
•

•

•

•

•

TOPS-20
Monitor Calls User's Guide
AA-08598-TM

April 1982

This manual describes the use of TOPS-20 monitor calls,
which provide user programs with system services such as
input/output, process control, file handling, and device control.

This manual supersedes the DECsystem-20 Monitor Calls
User's Guide, order number DEC-20-0MUGA-A-D .

OPERATING SYSTEM: TOPS-20 (KS/KL Model A) , V4
TOPS-20 (KL Model B) , V5

Software and manuals should be ordered by title and order number. In the United States. send orders
to the nearest distribution center. Outside the United States. orders should be directed to the nearest
DIGITAL Field Sales Office or representative.

Northeast/Mid-Atlantic Region Central Region Western Region

Digital Equipment Corporation Digital Equipment Corporation Digital Equipment Corporation
PO Box CS2008 Accessories and Supplies Center Accessories and Supplies Center
Nashua, New Hampshire 03061 1050 East Remington Road 632 Caribbean Drive
Telephone:(603)884-6660 Schaumburg, Illinois 60195 Sunnyvale, California 94086

Telephone :(312)640-5612 Telephone:(408) 734-4915

d1g1tal equipment corporation • marlboro massachusetts

First Printing, May 1976
Revised, April 1982

Copyright ©, 1976, 1982 Digital Equipment Corporation. All Rights Reserved .

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies .

The following are trademarks of Digital Equipment Corporation :

DEC DECnet IAS
DECUS DECsystem-1 o MASSBUS
DECSYSTEM-20 PDT PDP
DECwriter RSTS UNIBUS
DIBOL RSX VAX
EduSystem VMS VT

~D!DD~D RT

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in preparing future
documentation.

•

•

•

•

•

•

•

•

•

PREFACE

CHAPTER 1

1.1
1. 2
1. 2 .1
1. 2. 2
1. 3

CHAPTER 2

2.1
2.2
2.3
2.4
2.5
2.6
2.6.1
2.6.2
2.7
2.8
2.9
2.10

CHAPTER 3

3.1
3.2
3.3
3. 3 .1
3.3.1.1
3.3.1.2
3.3.1.3
3 . 4
3. 4 .1
3. 5
3. 5 .1
3. 5. 2
3. 5. 3
3. 5. 4
3. 5. 5
3.5.6
3. 5. 6 .1
3. 5. 6. 2
3.5.6.3

CONTENTS

INTRODUCTION

OVERVIEW ..
MONITOR CALLS

Calling Sequence
Returns

PROGRAM ENVIRONMENT

INPUT AND OUTPUT USING THE TERMINAL

OVERVIEW ...
PRIMARY I / O DESIGNATORS
PRINTING A STRING
READING A NUMBER . . .
WRITING A NUMBER . .
INITIALIZING AND TERMINATING THE PROGRAM

RESET % Monitor Call
HALTF % Monitor Call

READING A BYTE .
WRITING A BYTE .
READING A STRING
SUMMARY . .

USING FILES

OVERVIEW
JOB FILE NUMBER
ASSOCIATING A FILE WITH A JFN

GTJFN % Monitor Call
Short Form of GTJFN %
Long Form of GTJFN %
Summar y of GTJFN %

OPENING A FILE . . .
OPENF % Monitor Ca ll

TRANSFERRING DATA
File Pointer . . .
Source and Destination Designators
Transferring Sequenti a l Bytes
Transferring Strings
Transferring Nonseguential Byt e s
Mapping Pages
Mapping File Pages to a Process
Mapping Process Pages to a Fil e
Unmapping Pages in a Process . .

iii

1-1
1-2
1-2
1-3
1-4

2-1
2-2
2-3
2-3
2-4
2-6
2-6
2-6
2-7
2-7
2-7

2-11

3-1
3-2
3-2
3-4
3-4

3-11
3-15
3-15
3-16
3-1 8
3-18
3-19
3-19
3-20
3-22
3-22
3-23
3-24
3-25

3. 5. 7
3.6
3.6.1
3. 7
3. 7 .1
3. 7. 2
3. 7. 3
3.8
3.9

CHAPTER 4

4.1
4.2
4. 3
4.4
4. 4 .1
4. 4. 2
4. 4. 3
4. 5
4.6
4.7
4.8
4.8.1
4.9
4.10
4.10.1
4.10.2
4.10.2.1
4.10.2.2
4.10.3
4.10.4
4 . 10.5
4.10.6
4 .11
4.12

CHAPTER 5

5.1
5.2
5.2.1
5. 2. 2
5. 2. 3
5.2.4
5.3
5.4
5.5
5.5.1
5.6

5. 6 .1
5. 6. 2
5.7
5.8

CONTENTS (Cont.)

Mapping File Sections to a Process
CLOSING A FILE

CLOSF % Monitor Call
ADDITIONAL FILE I / O MONITOR CALLS

GTSTS % Monitor Call
JFNS % Monitor Call .
GNJFN % Monitor Call

SUMMARY
FILE EXAMPLES

USING THE SOFTWARE INTERRUPT SYSTEM

OVERVIEW
INTERRUPT CONDITIONS
SOFTWARE INTERRUPT CHANNELS AND PRIORITIES
SOFTWARE INTERRUPT TABLES

Channel Table
Priority Le vel Table
Specifying the Software Interrupt Tables

ENABLING THE SOFTWARE INTERRUPT SYSTEM
ACTIVATING INTERRUPT CHANNELS
GENERATING AN INTERRUPT
PROCESSING AN INTERRUPT

Dismissing an Interrupt
TERMINAL INTERRUPTS
ADDITIONAL SOFTWARE INTERRUPT MONITOR CALLS

Testing for Enablement
Obtaining Interrupt Table Addresses
The RIR% Monitor Call
The XRIR% Monitor Call .. .
Disabling the Interrupt System
Deactiv ating a Channel . .
Deassigning Terminal Codes ..
Clearing the Interrupt System

SUMMARY
SOFTWARE INTERRUPT EXAMPLE

PROCESS STRUCTURE

USES FOR MULTIPLE PROCESSES
PROCESS COMMUNICATION

Direct Process Control ..
Software Interrupts
IPCF and ENQ/ DEQ Facilities
Memory Sharing

