 600107 File already exists (new file reguired)
GJFX28 600110 Device is not om line

GJFX29 600111 Device is not available to this job

GJEX30 600112 Account is not numeric

GJFX31 600113 Invalid wildcard desionator

GJFX3Z2 600114 Mo files match this specification

GJFX33 600115 Filename was not specified

GJFX34 600116 Invalid character "?" im file specification
GJFX315 600117 Directory access privileges reguired

OFNX1 600120 File iz already open

OFNK 2 600121 File does nokt exist

OFNX3 600122 Read access reguired

OPNX4 B00123 Write access reguired

OFNXS 600124 Execute access reguired

OFNXG 600125 Append access reguired

OFRXT 600126 Device already assigned to another job
OPNXE 600127 Device is not on line

OFHX9 600130 Invalid simultaneous access

OPRX10 600131 Entire file structure full

OPNX12 600133 List access reguired

OPNX13 600134 Invalid access reguested

OPNX14 600135 Invalid mode reguested

OPNX1S5 &00136 Bead/write access reguired

OFNX16 600137 File has bad index block

OFNX17 &00140 Mo room in job for long file page table
OFMX1E 600141 Unit Record Devices are nokt available
OPNX19 600142 IMP i= not up

OPNXE20 600143 Host is not up

OPNX2l &00144 Connection refused

OPNX22 600145 Connection byte size does not match

DESX] 600150 Invalid source/destination designator

DESXZ &00151 Terminal is not available to this job

DESX3 &00152 JFN is not assigned

DESX4 600153 Invalid use of terminal desionator or string pointer
DESXS &00154 File is not open

DESX6 600155 Device is not a terminal

DESX7 600156 Illegal use of parse-only JFH oF outpuk .

GJFX20 800100 Ho such generation number .

wildcard=designators
DESXH B00157 File is not on disk
CL5X1 600160 File is nmot open
CLEX2 600161 File cannot be closed by this process
RJFHX1 600165 File is not closed
FJFHX2Z &00166 JFN iz being used to accumulate filename
RIFMX3 600167 JFH is not accessible by this process
DELFX1 600170 Delete access reguired
SFPTX1l 60017% File i5 nmot open
EFPTXZ &00176 Illegal to reset pointer for this file
SFPTX3 600177 Invalid byte number
CHDIX1 &00200 Invalid password
CHDIX3 600202 Invalid directory number
CHCIXS &00204 Job iz not logged in
SFESX1l 600210 Illegal to change byte size for this opening of file
SFBSXZ 600211 Invalid byte size
IoX1 600215 File is not opened for reading
I0X%2 600216 File is not opened for writing
10%3 600217 File is not open for random access
10K 4 6002206 End of file reached
I0KS 600221 Device or dakta error
I0EE 600222 Illegal to write beyond absolute end of file

TOPS=20 version 5 A=2 April 1982

PHAPX]
PHAPXZ
SPACX]1
FREHX1
FREHX 2
FPEHX 3
FREHX4
FEEHXS
FREHXE
SPFLFX1
SPLFX2
SPLFX3
GTABX1
GTABX 2
GTABX2
EUNTX1
STADX1
STADXY 2
ASHDX1
ASHNDX 2
ASHMDX3
ATACK]
ATRCNZ
ATACKI
ATACKA
ATACXS
STDVY1
DEVX1

CEVX2

DEVX3

MHTX1

MHTX 2

MHTX3

TERMX1
TLHEX1
ATIX]1

ATIX2

TLMEX2
TLHEX3
TTYX1

RSCHX1
RSCNX2

CFREX]
EFREX1
EFREKX2

RFREX]
HFREXL

GFREX]
GETX1

GETXKZ

TFREX1
TFREX2
SFRVX]
HOUTX1
ROUTX 2
TFREX3
IFIXX]
IFIXK2
IFIXX3
GFDBX]
GFDBX2
GFDBX3
CFDEX1
CFDBX2

600240
600241
600245
600250
€00251
600252
600253
600254
600255
600260
600261
600262
600267
600270
600271
BO0273
600275
600276
600300
600301
B00302
600320
600321
600322
600323
600324
600332
00335
600336
600337
600345
600346
600347
BO0350
600351
600352
600353
600356
600357
600360
600361
600362
600363
600365
BO036E
600367
600370
600371
600373
BO03T4
600375
600376
600377
600407
600410
600411
600414
600415
600416
600424
600425
600426
600430
600431

ERROR CODES AMD MESSAGE STRINGS

Invalid access reguested

Invallid use of PHAP

Invalid access reguested

Invalid process handle

Illegal to manipulate a Superior process
Invalid use of pultiple process handle
Frocess 18 running

Process has not been started

All relative process handles in use
Process i& not inferior or egual to self
Process is not inferior to self

Hew superior process is inferior to intended inferior
Invalid table number

Invalid table index

GETAE capability reguired

Invalid process handle -3 or =4

WHEEL or OPERATOR capability reguired
Invalid date or time

Device 15 not assignable

Illegal to assiagn this device

No such device

Invalid job number

Job already attached

Incorrect user number

Invalid password

This job has no controlling terminal

Ho such device

Invalid device designator

Device already assigned to another job
Device iz not on line

Internal format of directory is incorrect
Device i not on line

Device i1 not mountable

Invalid termimal code

Illegal to set remote to object before object to remote
Invalid software interrupt channel numbect
Conteol-C capability reguired

Link was not received within 15 seconds
Links full

Dpevice is not a terminal

Overflowed rescan buffer, input string truncated
Invalid function code

Ingufficient system resources

Illegal to kill top level process

Illegal to kill self

Processes are not frozen

Illegal to halt self with HFORE

Invalid process handle

Invalid save file format

System Special Pages Table full

Undefined function code

Unassigned fork handle or not immediate inferior
Invalid position in enktry vector

Radix is not in range 2 to 36

Column overflow

Forkis) not frozen

Eadix is not in range 2 to 10

First nonspace character is not a digit
Overflow (number i& greater tham 2¥%35)
Invalid displacement

Invalid number of words

List access reguired

Invalid displacement

Illegal to change specified bits

A=3

CFDBX3
CFDBX4
DUMEPX]
CUMPX2
DUMPX3
DUMPXA4
RHAMX1
RMAMX 2
RHAMX3
RHAMX4
BEJFX1
TIMEX1
ZONEX1
ODTHX]
DILFX1
TILFX1
DATEX1
DATEX 2
DATEX]
DATEX4
DATEXS
DATEXG
SMONX]
SACTX1
SACTXZ
SACTX]
SACTNA
GACTX1
GRCTX2
FFUFX1
FFUFX2
FFUFX3
DEMX]L

RDDIX]
SIRX1

SSAVX]
SEAVEZ
BEVEX1
WHELX1
CAPX1

PEEKX2
CEDIX1
CROIX2
CEDIX3
CRDIX4
CRDIXS
CEDIX7Y
GTDIX1
GTDIX2
FLINX1
FLINX2
FLINX2
FLINX4
FLOTX1
FLOTX 2
FLOTX3
HFTX1

FOFRX1
FDFERX2
GTHS5X1
GTHSX 2
GTHSX3
ATHX1

ATHXZ

TOPS=20

600432
BO0433
600440
600441
BO0442
600443
600450
600451
600452
600453
600454
600460
600461
600462
600464
600465
600466
600467
600470
600471
600472
600473
600516
600530
600531
600532
BO0533
600540
600541
600544
600545
600546
600555
600560
600570
600600
600601
600610
a006ld
600615
B00617Y
600620
600621
600622
60062
BO0624
600626
600640
600641
BO065D0
600651
GO06S2
BO06S3
600660
600661
GO0GG2
BOOGTO
600700
600701
600704
600705
600707
600710
600711

Version 5 B=4 April 1982

ERROR CODES AND MESSAGE STRINGS

Write or owner access reguired

Invalid value for specified bits

Command list ercor

JFH is not open in dump mode

hddress errof (too big or crosses end of memory)
Access error [cannot read or write data inm memoEy)
Files are not on same device

Destination file expunged

Write or owner access to destination file required
Quota exceeded in destination of rename