PROCESS IDENTIFIERS
OVERVIEW OF MONITOR CALLS FOR PROCESSES
CREATING A PROCESS

Process Capabilities
SPECIFYING THE CONTENTS OF THE ADDRESS SPACE OF A
PROCESS

GET Monitor Call
PMAP % Monitor Call

STARTING AN INFERIOR PROCESS
INFERIOR PROCESS TERMINATION

iv

3-25
3-26
3-26
3-27
3-27
3-28
3-31
3-34
3-35

4-1
4-2
4-3
4-5
4-6
4-6
4-7
4-8
4-8
4-8
4-9
4-9

4-10
4-12
4-12
4-12
4-12
4-13
4-13
4-14
4-14
4-14
4-14
4-15

5-2
5-3
5-3
5-3
5-3
5-4
5-4
5-6
5-6
5-8

5-8
5-9

5-10
5-11
5-11

•

•

•

•

•

•

•

•

•

•

5.9
5.10
5.11
5.12

CHAPTER 6

6.1
6.2
6.3
6.4
6.4.1
6.4.1.1
6.4.1.2
6.4.2
6. 4. 2 .1
6. 4. 2. 2
6.4.3
6. 5
6.6

CHAPTER 7

7.1
7.2
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.4
7. 4 .1
7. 4. 2
7. 5
7.5.1
7.5.2
7.6

CHAPTER 8

8.1
8.2
8.2.1
8.2.2
8.2.3
8. 2. 3 .1
8. 2. 3. 2
8.2.4
8. 2. 5
8.2.6
8. 2. 6 .1
8. 2. 6 . 2
8.2.7
8. 2. 7 .1
8. 2. 7. 2

CONTENTS (Cont.)

INFERIOR PROCESS STATUS
PROCESS COMMUNICATION
DELETING AN INFERIOR PROCESS
PROCESS EXAMPLES

ENQUEUE/ DEQUEUE FACILITY

OVERVIEW
RESOURCE OWNERSHIP
PREPARING FOR THE ENQ/ DEQ FACILITY
USING THE ENQ/ DEQ FACILITY . .

Requesting Use of a Resource
ENQ% Functions . . .
ENQ% Argument Block
Releasing a Resource
DEQ% Functions . . .
DEQ% Argument Block
Obtaining Information about Resources

SHARER GROUPS
AVOIDING DEADLY EMBRACES

INTER-PROCESS COMMUNICATION FACILITY

OVERVIEW
QUOTAS .
PACKETS

Flags
PIDs .
Length and Address of Packet Data Block
Directories and Capabilities
Packet Data Block

SENDING AND RECEIVING MESSAGES
Sending a Packet . .
Receiving a Packet

SENDING MESSAGES TO <SYSTEM>INFO •
Format of <SYSTEM>INFO Requests
Format of <SYSTEM>INFO Responses

PERFORMING IPCF UTI LITY FUNCTIONS

USING EXTENDED ADDRESSING

OVERVIEW
ADDRESSING MEMORY AND AC'S

Instr uc tion Format
I ndexing
Indirection . . .
Instruction Format Indirect Word (IFIW)
Extended-Format Indirect Word (EFIW)
AC References
Extended Addressing Examples
Imme diate Instructions
XMOVEI
XHLLI
Other Instruc t ion s ..
Instructions that Affect the PC
Stack Instructions . . .

v

5-12
5-13
5-14
5-15

6-1
6-2
6-3
6-5
6-5
6-5
6-7

6-10
6-11
6-12
6-12
6-14
6-15

7-1
7-1
7-1
7-2
7-5
7-5
7-6
7-6
7-6
7-7
7-8

7-10
7-11
7-12
7-13

8-1
8-2
8-3
8-3
8-4
8-4
8-4
8-5
8-5
8-6
8-6
8- 7
8-7
8-7
8- 7

L

8. 2. 7. 3
8.3
8. 3 .1
8. 3. 2
8. 3. 3
8. 3. 4
8.4
8.4.1
8.4.1.1
8.4.1.2
8.4.1.3
8. 4. 2
8.5
8. 5 .1
8.5.1.1
8.5.1.2
8. 5. 2
8. 5. 2 .1
8. 5. 2. 2
8. 5. 2. 3

APPENDIX A

FIGURE 4-1

4-2
6-1
6-2
7-1
8-1
8-2
8-3
8-4

TABLE 2-1
2- 2
3-1

3-2
3-3
3-4
3-5
3-6
3-7
4- 1
4- 2
5-1
5-2

CONTENTS (Cont.)

Byte Instructions
MAPPING MEMORY . . .

Mapping File Sections to a Process
Mapping Process Sections to a Process
Creating Sections
Unmapping a Process Section

MODIFYING EXISTING PROGRAMS
Data Structures
Index Words
Indirect Words •
Stack Pointers .
Using Monitor Calls

WRITING MULTISECTION PROGRAMS
Controlling a Process in an Extended Section •
Starting a Process in a Nonzero Section
Setting the Entry Vector in Nonzero Sections
Obtaining Information About a Process
Memory Access Information
Entry Vector Information .
Page-Failure Information .

ERROR CODES AND MESSAGE STRINGS

FIGURES

Basic Oper a tional Sequence of the Software
Interrupt System
Channels and Priority Le vels
Deadly Embrace Situation
Use of Sharer Groups . . .
IPCF Packet
Program Counter Address Fields
Instruction-Word Address Fields
Instruction-Format Indirect Word
Exte nded-Format Indirect Word

TABLES

NOUT % Format Options
ROTTY % Control Bits
Standard Syste m Values for Fil e
Spe cifications .
GTJFN% Flag Bits
Bits Returned on GTJFN% Call .
Long Form GTJFN % Argument Block
OPENF % Access Bits
Bits Re turned on GTSTS % Ca ll .
JFNS % Forma t Options
So ftwa r e Inte rrupt Ch a nne l As signme nts
Te rminal Cod es and Conditions
Process Handles
Process Status Word

v i

8-8
8-8
8-9
8-9

8-10
8-ll
8-ll
8-12
8-12
8-12
8-12
8-12
8-13
8-14
8-14
8-14
8-15
8-15
8-16
8-17

4-2
4-5
6-4

6-14
7-2
8-2
8-3
8-4
8-4

2-5
2-8

3- 3
3-4
3-9

3-ll
3-16
3-27
3-30

4- 4
4- 10

5-5
5-12

•

•

•

•

•

•

•

•

•

•

6-1
6-2
7-1
7-2
7-3
7-4
7-5
7-6

CONTENTS (Cont.)