Illegal to back up terminal pointer twice

Time cannot be greater than 24 hours

Time zone out of range

Time zone must be USA or Greenwich

Invalid date format

Invalid time format

Year out of range

Month is not less than 12

pay of month too large

Day of week is not less than 7

Date out of range

System date and time are not set

WHEEL or OPERATOR capability reguired

File is not on multiple-directory device

Insufficient system resources (Job Storage Block full)

Directory reguires numeric account

Write or owner access reguired

File is not on multiple-directory device
File expunged

File is not open

File iz not on sultiple-directory device
Ko used page found

File(s) mot closed

Illegal to rpead directory for this device
Table address is not greater than 20
Illegal to save files on this device

Page count (left half of table entry) must be negatiwve

Entry vector length is not less than 1000
WHEEL or OPERATOR capability reguired
WHEEL or OPERATOR capability reguired
Read access failure on monitor page

WHEEL or OPERATOR capability reguired
Illegal to change number of old directory

Insufficient system resources (Job Storage Block full)

Superior directory full

Directory nase not given

File(s) open in dicectory

WHEEL or OPERATOR capability reguired
Invalid directory number

First character is not blank or numeric
Humber too small

Humber too large

Invalid format

Column overflow in field 1 or 2
Column overflow in field 3

Invalid format specified

Undefined clock number

Hot a multiple-directory device
Invalid directory number

Unknown host number

Mo number for that host name

Ho string for that hest number
Invalid receive JFH

Receive JFN not opened for read

ERROR CODES AMD MESSAGE STRIMGS

ATHX 3 600712 Receive JFN not open

ATHNXA 600713 Receive JFN is not a MET connection

ATNXS 600714 Receive JFN has been used

ATHEG 600715 Receive connection refused

ATHET 600716 Invalid send JFH

ATHXE 600717 Eend JFHN not opened for write

ATHES E00720 Send JFH not open

ATHX10 600721 Send JFN is not & WET connection

ATHX11l 600722 Send JFH has been used

ATHX1Z2 600723 Send connection refused

ATHX13 600724 Insufficient system resources (Mo HVWT's)

CVHST1 600727 Mo string for that Host number

CVSEX]l 600730 Invalid network JFN

CVSEXZ 600731 Local socket invalid inm this context

SHDIX1l 600732 Invalid message size

ENDIXZ 600733 Insufficient system rescurces (Mo buffers available)

SHDIX3 600734 Illegal to specify NCP links 0 - 72

SHDIX4 600735 Inwvalid header value for this gueue

SHDIXS 600736 IMP down

HTWEZX1 600737 MET WIZARD capability reguired

ASHSX1 600740 Insufficient system resources (All special queuwes in
use)

ASHEXZ 600741 Link(s) assigned to another special gqueue

50Xl 600742 Special network gueue handle out of range

50x2 600743 Special network gueuwe not assigned

GTRCX1 600746 Invalid network JEN

GTHCXZ 600747 Invalid or inactive HVT

EMAMXS 600750 pestination file is not closed

RNAMXE 600751 Destinmation file has bad page table

RMAMXT 600752 Source Eile expunged

RHAMXE 600753 Write or owner access to source file reguired

RHAMXS 600754 Source file is nonexistent

RHMMX10 600755 Source file is not closed

RHMEL1l 600756 Scurce file has bad page table

RHMX1Z &00757 Illegal to rename to self

GJFX36 600760 Internmal format of directory is incorrect

ILINS]l 600770 Undefined operation code

ILINSE2 600771 Undefined JSYS

ILING3 600772 UUD simulation facility mot avalilable

CRLNX]1 601000 Logical name is not defined

INLNX]1 601001 Index is beyond end of logical mame table

LHSTX1 601002 Mo such legical name

HLEBX1 601003 Lock facility already in use

MLEBXZ 601004 Too many pages to be locked

MLEBX3 601005 Page is mot available

HLEEX4 601006 Illegal to remove previous contents of user map

VBCX1 601007 Display data area not locked in core

RDTX1 601010 Invalid string pointer

GFESX1 601011 Area too small to hold process structure

GTJIX1 601013 Invalid index

GTJIXZ 601014 Invalid terminal line number

GTJIX3 601015 Imnvalid job number

IFCFX1 601016 Length of packet descriptor block cannot be less tham 4

IPCFX2 601017 Mo message for this FID

IPCFX3 &01020 Data too long for user's buffer

IPCFX4 &0102]1 Receiver's PID invalid

IPCFX5 601022 Receiver's PID disabled

IPCFXE 601023 Send guota exceeded

IPCFXT &01024 Receiver guota exceeded

IPCFX8 601025 IPCF free space exhausted

IFCFX9 601026 Sender's PID invalid

IFCF10 601027 WHEEL capability reguired

IPCFL]1l &01030 WHEEL or IPCF capability reguired

IFRCF12 601031 Ho free PID's available

A=5

IPCF113
IBCF14

IPCF1S
IPCF16

IPCF17
IPCF1HE
IPCFl9
IFCF20
IPCF21
IPCF22
IBPCF213
IPCF24
IPCF25
IPCF26
IPCF27
IFCF28
IBPCF29

IPCF30
GNJFX1
ENQX1

ENGX2

ENQX3

EMQX4

ENQXS

ENQXE

EMQXT

ENQXE

ENQX9

ENOX10
ENQXELL
ENQX]12
EHOX13
ENQOXL4
ENDXLS
ENQXLlG
ERQX17
ENQX18
ENCX19
EHQXZ0
ENQXZ]
IFCF31
IPCF32
FMAPX3
FMAFX4
FMAPXS
PMAPXE
SNOPX]
SHOPX2Z
SNOFPX3
SNOPX4
SHOFPXS
SHOPXG
SHOPXT
SHOPXE
SHOPXS
EHOFPLD
SHOFL11
SNOP12
SHOFP13
SNOP14
SNOP15
SHOFL16
IPCF33
SHOPL17

e0lo3z
601033

601034
601015

601036
6010317
601040
601041
601042
601043
601044
601045
601046
601047
601050
601051
601052
601053
601054
601055
601056
601057
601060
601061
01062
601063
601064
601065
601066
601067
601070
601071
601072
601073
601074
601075
601076
601077
601100
601101
601102
601103
601104
601105
601106
01107
60111¢C
601111
601112
601113
601114
601115
601116
601117
601120
601121
601122
601123
601124
601125
601126
601127
601130

601131

ERROR CODES RAMD MESSAGE STRINGS

PID guota excecded
Ko PID's available te this job

Ho FID's available to this process
Receive and message data modes do not match
Argument block too small

Invalid MUTIL J5¥S5 function

Ho FID for [SYSTEM] INFO

Invalid process handle

Invalid job number

Invalid software interrupt channel number
[5¥STEM] IMFD already exists

Invalid message size

FID does not belong to this job

PID does not belong to this process

PID is not defined

PIC not accessible by this process

PID already being uvused by another process
Job is not legged in

Ho more fileg in this specification
Invalid function

Level number too small

Fequest and lock level numbers do not match
Humbeér of pool and lock resources do not match
Lock alepeady reguested

Requested locks are not all locked

Ke ENQ on this lock

Invalid access change reguested

Invalid number of blocks specified
Invalid argument block length

Invalid socftware interrupt channel number
Invalid number of resources reguested
Indirect or indexed byte pointer not allowed
Invalid byte size

ENQ/DEQ capability regquired

WHEEL or OPERATOE capability reguired
Invalid JFHN

Quota exceeded

String too long

Locked JFKW cannot be closed

Job 15 not logged in

Invalid page number

Page 15 not private

Illegal to move shared page into file
Illegal to move file page into process
Illegal to move special page into file
Disk guota exceeded

WHEEL or OPERATOR capability reguired
Invalid function

<SKPLC function most be Eirst

Only one ,SHPLC function allowed

Invalid page number

Invalid number of pages to lock

Illegal to define breakpoints after inserting them
Ereakpoint iz not set on instruction