ENQ% Functions
DEQ% Functions
Packet Descriptor Block Flags
Flags Meaningful on a MSEND% Call
Flags Meaningful on a MRECV% Call
<SYSTEM >INFO Functions and Ar guments
<SYSTEM>INFO Responses
MUTIL% Functions . . .

vii

6-6
6-11

7-3
7-7
7-9

7-12
7-13
7-14

•

•

•

•

•

•

•

•

•

•

PREFACE

The TOPS-20 Monitor Calls User's Guide is written for the assembly
language user who is unfamiliar with the DECsystem-20. The manual
introduces the user to the functions that he can request of the
monitor from within his assembly language programs. The manual also
teaches him how to use the basic monitor calls for performing these
functions.

This manual is not a reference document, nor is it complete
documentation of the entire set of monitor calls. It is organized
according to functions, starting with the simple and proceeding to the
more advanced.

Each chapter should be read from beginning to end. A user who skips
around in his reading will not gain the full benefit of this manual.
Once the user has a working knowledge of the monitor calls in this
document, he should then refer to the TOPS-20 Monitor Calls Reference
Manual (AA-4166E-TM) for the complete descriptions of all the calls.

To understand the examples in this manual, the user must be familiar
with the MACRO language and the DECsystem-20 machine instructions .
The TOPS-20 MACRO Assembler Reference Manual (AA-4159C-TM) documents
the MACRO language. The TOPS-20 LINK Reference Manual describes the
linking loader. The DECsystem-10/DECSYSTEM-20 Processor Reference
Manual (AA-H391A-TK) contains the information on the machine
instructions. These three manuals should be used together with the
Monitor Calls User's Guide, and should be referred to when questions
arise on the MACRO language or the instruction set.

In addition, some of the examples in this manual contain macros and
symbols (MOVX, TMSG, JSERR, or JSHLT for example) from the MACSYM
system file. This file is a universal file of definitions available
to the user as a means of producing consistent and readable programs.
A listing of MACSYM.MAC is available in Appendix C of the TOPS-20
Monitor Calls Reference Manual.

Finally, the user should be familiar with the TOPS-20 Command Language
to enter and run the examples. The TOPS-20 User's Guide (AA-4179C-TM)
describes the TOPS-20 commands and system programs .

ix

•

•

•

•

•

•

•

•

•

•

CHAPTER 1

INTRODUCTION

1 . 1 OVERVIEW

A program written in MACRO assembly language consists of a series of
statements, each statement usually corresponding to one or mor e
machine language instructions. Each statement in the MACRO program
may be one of the following types:

1. A MACRO assembler directive, or pseudo-operation (pseudo-op),
such as SEARCH or END. These pseudo-ops are commands to the
MACRO assembler and are performed when the pr ogram is
assembled. Refer to the DECsystem-20 MACRO Assembler
Reference Manual for detailed desc r1pt1ons--or- the MACRO
pseudo-ops.

2. A MACRO assembler direct assignment
statements are in the form

statement. These

3.

4.

5 .

symbol=value

and are used to assign a specific value to a symbol .
Assignment statements are processed by the MACRO assembler
wh e n the p rogram i s assembl ed . These statements do not
generate instructions or data in the assembled program.

A MACRO assembler constant declaration sta tement, such as

ONE: EXF 1

These stateme nt s are processed wh e n the program is assembled .

An instruction mnemonic, or symbolic instruction code , such
as MOVE o r ADD . These symbolic instruction codes represent
the operations performed by the central processor when the
program is exec ut ed. Refer t o the Hardware Reference Manual
for detailed descriptions of the symbol i c instruction cod e s .

A monitor call , or JSYS , such as RE SET or BIN. The s e ca ll s
ar e commands to the monitor and ar e pe rforme d wh e n the
program is executed. This manual describes the commonly-used
monitor calls. However, the user shou l d refer to the TOPS- 20
Monitor Calls Reference Manual for de tailed descriptions of
a ll the carrs .

1-1

INTRODUCTION

When the MACRO program is assembled, the MACRO assembler processes the
statements in the program by

• translating symbolic instruction codes to binary codes.

• relating symbols to numeric values.

• assigning relocatable or absolute memory addresses.

The MACRO assembler also converts each symbolic call to the monitor
into a Jump-to-Sy stem (JSYS) instruction.

1.2 MONITOR CALLS

Monitor calls are used to request monitor functions, such as input or
output of data (I / 0), error handling, and number conversions, during
the execution of the program. These calls are accomplished with the
JSYS instruction (operation code 104), where the address portion of
the instruction indicates the particular function.

Each monitor call has a predefined symbol indicating the particular
monitor function to be performed (e.g., OFENF% to indicate opening a
file). The symbols are defined in a system file called MONSYM.
Monitor calls defined in Release 4 and later, require a percent
sign(%) as the final character in the call symbol. Monitor Calls
defined prior to Release 4 do not require the %, but do accept it.
The current convention is that all monitor calls use the % as part of
the call symbol. This manual follows that convention. (Refer to the
TOPS-20 Monitor Calls Reference Manual for a listing of the MONSYM
file.) Tc use ~ymbols and to cause them to be defined correctly,
the user's program must contain the statement

SEARCH MONSYM

at the beginning of the program. During the assembly of the program,
the assembler replaces the monitor call symbol with an instruction
containing the operation code 104 in the left half and the appropriate
function code in the right half.

Arguments for a JSYS instruction are placed in accumulators (ACs).
Any data resulting from the execution of the JSYS instruction are
returned in the accumulators or in an address in memory to which an
accumulator points. Therefore, before the JSYS instruction can be
executed, the appropriate arguments must be placed in the specific
accumulators.

1.2.1 Calling Sequence

Arguments for the calls are placed in accumulators 1 through 4
(AC1-AC4). If more than four arguments are required for a particular
call, the arguments are placed in a list to which an accumulator
points. The arguments for the calls are specific bit settings or
values. These bit settings and values are defined in MONSYM with
symbol names, which can be used in the program. In fact, it is
recommended that the user write his program using symbols whenever
possible . This makes the program easier to read by another user. Use
of symbols also allows the values of the symbols to be redefined
without requiring the program to be changed. In this manual, the

1-2

•

•

•

•

•

•

•

•

•

•

INTRODUCTION

arguments for the monitor calls are described with both the bit
settinas and the symbol names. All program examples are written using
the symbol names.