Ho more breakpoints allowed

Breakpoints already inserted

Breakpoints not inserted

Invalid format for program name symbol

Ho Such program name Symbol

Ho such symbol

Hot enough free pages for smooping
Multiply defined symbol

Invalid index into system PID table

Breakpoint aleready defined

A=8

ERROR CODES AND MESSAGE STRINGS

OPNX23 601132 pisk guota exceeded

GJFX3T &01133 Input deleted

CELMXZ2 601134 WHEEL or OPERATOR coapability reguired

INLHXZ 601135 Invalid functiom

LHSTX2 601136 Invalid function

ALCX1 601137 Invalid function

ALCX2 601140 WHEEL or OPERATOR capability reguired

ALCH3 601141 Device 15 not assignable

ALCH4 601142 Invalid job number

ALCYS 601143 Device already assigned to ancther job

SPLX1 601144 Invalid function

SPLX2 601145 Argument block too small

SPLX3 601146 Invalid device designator

SPLX4 601147 WHEEL or OFPERATOR capability reguired

SPLES 601150 Illegal to specify 0 as generation number for first
file

CLEX3 601151 File still mapped

CRLNX3 601152 Invalid function

ALCKG 601153 Device assigned to user job, but will be given to
allocator when released

CEAX]1 601154 Argument block too small

CEAXZ &01155 Invalid directory numbet

CEAX3 &01156 Invalid access code

TIKXl 601157 Inmnvalid function

TIMX2 601160 Invalid ?rncess handle

TIMX3 601161 Time limit already set

TIMXA 601162 Illegal to clear time limit

ENOP1E 601163 Data page is not private or copy-on-write

GJFX38 601164 File not found because output=-only device was specified

GJFX39 601165 Logical name loop detected

CREDIXE 601166 Imvalid directory number

CRDIXS 601167 Internal format of directory i=s incorrect

CEDILID &01170 Maximum directory number exceeded:; index table needs
expanding

DELDX1 &0117] WHEEL or OPERATOR capability reguired

DELDX2 601172 Invalid directory number

GACTEI 601173 Internal format of directory is incorrect

DIAGX]1 601174 Invalid function

DIAGKZ &01175 Device iz not assigned

DIAGX3 601176 Argument block too small

DIAGX4 601177 Invalid device type

DIAGES 601200 WHEEL, OPERATOR, or MAINTENAMCE capability reguired

DIAGXe 601201 Invalid channel command list

DIAGKT 601202 Illegal to do I/ 0 across page boundarcy

DIAGXE 601203 Mo such device

DIAGKS 601204 Unit does not exist

DIAGLD 601205 Subumit does not exist

SYEX1 601206 Unreascnable SPEAR block size

EYEX2 601207 Ho buffer space available for SPEAR

HTOXY 601210 Invalid function

I0%7 601211 Insufficient system resources (Job Storage Block full)

I0X8 601212 Monitor internal ercor

HTOXS 601213 Invalid hardware data mode for magnetic tape

DUMPXS 601214 Ho-wait dump mode not supported for this device

DUMPXE 601215 Dump mode not supported for this device

I0X%9 601216 Function legal for seguential write only

CLSX4 601217 Device still active

MTOX 2 601220 Record size was not set before I/0 was done

MTOX3 601221 Function not legal in dump mode

MTOX 4 601222 Invalid record size

MTOX & 601223 Invalid magnetic tape density

OPNX25 601224 Device is write locked

GJFX40 601225 Undefined ateribute in file specification

MTOXT7 601226 WHEEL or OFERATOR capability reguired

TOPS-20 Version 5 ;=T April 1982

ERROR CODES AMD MESSAGE STRINMGS

LOUTXY 601227 WHEEL or OPERATOR capability reguired

LOUTX4 &01230 LOG capability reguired

ChPX2 601231 WHEEL, OPERATOR, or MAINTEMANCE capability reguired
ESAVXY 601232 Insufficient systep respurces (Job Storage Block Eull)
SSAVX4 601233 Directory area of EXE file is more than one page
TDELX1 601234 Table is empty

TADDX1 601235 Table is full

TADDXZ2 801236 Entry is already in table

TLUEX1 &01237 Internal format of table is incorrect

I0X10 601240 Record iz longer than user reguested

CHDIXZ 601241 WHEEL or OPERATOR capability regquired

CHMDIX4 601242 Invalid job number

CHDIXE ©&01243 Job iz not logged in

5JBX1 601244 Invalid function

SJBX2 601245 Invalid magnetic tape density

S5JBX3 601246 Invalid magnetic tape data mode

TMONX1 601247 Invalid TMON function

SMOMXZEZ 601250 Imvalid SMON function

SJBX4 601251 Imvalid job number

5JBX5 601252 Job 15 not logged in

EJBXE 601253 WHEEL or OFERATOR capability reguired

GTJIX4 601254 Mo such job

ILINS4 601255 UUD simulation is disabled

ILINSS 601256 EMS facility is not available

COMEX1 601257 Invalid COMND function code

COMNXZ 601260 Field too long for intermnal buffer

COMNX3 601281 Command too long for intermal buffer

COMNX4 ®01262 Invalid character in input

PRAX1 601263 Invalid PRARG function code

FPRAXZ 601264 HWo room in monitor data base for argument block
COMNXS 6801265 Invalid string pointer argument

COMHXE6 601266 Froblem in indirect file

COMNXY 601267 Error in command

PRAXZ 601270 PRARG argument block too large

CEAX4 601271 File is not on disk

GACCX1l 601272 Invalid job number

GACCXZ 601273 Ho such job

MTOXE 601274 Argument block too long

DEREE]l 601275 No interrupks in progress

SJPRX1 &01276& Job is not logged im

GJFX4]l 601277 File name must not exceed & characters

GJFX42 601300 File type must not exceed 3 characters

GACCKX3Y 601301 Contidential Information Access capability reguired
TIMEXZ 601302 Downktime cannot be more tham 7 days in the future
DELFXZ 601303 File cannot be expunged because it is currently open
DELFX3 601304 System scratch area depleted; {ile not deleted
DELFX4 601305 Directory symbol table could not be rebuilt
DELFXS 601306 Directory symbol table needs rebuilding

DELFX6 601307 Internal format of directory is incorrect

DELFXT 601310 FDE formatted incorrectly; £ile not deleted
DELFXE &01311 FDB not found; file not deleted

FEEHX7 &01312 Process page cannot exceed 777

DIRX1 601313 Invalid directory number

DIRXKZ 601314 Insufficient system resources

DIRX3 601315 Internal format of directory is incorrect

UFPGX1 601316 File is not open for write

LHGFX1l 601317 Page table does not exist and file not open for write
IPCF34 601320 Cannot receive inte an existing page

COMNXE 601321 Humber base ogut of range 2-10

MTOX9 601322 Cutput still pending

MTOX10 601323 VFU or RAM file cannot be OPENed

MTOX11 601324 Data too large for buffers

MTOXK1Z2 601325 Input error or not all data read

MTOX13 &01326 Argument block too small

A-E

MTOX14
SAVE]

MTOX1S
MTOX16
LPINX]
LPINX2
LPINXD
MTOX17
LGINKG
DESXY

BCESX1
BCESXZ
DSKOX1
DSKOX 2
MSTRX1
MSTRX 2
MSTREZ
MSTRXA
METEXS
METEX6
HMSTRXY
MSTRXH
MESTRXY
HSTX10
H5TX11
M5TK12
H5TX13
HETX14
HETX1S
MSTX16A
DSEX01
DEEX02
DEEX03
DEEX04
GFUSX1
GFUSXZ
SFUSX]
SFUSXZ
SFUSX3
RCDIX]
RCOIX2
RCDIX3
RCOIXA4
RCUSXL
TDELX 2
TIMXE

LSTRX1
EWJFX1
MTOX1E
OFNE 26
DELF X%
CEDIXE
COMNES
STYFX1
FMARXT
DSEOX3
DESX10
DEROX 4
HSTX17
MSTX1H
MSTX19
MSTXZ0
M5TX21
MSTX22