The set of instructions that place the arguments in the accumulators
is followed by one line of code giving the particular monitor call
symbol. During the program's execution, control is transferred to the
monitor when this line of code is reached.

1.2.2 Returns

After the execution of the call, control returns to the user's program
at one of two places. If an error occurs during the call's execution,
control generally returns to the instruction immediately following the
monitor call. In addition, an error code may be stored in an
accumulator to indicate the exact cause of the failure. This error
code can be obtained by the program and translated into its
corresponding error mnemonic and message string with the GETER% and
EFSTR% monitor calls (refer to Appendix A for the list of error codes,
mnemonics, and message strings). If the execution of the call is
successful, control generally returns to the second instruction
following the monitor call. Data returned from the execution of the
call is stored in an accumulator or in an address pointed to by an
accumulator.

However, for some monitor calls, only a single return to the
instruction following the call occurs. On a successful return, that
instruction is executed. If an error occurs during the execution of
the call, the monitor examines the instruction following the call. If
the instruction is a JUMP instruction with the AC field specified as
either 16 or 17, the monitor transfers control to a user-specified
address. If the instruction is not a JUMP instruction, the monitor
generates an illegal instruction trap indicating an illegal
instruction, which the user's program can process via the software
interrupt system (refer to Chapter 4). If the user's program is not
prepared to process the instruction trap, it is terminated, and a
message is output stating the reason for failure.

To place a JUMP instruction in his program, the
statement using one of two predefined symbols.

ERJMP address
ERCAL address

(=JUMP 16,)
(=JUMP 17,)

user can include
These symbols are

a

and cause the assembler to generate a JUMP instruction. The JUMF
instruction is a non-operation instruction (i.e., a no-op) as far as
the hardware is concerned. However, the monitor executes the JUMP
instruction by transferring control to the address specified, which is
normally the beginning of an error processing routine written by the
user. If the user includes the ERJMP symbol, control is transferred
as though a JUMPA instruction had been executed, and control will not
return to his program after the error routine is finished. If the
user includes the ERCAL symbol, control is transferred as though a
PUSHJ 17, address instruction had been executed. If the error routine
executes a POPJ 17, instruction, control will return to the user's
program at the location following the ERCAL.

The ERJMP and ERCAL symbols can be used after all monitor calls,
regardless of whether the call has one or two returns. To handle
errors consistently, users are encouraged to employ these symbols with
all calls. The ERJMP or ERCAL is a no-op unless it immediately
follows a monitor call that fails.

1-3

I

I

I

I

INTRODUCTION

The following is an example of executing a monitor call (BIN%, refer
to Chapter 3) that has a single return. If the execution of the call
is successful, the program reads and stores a character. If the
execution of the call is not successful, the program transfers control
to an error routine. This routine processes the error and then
returns control back to the main program sequence. Note that ERCAL
stores the return address on the stack .

DOIT: MOVE Tl ,I NJFN
BIN %

ER CAL ERROR
MOVEM T2,CHAR
JRST DOIT

ERROR : MOVE Tl ,I NJFN
GTSTS %
TXNE T2,GS %EOF
JRST EOF
HR ROI Tl,[ASCIZ /

?INPUT ERROR, CONTINUING
/]

PS OUT %
RET

; obtain JFN for input file
;input one character
;call error routine if problem
;store character
;and get another
;input JFN
;read file status
;end of file?
; yes , process end-of-file condition
;no, data error

;print message
;r eturn to program (POPJ 17,)

1.3 PROGRAM ENVIRONMENT

The user program environment in the TOPS-20 operating system consists
of a job structure that can contain many processes. A process is a
runnable or schedulable entity capable of performing computations in
parallel with other processes. This means that a runnable program is
associated with at least one process.

Each process has its own address space for storing its computations.
This address space is called virtua l space because it is actually a
"window" into physical storage. The address space is divided into 32
sections. Each section is divided into 512 (decimal) pages, and each
page contains 512 (decimal) words. Each word contains 36 bits.

A process can communicate with other processes in the following ways:

• explicitly, by software interrupts or system facilities (the
inter-process communication facility, or IPCF, for example).

• implicitly, by changing parts of its environment (its address
space, for instance) that are being shared with other
processes.

A process can create other processes inferior to it, but there is one
control process from which the chain of creations begins. A process
is said to exist when a superior process creates it and is said to end
when a superior process deletes it. Refer to Chapter 5 for more
information on the process structure.

A set of one or more related processes, normally under control of a
single user, is a job. Each active process is part of some job on the
system. A job is defined by a user name, an account number, some open
files, and a set of running and / or suspended processes. This means
that a job can be composed of several running or suspended programs.

TOPS-20 Version 5 1-4 April 1982

•

•

•

•

•

•

•

•

•

•

INTRODUCTION

The following diac;iram illustrates a job structure consisting of four
processes.

--- -
/

............

""' /

~ I

I TOP PROCESS \ Job

\
(

I Process A Process B

\ I
\ Process C

I
\ /

""' /
............ _..... - MA·S-2037 ·82

Both process A and process B are created by the control process and
thus are inferior to it. Process C is created by process B and thus
is inferior to process B only .

In summary, processes can be considered as independent virtual
machines with well-defined relationships to other processes in the
system, and a job is a collection of these processes .

1-5

•

•

•

•

•

•

•

•

•

•

CHAPTER 2

INPUT AND OUTPUT USING THE TERMINAL

One of the main reasons for using monitor calls is to transfer data
from one location to another. This chapter discusses moving data to
and from the user's terminal .

2.1 OVERVIEW

Data transfers to and from the terminal are in the form of either
individual bytes or text strings. The bytes are 7-bit bytes. The
strings are ASCII strings ending with a 0 byte. These strings are
called ASCIZ strings.

To designate the desired string, the user's program must include a
statement that points to the beginning of the string being read or
written. The MACRO pseudo-op, POINT, can be used to set up this
pointer, as shown in the following sequence of statements:

PTF:
MSG:

MOVE ACl,PTR

POINT 7,MSG
ASCIZ / TEXT MESSAGE /

Accumulator 1 contains the symbolic address (PTR) of the pointer. At
the address specified by PTR is the pointer to the beginning of the
string. The pointer is set up by the POINT pseudo-op. The general
format of the POINT pseudo-op is:

POINT decimal-byte-size,address,decimal-byte-position

(Refer to the MACRO Assembler Reference Manual for more information on
the POINT pseudo-op.) In the example above, the POINT pseudo-op has
been written to indicate 7-bit bytes starting before the left-most bit I
in the address specified by MSG.