601327
601330
601331
E0l332
BO1333
601334
601335
BO1336
601337
601340
E01341
E01342
E01343
601344
601345
6Ol346
BO1347
601350
601351
601352
601353
601354
601355
601356
601357
601360
601361
601362
601363
601364
601365
GO1366E
601367
B01370
601371
601372
E01373
601374
601375
E01376
E013TT
601400
601401
601402
601403
GO1404
601405
GO1406
601407
6O1410
601411
601412
601413
601414
601415
601416
601417
601420
601421
B01422
601423
E01424
BO1425
E01426

ERROR CODES AND MESSAGE STRINGS

Invalid software interrupt channel number |
Illegal to save files on this device

Device does not have Direct Access (programméble) VFU
VFU or Translation Ram file must be on disk
Invalid unit number

WHEEL or OFPERATOR capability reguired
Illegal to load RAM or VFU while device is OPEN
Device iz not on line

Hoe more job slots available for logging=in
Invalid operation for this device

Argument block too Small

Insufficient system resources

Channel number toco large

Unit number too large

Invalid function

WHEEL or OFERATOR capability reguired
Argument block too small

Insufficient system rescurces

Drive is not on-line

Home blocks are bad

Invalid structure name

Could not get OFH for ROOT-DIRECTORY

Could not MAFP ROOT=-DIRECTORY

ROOT-DIRECTORY bad

Could not initialize Index Table

Could not OPEW Bit Table File

Backup copy of ROOT=-DIRECTORY is bad
Invalid channel number

Invalid unit number

Invalid contreoller number

Invalid structure number

Bit table iz being initialized

Bit table has not been initialized

Bit table being initialized by another job
Invalid function

Insufficient system resSoUrCes

Invalid function

Insufficient system resources

Hoe such user name

Insufficient system resources

Invalid directory specification

Invalid structure name

Monitor internal error

Insufficient system resources

Invalid table entry location

Invalid software interrupt channel number
Process has not encountered any errors
Illegal to swap same JFHN

Invalid software interrupt channel number
Illegal to open & string pointer

File is not a directory file

Directory file iz mapped

End of input file reached

Invalid terminal type

Illegal to map file on dismounted structure
Invalid structure number

Structure is dismounted

Invalid address type specified

All vwnits in a structure must be of the same type
NHo more units in system

Unit is already part of a mounted sStructure
Data error reading HOME blocks

Structure is nmot mounted

Illegal to change specified bits

A=3

CEDIL1
MSTXE3
ARCESX3
ACESXA
RCESXS
STRX05
BCESXEG
STRX01
STRXO2Z
10x11

I0¥12

ETEXD3
ETENO4
FFHX1

PENX 2

PENNI

FPPHX 4

SPLX6

CREDI1Z
GFUSK3
GFUSX4
RHME13
SJIBXE

DECHSW
FFFFX1
WILDX1
MSTN41
METH L 2
CIMEND
CINOND
CIBDOF
CINGEQ
CIRORG
CINPTH
CIBDCD
CIUNOP
CINOND
CILNER
LCBDBP
LCLNER
LCHOND
SEAVXS
CIBDFOQ
ATACKE
ATACXT
DEEOX S
DSEQX G
TIMXA

TIMXT

TIMXE

TIMXS

TIMX10
5CTX1

5CTX2

SCTHI

5CTX4

POVEDL
FODVXD2

POVX03
GETX4

GETXS
SFUSX4

TOPS=20

601427
601430
601431
601432
601433
601434
601435
601436
601437
601440
601441
601442
601443
601444
601445
601446
601447
601450
601451
601452
601453
601454
601455
601456
601457
601460
601461
601462
601463

GOl464
601465

601466
01467
601470
601471
601472
601473
601474
601475
601476
601477
601500
601501
601502
661503
601533
601534
601535
601535
601537
601540
601541
601550
601551
601552
601553
601554
601555

GOL556
601557

601560
601700

ERROR CODES AND MESSAGE STRIMGS

Invalid terminating bracket on directory
Could not write HOME blocks

Pageword is reguired

Function not allowed for another job

Mo function specified for ACCES

Ho such user name

Directory i= not accessed

Structure is not mounted

Insufficient system resources

Quota exceeded

Insufficient system resources (Swapping space full)
Mo such directory name

Ambiguous directory specification
Invalid PFH

Structure 15 not mounted

Insufficient system resources

Invalid directory number

Ho directory to write spoocled files into
Structure is not mounted

File expunged

Intecrnal format of directory 1% incorrect
Insufficient system resources

Illegal to perform this function

DEC reserved bits not zero

Mo free pages in file

Second JFN cannot be wild

Channel does not exist

Controller does not exist

Maximum memory driver nodes assigned

Mo LCS node slots available
BAD BDT offset giwven

Mo CI free gueue entries left

Ho BDT page slots left

Target CI LCS node is dead; no path to it

Bad CI op code

Undefined op code (in range but not yet defined

Dead LCS node

CI length ercor

Bad byte pointer passed to LCS

LES length error

LLCS Wo such node

Humber of PDVE grew during save

BAD CI FREE QUEUE

Terminal iz already attached to a job

Illegal terminal number

Invalid word count

Invalid buffer address

Time has already passed

Ho sSpace available for a clock

User clock allocation exceeded

Mo such clock entry found

Ho system date and time

Invalid function code

Terminal already in use as contrelling terminal

Illegal to redefine the job's contrelling terminal
SCA5CT capability reguired

hddress in .POADE must be as large as address in .POADR
Addresses in .PODAT block must be in strict ascending
order

Address in .POADR must be a program data vector address
Illegal to relocate (via .GBASE)] a multi-section exe
file

Exe file directory entry specifies a section-crossing
File expunged

Version 5 A=10 April 1982

ERROR CODES AMD MESSAGE STRINGS

SFUSX5 60170]1 Write or owner access reguired
SFUSXE6 601702 Ne such user name

GETX3 601703 Illegal to overlay existing pages
FILX01 &0G1704 File is not open

ARGXO01 601705 Invalid password

CAPX3 601706 WHEEL capability reguired

CAPXN4 601707 WHEEL or IBCF capability reguired
CAPXE 601711 EMQ/DEQ capability reguired

CAPXT 601712 Confidential Information Access Capability reguired
ARGXOZ 801713 Invalid functiom

ARGXO3 601714 Illegal to change specified bits
ARGX04 601715 Argument block too small

ARGXO0S 601716 Argqument block too long

ARGX06 601717 Invalid page number

ARGX0? 601720 Invalid job number
ARGX08 601721 Wo such job

ARGXD% 601722 Invalid byte size

ARGXI0 601723 Invalid access regquested

ARGX11 601724 Invalid directory number

ARGX1Z 601725 Invalid process handle

ARGX13 601726 Invalid software interrupt channel nusber
MONX01 601727 Insufficient system resources

MOMX02 E01730 Insufficient system resources (JSB full)
MOMEO3 &0173)1 Monitor intermal error

MONX04 601732 Insufficient system resources (Swapping space full)
ARGX14 E01733 Invalid account identifier

ARGX1S5 &01734 Job is not logged in

FILX02 601735 Write or owner access reguired

FILX03 601736 List access reguired

DEVX4 601737 Device iz not assignable
FILX04 E01740 File is not on multiple-directory device