Another way of setting up an accumulator to contain the address of the
pointer is with the following statement:

HRROI ACl, [ASCIZ / TEXT MESSAGE /)

2-1

I

I

L

INPUT AND OUTPUT USING THE TERMINAL

The instruction mnemonic HRROI causes a -1 to be placed in the left
half of accumulator 1 and the address of the strina to be placed in
the right half. However, in the above statement, a literal (enclosed
in square brackets) has been used instead of a symbolic address. The
literal causes the MACRO assembler to:

• store the data within brackets (i.e., the string) in a table.

• assign an address to th e first word of the data.

• i~sert that address as the operand to the HRROI instruction.

Literals have the advantage of showing the data at the point in the
program where it will be used, instead of showing it at the end of the
program.

As far as the I / O monitor calls a re conc e rned, a word in this format
(-1 i n th e left half and an address in the right half) designates the
sys tem's standard pointer (i.e., a pointer to a 7-bit ASCIZ string
beginning before the leftmost byte of the string). The HRROI
statement is interpr e ted by the monitor to be functionally equivalent
to the word assembled by th e POINT 7, address pseudo-op and is the
recommended statement to use. However, byte manipulation instructions
(e. g ., ILDB, IBP, ADJBP) will not operate properly with this type of
pointer.

After a string is read, t he pointer is advan ced to the character
following the terminating character of the strinq. After a string is
written, the pointer is advanced t o the character - following the last
non-null character written.

2.2 PRIMARY I/O DESIGNATORS

To transfer data from one location to another, the user's program must
indicate the source from which the data is to be obtained and the
destination where the data is to be placed. The two designators used
to represent the user's t e rminal are:

1. The symbol • PRIIN to r ep resent the user's terminal as the
source (input) device.

2. The symbol • PR IOU to represent the user's terminal as the
destination (outpu t) device.

These s ymbols a re called the primary input and output designators and
by default are used to r epresent the terminal controlling the program.
They are defined in the s ymbol file MONSYM and do not have to be
defined in the user's frograrn as long as the program contains the
statement

SEARCH MONSYM

2-2

•

•

•

•

•

•

•

•

•

•

INPUT AND OUTPUT USING THE TERMINAL

2.3 PRINTING A STRING

Many times a program may need to print an error message or some other
string, such as a prompt to request input from the user at the
terminal. The PSOUT% (Primary String Output) monitor call is used to
print such a string on the terminal. This call copies the designated
string from the program's address space. Thus, the source of the data
is the program's address space, and the destination for the data is
the terminal. The program need only supFlY t he pointer to the string
being printed.

Accumulator 1 (ACl) is used to contain the address of the pointer.
After ACl is set up with the pointer to the string, the next line of
code is the PSOUT% call. Thus, an example of the PSOUT% call is:

HFROI ACl,[ASCIZ/TEXT MESSAGE/)
PS OUT%

;strinq to print
;print TEXT MESSAGE

The ASCIZ pseudo-op specifies a left-justi fied ASCII string terminated
with a null (i.e., 0) byte. The PSOUT% call prints on the t erminal
all the characters in the string until it encounters a null byte .
Note that the string is printed exactly as it is stored in the
program, starting at the current position of the terminal's print head
or cursor and ending at the last character in the string. If a
carriage return and line feed are to be output, either before or after
the string, these characters should be inserted as part of the string .
For example , to print TEXT MESSAGE on one line and to output a
carriage return-line fe ed after it, the user's program includes the
call

HRROI ACl,[ASCIZ / TEXT MESSAGE
/]

PSOUT%

Afte r the string is printed,
in the user' s program is
updated to point to the
character written.

the instruction fo llowinq the PSOUT% call
exec uted. Also , the pointer in ACl is

character following the last non-null

If an error occurs during the exec ution of the call, the moni tor looks
for an ERJMP or ERCAL instruction as the next instruction following
the call. If the next instruction is e ither one of these, the monitor
transfers control to the addr ess specifi e d. If the nex t instruction
is not an ERJMP or ERCAL, the monitor generates a n ill ega l instr uction
trap.

2 .4 READING A NUMBER

The NIN % (Numbe r Input) monitor ca ll i s used to read an integer . This
call does not a ssume the termina l a s the so urce designator;
therefore , the user ' s program must specify this. The NIN% ca ll
accepts the numbe r from any valid source designator, including a
string in memory. This section disc usses reading a number directly
from the terminal. Refer to Sect i on 2 .9 for an exampl e of using the
NIN % call to read the number from a string in memory . The des tination
for the number is AC2, and the NIN % call places the binary value of
the number read into thi s accumulator. The user ' s program also
spec ifies a number in AC3 that r epresent s the radix of the numbe r
being input . The radix g i ven cannot be greater th a n base 10.

2- 3

I

INPUT AND OUTPUT USING THE TERMINAL

Thus, the setup for the NIN % monitor call is the following:

MOVEI ACl, .PRIIN

MOVE I AC3, -DlO

NIN %

;ACl contains the primary input designator
; (i.e., the user's terminal)

;AC3 contains the radix of the number being
;input (i.e., decimal number)

;The c a ll to input the number

After completion of the NIN% call, control returns to the program at
one of two places (refer to Section 1.2.2). If an error occurs during
the execution of the call, control returns to the instruction
following the call. This instruction should be a jump-type
instruction to an error processing routine. Also, an error code is
placed in AC3 (refer to Appendix A for the error codes). If the
execution of the NIN % call is successful, control returns to the
second instruction following the call. The number input from the
terminal is placed in AC2.

The NIN% call terminates when it encounters a nondigit character
(e.g., a letter, a punctuation character, or a control character).
This w.eans that if 32Xl were typed on the terminal, on return AC2
would contain a 40 (octal) because the NIN % call terminated when it
read the X.

The followina program prints a message and then accepts a decimal
number from the user at the terminal. Note that since the NIN% call
terminates reading on any nondigit character; therefore, the user
cannot edit his input with any of the editing characters (e.g.,
DELETE, CTRL/ W). The ROTTY call (refer to Section 2.9) should be used
in proarams that read from the terminal because it allows the user to
edit - his input as he is typing it.

SEARCH MONSYM
HRROI ACl,[ASCIZ / Enter #of seconds: /]
PSOUT % ;output a prompt message
MOVEI ACl,.PRIIN ;input from the terminal
MOVEI AC3,-Dl0 ;use the decimal radix
NIN % ;input a decimal number

ERJMP NINERR ;error-go to error routine
MOVEM AC2, NUMSEC ;save number entered

NUMSEC:BLOCK 1

2.5 WRITING A NUMBER

The NOUT % (Number Output) monitor call is used to output an integer.
The number to be output is placed in AC2. The user's program must
specify the destination for the number in ACl and the radix in which
the number is to be output in AC3. The radix given cannot be greater
than base 36. In addition, the user's program can specify certain
formatting options to be used when printing the number.

2-4

I

•

•

•

•

•

•

•

•

•

INPUT AND OUTPUT USING THE TERMINAL

Thus, the general setup for the NOUT% monitor call is as follows:

ACl: output designator

AC2: number being output

AC3: format options in left half and radix in rig h t hal f

The format options that can be specified in the left h a lf of AC3 are
described in Table 2-1.

Table 2-1
NOUT % Format Options

Bit Symbol Meaning

0 N0 %MAG Pr i nt the number as a positive 36-bit
number. For example, -1 would be printed
as 777777 777777.

1 N0 %SGN Print the appropriate sign (+ or -) before
the number. If bits NO %MAG and NO %SGN are
both on, a plus sign is always printed.

2 N0 %LFL Print leading filler. If this bit is not
set, trailing filler is printed.

3 N0 %ZRO Use O's as the leading filler if the
specified number of columns allows filling.
If this bit is not set, blanks are used as
the leading filler if the number of columns
allows filling.

4 N0 %00V Use the setting of bit 5 (N0 %AST) if column
overflows and give an error return . If
this bit is not set, column overflow is not
printed .

5 N0 %AS'I· Print asterisks when the column overflows.
If this bit is not set, and bit 4 (N0 %00V)
is set, all necessary digits are printed
when the columns ove rflow.

6-10 Reserved for DEC (must be zero).

ll-17 N0 %COL Print the number of columns indicated.
This value includes the sign column. If
this field is 0, as many columns as
necessary are printed.

Like the NIN % call, the NOUT % call returns control to the user's
program at one of two places. Control returns to the instruction
following the call if an error is encountered, and an error code is
placed in AC3. Control returns to the second instruction following
the call if no error is encountered .

2-5

I

INPUT AND OUTPUT USING THE TERMINAL

The following example illustrates the use of the three monitor calls
described so far. The RESET % and HALTF% monitor calls are described
in Section 2.6.

SEARCH MONSYM
START: RESET %

HRROI ACl, [ASCIZ / PLEASE TYPE A DECIMAL NUMBER: /]
PS OUT %
MOVE! ACl,.PRIIN
MOVE! AC3,~Dl0
NIN %

ERJMP ERROR

;source designator
;decimal radix

HRROI ACl,[ASCIZ / THE OCTAL EQUIVALENT IS /]
PS OUT
MOVE! ACl,.PRIOU
MOVE! AC3,~D8

NOUT %
ERJMP EFROR

HAL'I'F %
JRST START

ERROR: HF ROI A Cl, [ASCIZ /
?EFFOR-TYPE START TO BEGIN AGAIN /]

PS OUT %
HALTF %
JRST START
END START

;octal radix

;return to command language
;begin again, if continued

2 .6 INITIALIZING AND TERMINATING THE PROGRAM

Two monitor calls that have not yet been described were used in the
above program - RESET % and HALTF %.

2.6.l RESET% Monitor Call

A good programming practice is to include the RESET monitor call at
the beginning of every assembly language program. This call closes
any existing open files and releases their JFNs, kills any inferior
processes, and clears the software interrupt system (see Chapter 4).
The format of the call is

RESET%

and control always returns to the next instruction following the call.

2.6.2 HALTF% Monitor Call

To stop the execution of his program and to return control to the
TOPS-20 Command Lanquage, the user must include the HALTF monitor call
as the last instruction performed in his program. He can then resume
execution of his program at the instruction following the HAL1F% call
by typing the CONTINUE command after control has been returned to
command level.

2-6

•

•

•

•

•

•

•

•·

•

•

INPUT AND OUTPUT USING THE TERMINAL

2.7 READING A BYTE

The PEIN% (Primary Byte Input) monitor call is used to read a single
byte (i.e., one character) from the terminal. The user's p rogram does
not have to specify the source and destination for the byte because
this call uses the primary input designator (i.e., t he user's
terminal) as the source and accumulator 1 as the destination. After
execution of the PBIN % call, control ret urns to the instruction
following the PEIN %. If execution of the call is successful, the byte
read from the terminal is right-justified in ACl. If execution of the
call is not successful, an illegal instruction trap is generated if
the user's progra~ does not have, immediatel y after the PBIN% call, an
FRJMP or ERCAL instruction to an error routine.

2.8 WRITING A BYTE

The PBOUT% (Primary Byte Output) monitor call is used to write a
single byte to the terminal. This call uses the primary output
designator (i.e., the user's terwinal) as the destination for the
byte; thus, the user's program does not have to specify the
destination. The source of the byte being written is accumulator l;
therefore, the user's program must place the byte right-justified in
ACl before the call.

After execution of the PBOUT% call , control returns to t he instruction
following the PBOUT%. If execution of the call is successful, the
byte is written to the user's terminal. If execution of the call is
not successful, an illegal instruction trap is generated if the user's
program does not have, immediately after the PBOUT % call, an ERJMP or
ERCAL instruction to an error routine.

2.9 READING A STRING

Up to this point, monitor calls have been presented for printing a
string, reading and writing an integer, and reading and writing a
byte. The next call to be discussed obtains a string from the
terminal and, in addition, allows the user at the terminal to edit his
input as he is typing it .

The ROTTY% (Read from Terminal) monitor call reads input from the
user's terminal (i.e., from .PRIIN) into the program's address space.
Input is read until the user either types an appropriate terminating
(break) character or inputs the maximum number of characters allowed
in the string, whichever occurs first. Output generated as a result
of character editing is printed on the user's terwinal (i .e., output
to .FRIOU).