AEGX1E 601741 Password is reguired

ARGX1T B01742 Invalid argument block length

ARGX1E 601743 Invalid structure name

DEVXS 601744 Ho such device

DIRX4 601745 Invalid directory specification

FILXOS 601746 File expunged

STRX0E 601747 Hoe sech user number

MSTX24 601750 Illegal to dismount the System Structure

M5TX25 601751 Invalid number of swapping pages

MSTX26 601752 Invalid number of Front-End-Filesystem pages

LOUTXS 601753 Illegal to log out job O

GJFX43 601754 More than one ;T specification is not allowed

MTOX19 601755 Invalid terminal page width

MTOX20 601756 Invalid terminal page len?lh

MSTX2Z7 &01757 Specified pnit is not a disk

METXZE GE01760 Could not imitialize bit table for structure

MSTX29 601761 Could not reconstruct RODT-DIRECTORY

DSKX05 601763 Disk assignments and deassignmente are currently
prohibited

DSKX06 601764 Invalid disk address

DSEX07 601765 Address cannot be deassigned because it is not assigned

DSKEX0B 601766 Address cannot be assigned because it is already
assligned

COMX10 B01767 Invalid default string

MSTX30 &01770 Incorrect Bit Table counts on Structure

LOCEX1 601771 Illegal to lock other tham a private page

LOCEX2 B01772 Reguested page umavailable

LOCEX3 601773 Attempt to lock too much memory

ILLX01 &01774 Illegal memocry read

ILLX02 601775 Illegal memory write

ILLX03 601776 Memory data parity ecror

ILLX04 601777 Reference to non-gxistent page

MSTX31 602000 Structure already mounted

TOPS-20 Version 5 A-11 April 1982

MSTX32
M5TX33
STDIX]
CHDIXT
PMCLX1
PMCLX2
PMCLX3
DLFX10
DLFX11
GIFX44
UTSTHL
UTSTX2
UTSTX 3
BOTX01
BOTX02
DCNX 1

DCNXS

DCHX3

DCNX4

DCNX9

DCNXE

DCNXL]
DCNX12
TTYX01
BOTX03
MOKXOS
ARGX19
coMxll
COMX12
COMX13
COMX14
COMX15
COMX16
COMX17
NFPXAME
NPXNSW
NEXNOM
NEXNUL
NEXINW
NPXNC

NEXICH
NEXIDT
NPXNQS
NPXNMT
HEPXNMD
HEXCMA
GIFX4S

GIPX46
GIFX4T
METH 34
GIFXN4E
GIFN4Y
SIBNT

DELFL10
CRDIL1
CRDILA
CROILS
CERIle
EMACK]
EMACK 2
EMACHK]
EMACHY
VACCHD

602001
6CZ002
BOZ003
602004
BOZ005
02006
602007
602010
602011
602012
602013
602014
602015
602016
602017
602020
602021
602022
602023
02024
602025
602026
602027
602030
602011
6020312
6020313
602015
602036
602037
602040
602041
602042
6020413
602044
602045
6020446
602047
602050
602051
602052
602053
602054
602055
602056
602057
602060

602061
602062
602063
602064
602065
602077
602100
602101
602102
602103
602104
602105
602106
602107
602110
602111

ERROR CODES AND MESSAGE STRINGS

Struckture was not mounted

Structure is vnavailable for mounting

The STODIR JS5YS has been replaced by RCDIR and RCUSR
The CHDIR J5Y¥5 has been replaced by ACCES

Illegal page state or state kransition

Reguested physical page is umavailable

Feguested physical page contains ercors

Cannot delete directoryy; file still mapped

Cannot delete directory file in this manner
Account string does not match

Invalid functlon code

Area of code too large to test

UTEST facility im use by another process

Invalid DTE=20 number

Invalid byte size

Invalid network file name

Ho more logical links available

Invalid object

Invalid task name

Object is already defined

Invalid network operation

Link aborted

S5tring exceeds 16 bytes

Line is not active

Invalid protocel version numbet

Insufficient system resources (no resident free space)
Invalid unit number

Invalid CHMRTY pointer

Invalid CHMBFP pointer

Invalid CHPTE pointer

Invalid CMABP pointer

Invalid default string pointer

Invalid help message pointer

Invalid byte pointer in function block

Ambiguous

Mot a Switch - does not begin with slash

Does not match switch or keyword

Hull switch or keyword given

Invalid guide word

Hot confirmed

Invalid character in number

Invalid device terminator

Hot a guoted string = guote missing at beginning or end
Does not match token

Does not match directory or user name

Comma not given

Illegal to reauest multiple specifications for the same
attribuote

Attribute value is reguired

Attribute does not take a value

Unit is write-=locked

GTJFM input buffer i= empty

Invalid attribute for this device

Femark exceeds 39 characters

Directory &till contains subdirectory

Eeguest exceeds superior directory working guota
Feguest exceeds superior directory permanent guota
Reguest exceeds superior directory subdirectory guota
Invalid user group

Account validation dats base file not completely closed
Cannot get & JFH for <SYSTEM>ACCOUNTS-TABLE.BIN
Account validation data base file too long

Cannot get an OFN for <SYSTEM>ACCOUNTS-TABLE.BIN
Invalid account

A=12

VRCOCK]
Uscxol
BOTX04
NODXO01
UsGro2
CRDIL1T

EHQXZ3
EHQXZ2
DCHX 2

ABEEX1
UsSGXO3
IPCF15
VACCX2
CRDIL1E
CEDI19
BOTXOS
CEDI2O
COoMX18
COoOMX19
CRDI2]
ACESXT
CRDIZZ2

CRDI2A
STRXO7
STRX08
CRDIZA
ATSXO01
ATSXO02
ATSX02
ATEXNO4
ATSKOS
ATEX06
ATSX07
ATSX08
ATSX09
ATSX10

ATEX11
ATSX12
ATEX]13
ATSX14
ATEX]1S
PMCLX4
ATEX16
ATSX1Y
FREHXSE
ARGXZO
ARGK2Z]
ARGK2Z
ATSKILE
ATS5X19
ATSX20
ARGKZD
ARGNI4
METX35
DCHX13
DCNX14
DCNX15
GJFX50
KDPX01
HODX 02
HODX 03

602112
602113
602114
602115
BOZ11E
602117

602120
602121
602122
602123
602124
602125
602126
602127
602130
602132
602133
602134
602135
602136
602137
B0El40

602141
602142

BOZ143
602144

602146
602147
602150
602151
602152
602153
602154
BOZL55
BOZ156
602157

602160
602161
602162
602163
602164
602165
602166
602167
602170
602171
602172
602173
BOZLT4
6O2ELT5
602176
60Z177
602200
602201
602202
602203
602204
602205
602206
602207
602210

ERROR CODES AND MESSAGE STRINGS

Account String exceeds 39 characters

Invalid USAGE entry type code

Byte count is not positive

Kode name exceeds & characters

Item not found in argument list

Illegal to create non=files=-only subdirectory under
files-only directory

Mismatched mask block lengths

Invalid mask block length

Interrupt message must be read ficst

Address break not available om this system
pDefault item not allowed

Invalid IBCF guota

Account has expired

Illegal to delete logged-in directory

Illegal to delete connected directory

Protocol initialization failed

WHEEL, OPERATOR, or reguested capability required
Invalid character in node name

Too many characters in node name

Working space insufficient for current allocation
Directory is "files-only®™ and cannot be accessed
Subdirectory guota insufficient for existing
subdirectories

Superior directory does not exist

Invalid wser number

Invalid user name

Invalid subdirectory guota

Invalid mode

Illegal to declare mode twice

Illegqal to declare mode after acguiring terminal
Invalid event code

Invalid function code for channel assignment

JFN is not an ATE JFH

Table length too &Emall

Table lengths must be the same

Table length too large

Maximum applications terminals for system already
assigned

Byte count is too large

Terminal not assigned to this JFH

Terminal is XOFF'd

Terminal has been released

Terminal identifier is not assigned

Ho more ercror information

Invalid Host Terminal Number

Qutput failed == moniter internal error

Illegal to manipulate an execute-only process
Invalid arithmetic trap argument

Invalid LUUO trap argument

Invalid flags

ATS input message too long for inmternal buffers
Monitor internal efror - ATS input message truncated
Illegal to close JFN with terminal assigned
Invalid section number

Invalid count

Too many units in structure

Mode not accessible

Previous interrupt message ocutstanding

Mo interrupt message available

Invalid argqusent for atktribute

EMCll mot rumning

Line not turned off

Another line already looped

A=11

ERROR CODES AND MESSAGE STRINGS

COMX20 602212 Invalid node name

ATS5X2]1 602213 Maximum applications tegminals for job already assigned
ATSX2ZZ 602214 Failed to acquire applications termimal
ATSX23 602215 Invalid device name

ATS5X24 602216 Invalid server name

ATS5XZ5 602217 Terminal is5 already released

GOEER1 602220 Illegal function

GOKERZ2 602221 Reguest denied by Access Control Facility
STRX09 602222 Prior structure mount reguired

METX3IE 602223 Illegal while JFNs assigned

METXIT 602224 Tllegal while connected to structure

METH40 602225 Invalid PS5I channel number given

ATSX26 602226 Invalid host name

I0x1l3 602227 Invalid segment type

I0x14 02230 Invalid segment size

I0K15 602231 Illegal tape format for dump mode

I0X1a 602232 Density specified does not matceh tape dengity
10x17 602233 Invalid tape label

IOK20 602234 Illegal tape record size

I0x21 602235 Tape HCOR1 missing

IOx22 602236 Invalid tape HDRl seguence number

TO0X23 602237 Tape label read errcor

I0X24 602240 Logical end of tape encountered

IOXZS 602241 Imvalid tape format

SWJFXZ 602242 Tllegal to swap ATS JFHN

IOX 26 602243 Tape write date has not expired

10K27 602244 Tape is domestic and HDR2 is missing

I0X30 602245 Tape has invalid access character

ARGX25 602246 Invalid class

EEDX1 602247 Cannot change class

MREQX1 602250 Reguest canceled by user

MREQXZ 602251 Labeled tapes not permitted on 7T=track drives
MREQX3 602252 Unknown density specified

MEEQX4 602253 Unknown drive type specified

HREQXS 602254 Unknown label type specified

HREQXKE 6022535 Set name illegal or not specified

HREQXTY 602256 Illegal starting-volume specification

MREQXE 602257 Attempt to switch to volume ocutside set
MEEQXS 602260 Illegal volume identifier specified

MREQLD 602261 Density mismatch between reguest and volume
HEEQLl 602262 Drive type mismatch between reguest and volume
MEEQL2 602263 Label type mismatch between reguest and volume
MREQL3 602264 Structural error in mount message

MEEQl4 602265 Setnséme mismatch between reguest and volume
MEEQLS 602266 Mount refused by operator

MEEQLE 602267 Volume identifiers not supplied by operator
MREQL7? 602270 Volume=-identifier list missing

MREQ1E 602271 End of volume-identifier list reached while reading
HEEQLY 602272 Regquested tape drive type not available to system
MREQ20 602273 Structural error in mount entry

MREQ2]1 602274 Mount reguested for unknown device type

DEVEE 602275 Job has open JFE on device

ATSX27? 602276 Terminal is not open

ATSX2E 602277 Unknown ercor received

ATS5XE9 602300 Receiwve error threshold exceeded

ATEX30 602301 Reply threshold exceeded

ATSX3]l 602302 HAE threshold exceeded

ATSX32 602303 Terminal protocol error

ATSXE3 602304 Intervention reguired at terminal

ATS5X34 602305 Powerfail

ATSX3ES5 602306 Data pipe was disconnected

ATSX36 602307 Dialup terminal was attached

DATEXY 602310 Julian day is out of range

GJFX5]1 602211 Byte count too small .

A=14

MREQ22
ARCFX2
ARCFX3

ARCFX4
ARCFXS
ARCFXE
ARCFXT
ARCFXE
ARCFXY
ARCX10
ARCX1L
ARCK]12
ARCX13
OFHX 30
OPNXI1
DELX11
DELX12
ARCK]14
ARCK]1S
ARCK]1G
ARCK1T
ARCX1E

ARCX1G
ARGXZE
ARGX2T
DIRKS

TOX31

MREQ23
MEEQZ24
MREQZ5
LTLBLY
LTLEX1
MREQZE
METRX1
MSEXO00
MEPXOL
MSEX02
MSPX03
MSEX04
MSEX0S
MEPXOE
MEPXOT
MSEXOE
HEPXOY
MSFX10
MEPX11
HEPX12
MSEX13
MSEX14
MSFX1S
MSEX1E
HEPX1T
MEPXLE
HSFX19
MEPX20
MSEX2Z1
HEPX22
MEREQ27
MEEQZE
HREQZ29
MREQ30
DIAGLL

602311
602312
6023113

602314
602315
BOZILE
602317
602320
602321
602322
602323
602324
02325
602326
602327
602330
602331
602332
602333
602334
602335
602336

602317
02340
602341
602342
602343
602344
602345
602346
602347
602350
602351
602352
602353
602354
GOZ355
602356
GOZ3ST
BOZI60
602361
602362
602363
602364
602365
BOZ366
602367
602370
602371
602372
602373
602374
B02375
BOZITE

602377
602400

602401
E02402
602403
602404
602405
602406

ERROR CODES AND MESSAGE STRINGES

Structure name not specified

File already has archive status

Cannot perform ARCF functions on non-multiple directory
devices

File is not on-line

Files not on the same device or structure

File does not have archive status

Invalid parameter

Archive not complete

File not off-line

Archive prohibited

Archive requested, modification prohibited
Archive reguested, delete prohibited

Archive system reguest not completed

File has archive status, modification is prohibited
File is off-line

File has archive status, delete is not permitted
File has no pointer to offline storage

File restore failed

Migration prohibited

Cannot exempt offline file

FDBE incorrect format for ARCF JS¥YS

Eetrieval reguest cannot be fulfilled for walting
Process

Higration already pending

File is offline

Offline expiration time cannot exceed system maximum
Directory too lapge

Invalid record desScriptor in labeled tape
Dismount refused by operator

Illegal to dismount connected structure
Structure not found

Too many user labels

Undefined record format on non-TOFS20 tape

Tape mounting function disabled by installation
METEE% not supported on this processor
Connection not accepted

Regource allocation failure

Destination node does not exist

Hode shutting down

Destination process does not exist

Invalid process name

Destination process gueus overflow

Unspecified ercor

Connection aborted by third party

Link aborted by process

HSF Failure = Flow control wialation

Too many connections to node

Too many connections to destipation process
Aecess denied due to unacceptable uger name of password
HEP failure - invalid SERVICES field

Invalid account

HSP failure - invalid SEGSIZ field

Process aborted, timed out, or cancelled reguest
Ho path to destimation nodé

HEF failure = flow control failure

H5F failure - invalid DSTADDR

Disconnect confirmation

M5F failure - image data field too long
Structure is set IGRORED

cannot overwrite wolume = first File iz not expired
Cannot overwrite volume - write access reguired
Tape label format error

Unit already online

A=15

DIAGL2
DESX1]
MSPX23
ARGNIE
HPFX2CL
ARGKIG
ARCXIO
ARGXI]
DEVX?Y

GJFX52
GOKER3
1032

I0X33

ESIRX1
SIRK2

RIERX1

XSIRX2
MEED3]
SHMAFX1
TTMSEX1
MOMX 06
BOTX DG
BOTXO?
BOTXOR
BOTX09
BOTX10
BOTX11
BOTX12
BOTX13
BOTX14
BOTX1S
BOTX1E
BOTX17

BOTH1E
HTMX1

COoOMX21
DELX13
ANTXO01
TTYX02
HEEXZ4
HEEXZS
HEPXZE
GJIFNS3
10834

I0X35

PMAPXE
EMARNZ
GJFX54

602407
602410
602411
602412
602413
602414
602415
602416
602417
602420
602421
602422
602423
602424
02425
BOZ426
602427
602430
602431
602432
6024313
602434
602435
602436
602437
602440
602441
602442
602443
B02444
602445
602446
602447

602450
602451
602452
602453
602454
602455
602456
602457
602460
602461
602462
602463
602464
602465
02466

ERROR CODES AND MESSAGE STRIMGES

Unit mot online

Invalid operation for thi=s label type

Invalid HSPF reason code

not available on this system

Two colons reguired on node name

Invalid class share

Invalid ENOB walue

Class Scheduler already enabled

Hull device name given

End of tape encountered while searching for file
JEYE not executed within ACJ fork

Tape position is indeterminate

TTY input buffer full

Channel table crosses section boundacy

SIR JS8YS invoked from non-zero section

RIR JEYS incompatible with previous XSIE

Level table crosses Section boundarcy
Insufficient MOUNTE resources

Attempt to delete a section still shared

Could not send message within timeout interwval .