The ROTTY% call handles the following editing functions:

1. Delete the last character in the string if the user presses
the DELETE key while t yp ing his input.

2. Delete back to the last punctuation character in the string
if the user types CTRL/ W while t yping his input.

3. Delete the current line if the user t ypes CTRL/ U while t yping
his input.

4. Retype the current line if the user t ypes CTRL/ R while t yping
his input.

2-7

INPUT AND OUTPUT USING THE TERMINAL

Because the ROTTY% call can handle these editing functions, a program
can accept input from the terminal and allow this input to be
corrected by the user as he is typing it. For this reason, the ROTTY
call should be used to read input from the terminal before processing
that input with calls such as NIN%.

The ROTTY% call accepts three words of arguments in ACl through AC3.

ACl:

AC2:

AC3:

pointer to area in program's address space where input is
to be placed. This area is called the text input buffer.

control bits in the left half, and maximum number of bytes
in the text input buffer in the right half.

pointer to buffer for text to be output before the user's
input if the user types a CTRL/ R, or 0 if only the user's
input is to be output on a CTRL/ R.

The control bits in the left half of AC2 specify the characters on
which to terminate the input. These bits are described in Table 2-2.

Bit Symbol

0 RO%BRK

1 RO%'I'OP

2 RO%PUN

Table 2-2
ROTTY% Control Bits

Meaning

Terminate input when user types
CTRL/Z or presses the ESC key.

Terminate input when user types one
the following:

CTRL/G
CTRL/ L
CTRL/ Z
ESC key
RETURN key
Line feed key

Terminate input when user types one
the following:

CTRL/ A-CTRL/ F
CTRL/H-CTRL/ I
CTRL/K
CTRL/N-CTRL/ Q
CTRL/ S-CTRL/ T
CTRL/ X-CTRL/ Y
ASCII codes 34-36
ASCII codes 4 0-57
ASCII codes 72-100
ASCII codes 133-140
ASCII codes 173-176

a

of

of

The ASCII codes listed above represent
the punctuation characters in the
ASCII character set. Refer to an
ASCII character set table for these
characters.

2-8

•

•

•

•

•

•

•

•

•

•

Bit

3

4

5

6

7

8-9

10

ll

12-17

INPUT AND OUTPUT USING THE TERMINAL

Symbol

RD %BEL

RD%CRF

RD%RND

RD%RIE

RD%RAI

RD%SUI

Table 2-2 (Cont.)
RDTTY % Control Bits

Meaning

Terminate input when user types the
RETURN or line feed key (i.e., end of
line).

Store only the line feed in the input
buffer when the user presses the
RETURN key. A carriage return will
still be _output to the terminal but
will not be stored in the buffer. If
this bit is not set and the user
presses the RETURN key, both the
carriage return and the line feed will
be stored as part of the input.

Return to program if the user attempts
to delete past the beginning of his
input. This allows the program to
take control if the user tries to
delete all of his input. If this bit
is not set, the program waits for more
input.

Reserved for DEC (must be zero).

Return to program when there is no
input (i.e., the text input buffer is
empty). If this bit is not set, the
program waits for more input.

Reserved for DEC (must be zero) .

Convert lower case input to upper
case .

Suppress the CTRL/ U indication on the
terminal when a CTRL/ U is typed by the
user. This means that if the user
types a CTRL/ U, XXX will not be
printed and, on display terminals, the
characters will not be deleted from
the screen. If this bit is not set
and the user types a CTRL/ U, XXX will
be printed and, if appropriate, the
characters will be deleted from the
screen. In neither case is the CTRL/ U
stored in the input buffer.

Reserved for DEC (must be zero).

2-9

INPUT AND OUTPUT USING THE TERMINAL

If no control bits are set in the left half of AC2, the input will be
terminated when the user presses the RETURN or line feed key (i.e.,
terminated on an end-of-line condition only).

The count in the right half of AC2 specifies the number of bytes
available for storing the string in the program's address space. The
input is terminated when this count is exhausted, even if a specified
break character has not yet been typed.

The pointer in AC3 is to the beginning of a buffer containing the text
to be output if the user types a CTRL/R. When this happens, the text
in this separate buffer is output, followed by any text that has been
typed by the user. The text in this buffer cannot be edited with any
of the editing characters (i.e., DELETE, CTRL/W, or CTRL/U). If the
contents of AC3 is zero, then no such buffer exists, and if the user
types CTRL/R, only the text in the input buffer will be output.

If execution of the ROTTY call is successful, the input is in the
specified area in the program's address space. The character that
terminated the input is also stored. (If the terminating character is
a carriage return followed by a line feed, the line feed is also
stored.) Control returns to the user's program at the second location
following the call. The pointer in ACl is advanced to the character
following the last character read. The count in the right half of AC2
is updated, and appropriate bits are set in the left half of AC2. The
bits that can be set on a successful return are:

Bit 12 RD%BTM

Bit 13 RD%BFE

Bit 14 RD%BLR

The input was terminated because one
of the specified break characters was
typed. This break character is placed
in the input buffer. If this bit is
not set, the input was terminated
because the byte count was exhausted.

Control was returned to the program
because there is no more input and
RD%RIE was set in the call.

The limit to which the user can backup
for editing his input was reached.

If execution of the ROTTY% call is not successful, an error code is
program at the returned in ACl. Control returns to the user's

instruction following the RDTTY% call.

The following example illustrates the recommended method for reading
data from the terminal. This example is essentially the same as the
one in Section 2.5; however, the ROTTY% call is used to read the
number before the NIN call processes it.

2-10

•

•

•

•

•

•

•

•

•

•

INPUT AND OUTPUT USING THE TERMINAL

SEARCH MONSYM
START: RESET%

HRROI ACl,PROMPT
PS OUT %
HRROI ACl,BUFFER
MOVE! AC2,BUFLEN*S
HRROI AC3,PROMPT
ROTTY %

ERJMP ERROR
HRROI ACl,BUFFER
MOVE! AC3,AD10
NIN %

ERJMP ERROR
HRROI ACl,[ASCIZ / THE OCTAL EQUIVALENT IS /)
PS OUT %
MOVE! ACl,.PRIOU
MOVE! AC3, AD&
NOUT %

ERJMP ERROR
HALTF %
JRST START

PROMPT: ASCIZ / PLEASE TYPE A DECIMAL NUMBER: /
BUFLEN==lO

BUFFER: BLOCK BUFLEN
ERROR: HRROI ACl, [ASCIZ /
?ERROR-TYPE START TO BEGIN AGAI N/)

PS OUT %
HALTF %
JRST START
END START

2.10 SUMMARY

Data transfers of sequential bytes or text strings can be made to and
from the terminal. The monitor calls for transferring bytes are PBIN %
and PBOUT% and for transferring strings are PSOUT % and ROTTY %. The
NIN % and NOUT % monitor calls can be used for reading and writing a
number. In general, the user's program must specify a source from
which the data is to be obtained and a destination where the data is
to be placed. In the case of terminal I / O, the symbol .PRIIN
represents the user's terminal as the source, and the s ymbol .PRIOU
represents the user's terminal as the destination .