Insufficient system resources (Ho swappable free space)
GTJFM failed for dump file

OFENF failed for dump file

Dump failed

Ta =10 ercor on dump

Ta =11 error on dump

Failed to assign page on dump

Reload failed

=11 didn't power down

=11 didn't power up

ROM did not ACK the =10

=11 boot program did not make it to =11 .
=11 took more than 1 minute to reload. Will cause

cetry

Unknown BOOT error

Hetwork Management uwnable to complete reguest

Hode name doesn't contain an alphabetic character

File is marked "Hever Delete"

Ho more network terminals available

Illegal character specified

Hode name not assigned to a network node

Illegal DECnet node number

Table of topology watchers is full .
Tape label filename specification exceeds 17 characters
Disk structure completely full

Disk structure damaged, cannct allocate space

Indirect page map loop detected

Indirect section map loop detected

Node name not first field

TOPS-20 Version S A-16 April 1982

Access,
File, 3=-2; 3=16
File append, 3-16
File frozen, 3-16
File read, 3=16
File restricted, 3-16
File thawed, 3-16
File unrestricted, 3=16
File write, 3=16
Page, 5-6
Access bits,
OPENF%, 3-18
PHAPY, 3-24
Accumulators, 1-3
Address,
Global, B-6

Section-relative, B-=5
Address space, 1-5, B=2
Address space,

Process, 1-5
Addressing,

Extended, 8-1
AICY JSYS, 4-9, 5-4
Argument block,

GTJFH%, 3-12
Arguments,

CFORE%, 5-8

DIC%, 5=1

Get®, 5-10

JFHSE%, 3-30

OPENFY; 1-16

PMAPR , 3"2"11

RDTTY%, 2=8

5INY, 3-21

EMAPR, 3-26

S0UTY, 3-21

XRIR%, 4-14

XSIR%, 4-89
ASCII strings, 2=-2, 3=20
ASCIEZ pseuwdo-op, 2-4
ASCIZ strings, 2-2, 3-20
ATIY J5Y5, 4-11

3"25: 5"1&

BINY JS¥S5, 1-4, 3-20
BOUTS J5¥YS5, 3=-20
Byte pointer,

Standard, 2-3

Calling seguence,

Monitor calls, 1-13
CFORE%® arguments, 5-8
CFORE® JSYS, S5-4, 5=6, 5=11

INDEX

Index-1

Channel ,
Panic, 4-9
Channel assignments,
Interrupt, 4-4
Channel table, 4-6
Channels;
Interrupt, 4-3
Panic, 4-14
CHHTAB, 4-6
CIS% JS5YS, 4=14, 5=1
Close file monitor call,
3-27
CLOSF% flag bits, 3-=27
CLOSFY JSYS, 3-27
Closing a file, 3=27%
Communication,
Frocess, 1=-5%
Communication facility,
Inter-process, 7=1
Control bits;
RDTTY%, 3=1
Conktrol process,
Counter,
Program, 8-=2
Creating sections, =10

1-5

Deadly embrace, 6=15%
DEBRK® J5¥5, 4-10
DEQR functions, &6-11

DEQ% JS¥YS5, 5=-&6, 6=5, 6-10
Descriptor block,
Packet, 7-5
Designator,
Destination, 3-=19
Primary input, 2-13
Primary output, 2=3
Source, 3-19
Destination designator,
3=-19

DICR arguments, 5=1

DICYE J5Y5, 4-14

DIRR J5Y¥Y5, 4-14

Disabling interrupt system,
4-14

DTI® JS5YS, 5-=1

EFIW, B=5

EIRE J5Y5, 4-8, 5-4

EHQ gquota, 6-3

ENQ% functions, &<10
EMQW JSYS, 5-6&, 6=5

EMQ/DEQ, 5-4

ENQCy flag bits, 6-13
ENQCY J5¥5, 5=-6, 6=5, &=12
ERCAL, 1-4

ERIMP, 1-4

Error codes, A-1
Error returns,

Monitor calls; 1-3
EESTR® J5YS5, l1=4
Extended addressing, B-l
Extended format indirect

word, 8=5

Extended instruction format,

B-3

FFORE® JSYS, 8-15
File,
Closing a, 31-27
Opening a, 3-15
File access, 3=2, 3i=16
File append access, 3=l&
File frozen access, 1-16
File indentifier, 3-3
File page mapping, 3I=-24
File pointer, 3-18
File read access, 3I=16
File restricted access,
I=16
File Ssection mapping,., 3I-26
File specification, 3-3
File specifications,
Standard, 13-4
File thawed access, 3I=16
File uncrestricted access,
i-16
File write access, 3i=14
Files,; 3-1

Flag bits,
CLOSF%, 3-27
ENQCR, B-13

GHJFH% , 3-32

GTJFN%, 3-8, 3-12

GTSTS4%, 3-28

MRECVY:, 7-9

MSEMDE, T7=-8
Flﬂqsr

SMAPR, 3-26
Format,

Extended instructiomn, 8=3

Packet, T7-5
Format options,
JFM5%, 3=30
NOUT% , 2-5

Functions,
DEQR, 6-11
EMQ%, 6=10
MUTIL%, 7-14
RDTTY%, 2-8

IMDEX (CONT.}

Getd arguments, 5=10
GET% J5Y¥5, 5-9. 5-10
GETER% J5YS5, 1-4
Global address, 8-6
GHJFN%® flag bits, 3=32
GHJFH% JS5¥Y5, 3-8, 3-3l
GTJFN%,

Long form, 3=-4, 3-11

Short form, 3-4, 3-8
GTJFN%® argument block, 3-12
GTIJFN% bits returned, 3-9
GTJFR% flag bits, 3-8, 3-12
GTJFHN% JSY5, 3-3, 3-4
GT5T5% flag bits, 3=-28
GTSTSW J5YS, 3-27

HALTF% JS¥5, 2-6, 2-7
Handle,

Section, H=16
Handle section, B=16

IFIW, 8-4
IICY J5%¥5, 4=-9, 5-4
Illegal instruction trap,
1-4
Indentifier,
File, 3-3
Inferior process, 1=5
Info,
<S¥YSTEM>, 7-5%, T-=8
Input,
Terminal, 2-1
Input designator,
Primary, 2-3
Instruction format,
Extended, B=3
Instruction format indirect
word, 8=4
Inter-process communication
facility, T=1
Inteccupt, 4-2
Intercupt chanmel
assignments, 4-4
Intercupt channels, 4-3
Intercupt conditions, 4-2
Intercupt deferred mode,
Terminal, 4-12
Intercupt dismissing, 4-=10
Interrupt immediate mode,
Terminal, 4-12
Interrupt priority levels,
4=4
Intercupt processing, 4-=-9
Intercupt Service routines,
4=5

Index-2

Interrupt syste
Disabling, 4=

Intercupts,
Terminal , 4-1

IPCF, 5=4

JFN, 3-2, 3-3

JFHSR arquments

JFMSR format op
JFHNS® J5¥Y5; 1=2
Job, 1-5

Job file number
J8YS, 1-2, 1-13
JEYS,

AIC%, 4=9, 5=
ATI%, 4-11
BIN%, 1-4, 3=
BOUT%, 3-20
CFORKR, 5-4,
CIS%, 4-14, 5
CLOSFW, 3-27
DEBRER:, 4-10
DEQ%, S5-6, 6-
DIC%, 4-14
DIR%: 4-14
DTI&, S5-1
EIR%, 4-8, 5-
EHQ‘: 5‘5: E—
ENQCR®, 5-6, &
ERSTRY, 1-4
FFORKL, B-15
GET‘i 5"9: 5"
GETER%, 1-4
GHIFN%, 3-8,
GTJFH%, 3-3,
GTSTS54%, 3-27
HALTF%, 2-8&,
IIC%, 4-9, 5-
JFN5%, 3-28
KFORKRY, 5-4,
MRECVE, 5-4,
MSEND%, 5-4,
MUTIL%, 5-4,
WIME, 2-4
HOUTR, 2=-5
OPENF®, 1-2,
PEIN%, 2=7
PEOUTY, I-8
FMAPY, 3-19,
E_ﬁr 5—10.
PSOUTS, 2-3,
ROTTYR, 2-4,
RESETR%, 2-6,
RFOREW, B-15
RF5TS5%, 5-4,
RIN%, 3-22
RIR%, 4-13

me
14

0

y 3-30
tions, 3-30
B

r 3=2, 31=3

4

20

5-5! 5"11
=1

5, &=10

4

5

-5, G=12

1o
3l
14

i

3=
2-
4

5-14
7-7. 7-8
?-ﬁp Fll'-T
7-13

i-16

3-23,
g-8
-4
2=8
Z-T,

3-26,

6=2

5=12

INDEX (CONT.)

JEYS [Cont.)

ROUTR:, 3=22
REMAPY, B-15
SAVER, 5-10
SEVEC%, 8-15
SFORKR, 5-4, 5-12,
SIM%, 3-20
SIR%, 4=7, 5-4
SKEPIRR, 4-13
SMAPR, 3-26, B-9
S0UT:, 3=-20
S5AVER, 5-10
ETIWR, 4-=12
WFORES®, 5-4, 5-12
XGTPWR, B-17
XGTRPR, B8-17
MGVECR, B-16
XRIRR, 4-13
XRMAPR, B-15
XSFORK%, B-15
X5IR%, 4=-7, 4-14
XSVECY, B8-15
KFORK% J5¥YS5, 5-4, 5-1

LEVTAB, 4=7
Literals, 2-2
Long form GTJFN%, 3-=4

Mapplng.,
File page,
File section,
Page, 5=10
Process, 31-25
Process section,
Section, H=9

Moniter call,
Cloge file, 3=27
Section mapping, 3-

Monitor calls, 1-3

Monitor calls calling

seguence, 1-3

Monitor calls error

1-3

Monitor calls operati

code, 1=3

Moniktor calls returns

MONSYM, 1-3, 2-3

MRECYVY flag bits, 7=9

MRECVY JSYS, S5=4, 7=7

HSEHD&® flag bits, 7=8

MSENDR J5YS, 5=4, T=-6

MUTIL® functions, 7-1

3-24
3-26

Index-3

8-14

4

4

26

eEUrng ,

on

s 1=13

W ?_E

g 1=17
4

MUTIL% JS5¥5, 5-4, T7=13

HIN® J5¥5, 2-4
WOUT: format options, 2-5
HOUT% JS¥S, 2-5

OPENFY access bits, 3-18
OPENFY arguments, 3-16
OPENF® J5¥S5, 3=2, 131=16
Opening & file, 3-15
Operation code,

Monltor calls, 1-3
Cutput ,

Terminal, 2=1
Output designator,

Primary, 2-3

Packet, 7=5
Packet data block, 7=%
Packet descriptor block,
T=5
Packet format, 7-5
Fage access, 5-6
Page mapping, 5=10
File, 3-24
Fage sharing, 5-6
Fanic channel, 4-=9
Panic channels, 4-14
PRIMY JSYs, 2-7
PROUTR: J5¥5, 2=B
PC, B-2
PID, 7=5
PMAP% access bits, 3-24
PMAPY arguments, 3=24, 3=25%,
5=10
PHAPY J5¥5, 3-1%9, 3-23,
3-26, 5-6, 5-10, B-8
POINT pseudo=-op, 2=2
Polnter,
File, 3-18
Standard byte, 2-=3
.FRIIN, 2=-3, 2=8
Primary input designator,
2=3
Primary output designator,
2=3
Prioricy level table, 4=7
Priority levels,
Intercupt, 4-4
.FRICW, 2-3
Process, 1=5, 5=1
Process,
Control, 1-%

INDEX

Index-4

[{CONT .}

Process (Cont.)
Inferice, 1=5%
Starting inferior, 5-11

Process address space, 1=5,
E=f

Process capabilities, 5-8

Process communicatiom, 1-=-5,
=3, 5=113

Process control, 5-=4

Process handle, 5=6

Process identifier, 5-6

Process mapping, 3=25

Process relationships, 5-3

Process scheduling, 5-3

Process section, 3-26

Process section mapping,
=9

Frocess section unmapping,
g-11

Process status word, 5=13

Process structure, 1-5

Process unmapping, 3-25

Program counter, B-2

Pseudo=-op .,
ASCIZ, 2-4
POINT, 2-2

PS0O0TR J5YS, 2-3, 2-4

Quota,
Beceive, 7-5
Send, 7=5

ROTTYY arguments, 2-8
EDTTY% control bits, 3=1
EDTTY% functions, 2-8
RDTTY¥% J5Y¥8, 2-4, 2-8
Feceive guota, 7-5
RESET% J5¥5, 2=-6, 2=-T7, 6-2
Fesource lock, &6-4
Regource ownership, &6=2
Returns,

Monitor calls, 1=3
RFORE® JSYS, B-15
RF5TS5% J5¥5, 5-4, 5-12
RIN%® JE¥E&, 3-22
FIRR JSY¥YS, 4-13
ROUTS JSY¥S5, 3-22
REMAPR JS¥S5, 8=15%

SAVER J5Y5; 5-10
Section,

Handle; 8-=16
Section handle, 8-16&

Section mapping, E-9
File, 3-26
Process, B-9
Section mapping monitor
call, 3-26
Section unmapping,
Process, 8-11
Section-relative address,
B=-5
Sections,
Creating, B=10
S5end quota, 7-5
SEVECY J5YS, 8-15
SFORER JSY¥YS, 5-4, 5-12,
B=14
Sharer group, 6-14
Ehort form GTJFN%, 3-4, 3-8
S5IN% arguments, 3=-21
EINR JS¥S5, 3-20
S5IRY JS5¥5, 4=-T7, 5=d
SKPIR% JSYS, 4-13
SMAPR® arguments,
S5MAFY flags, 31-16

3=26

BMAFR JSYS, 3-26, B-9
Software interrupt system,
1-4, 4=1

Source designator, 3-19
SOUT% arguments, 3-21
E00Tw JS¥5, 3-20

SSAVER JS5YS, 5=10
Standard file

specifications, 3-4
STIW% JS5YS, 4-=12
Strings,

ASCII, 2-2, 3-20

ASCIZ, 2-2, 3-20
Structure,

Process, 1-5

IHDEX

Index-5

{CONT.)

<EYSTEM: info, 7-5, 7-6

Table,
Channel , 4=-6
Priocity level, 4-7
Terminal input, 2-1
Terminal interrupt deferred
mode, 4-12
Terminal interrupt
immediate mode, 4-12
Terminal intercupts, 4-10
Terminal output, 2-1

Unmapping,
Process, 3-25
Process section.

WFORKR® JSYS, S5=4,

8-11
5=12

XGTPWE J5Y¥5,
XGTEPE J5Y¥5,
XGVECY JSY¥S,
XHLLI, B-7
XMOVEI, B-6
XRIR: arguments, 4-14
XRIRR JS¥S5, 4-13
XRMAPY JS5¥5, B-15
XSFORE® J5Y5, 8-15
XSIRE arguments, 4-8
XSIR% J5¥5, 4-7, 4-14
XSVECY JS¥5, 8-15

8=17
8=17
B-16

TOPS-20
Monitor Calls User's Guide
AA-DBSOB-TM

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on
this form at the company’s discretion. If you require a written reply and are eligible to
receive one under Software Performance Report (SPR) service, submit your com-
ments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make sugges-
tions for improvement.

Did you find errors in this manual? If so, specify the error and the page number,

Please indicate the type of reader that you most nearly represent.

Ll Assembly language programmer

[Higher-level language programmer

[] Occasional programmer (expernenced)
[] User with little programming experience
[Student programmer
[] Other (please specify)

Name Date

Organization Telephone

Street

City State Zip Code —

or Country

—————————— Do Mot Tear - Fold Here and Tape - - - ----—-—- - e s s s s == ==

‘ “ “ | No Postage

t Mecessary
mnaﬂlan if Mailed in the
United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 33 MAYMARD MASS

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS
200 FOREST STREET MR1-2/L12
MARLBOROUGH, MASSACHUSETTS 01752

————————— Do Mot Tear - Fold Here and Tape - — - - - EfEss s ===

Cut Along Dotled Line