2-11

•

•

•

•

•

•

•

•

•

•

CHAPTER 3

USING FILES

3.1 OVERVIEW

All information stored in the DECsystem-20 is kept in files. The
basic unit of storage in a file is a page containing bytes from 1 to
36 bits in length. Thus, a sequence of pages constitutes a file. In
most cases, files have names. Although all files are handled in the
same manner, certain operations are unavailable for files on
particular devices.

Programs can reference files by several methods:

• In a sequential byte-by-byte manner.

• In a multiple byte or string manner .

• In a random byte-by-byte manner
file-storage device allows it.

if the particular

• In a page-mapping or section-mapping manner for files on I
disk.

Byte and string input/output are the most common types of operations.

Generally, all programs perform I / O by moving bytes of data from one
location to another. For example, programs can move bytes from one
memory area to another, from memory to a disk file, and from the
user's terminal to memory. In addition, a program can map multiple
512-word pages or 512-page sections from a disk file into memory or
vice versa.

Data transfer operations on files require four steps:

1. Establishing a correspondence between a file and a Job File
Number (JFN), because all files are referenced by JFNs.

2. Opening the file to establish the data mode, access mode, and
byte size and to set up the monitor tables that permit data
to be accessed.

3. Transferring data either to or from the file.

4. Closing the file to complete any I / O, to update the directory
if the file is on the disk, and to release the monitor table
space used by the file •

TOPS-20 Version 5 3-1 April 1982

I

I

I

USING FILES

Some operations on files do not require the execution of all four
steps above. Examples of these operations are: deleting or renaming
a file, or changing the access code or account of a file. Although
these operations do not require all four steps, they do require that
the file has a JFN associated with it (step l above).

It is possible for disk files on the DECsystem-20 to be simultaneously
read or written by any number of processes. To make sharing of files
possible, all instances of opening a specific file in a specific
directory cause a reference to the same data. Therefore, data written
into a file by one process can immediately be seen by other processes
reading the file.

Access to files is controlled by the 6-digit (octal) file access code
assiqned to a file when it is created. This code indicates the types
of access allowed to the file for the three classes of users: the
owner of the file, the users with group access to the file, and all
other users. (Refer to the TOPS-20 User's Guide for more information
on the file access codes.) If the user is allowed access to a file he
reauests the type of access desired when opening the file with the
OPENF% monitor call (refer to Section 3.4) in his program. If the
access requested in the OPENF % call does not conflict with the current
access to the file, the user is granted access. Essentially, the
current access to the file is set by the first user who opens it.

Thus, for a user to be granted access to a specific file, two
conditions must be met:

1. The file access code must allow the user to access the file
in the desired manner (e.g., read, write).

2. The file must not be opened for a conflicting type of access.

3.2 JOB FILE NUMBER

The Job File Number (JFN) is one of the more important concepts in the
operating system because it serves as the identifier of a particular
file on a particular device during a process' execution. It is a
small integer assigned by t h e system upon a request from the user's
program. JFNs are usually assigned sequentially starting with 1.

The JFN is valid for the job in which it is assigned and may be used
by any process in the job. The system uses the JFN as an index into
the table of files associated with the job and always assigns a JFN
that is unique within the job. Even though a particular JFN within
the job can refer to only one file, a single file can be associated
with more than one JFN. This occurs when two or more processes are
using the same file concurrentl y . In this case, each of the processes
will probably have a different JFN for the file, but all of the JFNs
will be associated with the same file.

3.3 ASSOCIATING A FILE WITH A JFN

In order to reference a file, the first step the user program must
complete is to associate the specific file with a JFN. This
correspondence is established with the GTJFN % (Get Job File Number)
monitor call. One of the arguments to this call is the string
representing the desired file. The string can be specified within the

3-2

•

•

•

•

•

•

•

•

•

•

USING FILES

program (i.e., come from memory) or can be accepted as input from the
user's terminal or from another file. The string can represent the
complete specification for the file:

dev:<directory>name.typ.gen;T(temporary) ;P(protection) ;A(account)

If any fields of the specification are omitted, the system can provide
values for all except the name field. Refer to the TOPS- 20 User's
Guide for a complete explanation of the specification for a file.

Table 3-1 lists the values the system will assign to fields not
specified by the input string.

Table 3-1
Standard System Values for File Specifications

Field Value

Device OSK:

Directory Directory to which user is currently
connected.

Name No default; this field mus t be
specified .

Type Null.

Generation number The highest existing generation number
if the file is an input file . The
next higher genera tion number i f the
file i s a n output file.

Protection Frotection of next lower generation of
file, if one exists; otherwise,
protection as specified in the
directory .

Account Account specified when user logged in.

If the string specifiec identifies a single file, the monitor returns
a JFN that remains associated with that
releases the JFN or the job logs off the
of the JFN is complete, the user's
refer e nces to that file .

file until either the process
system . After the assignment
program uses the JFN in all

Th e use r' s program can set up e ither the short or the long f orm of the
GTJFN% monitor call. Th e long form of the GTJFN % call requires a n
argument block; the short form does not. The long form of GTJFN % has
functions and flexibility not ava ilable in the short form of the call.
The short form of GTJFN% allows a f il e specification to be obtained
from a st ring in memory or from a fi l e , but not from both. Fie ld s not
specified by the input are tak e n from the s tandard system values for
those fields (refe r to Tabl e 3-1). This form i s s uf ficie nt for most
uses of the cal l. The long form allows a file spec i f i cation t o be
obtained from both a string in memory a nd a f il e . If both are given
as arguments, the string is used first, and then the file is used if
mor e fields are needed to complete the specification . Th i s form also
allows the user' s program to spec ify nonstandard values to be used for
fields not given a nd to reques t the assignment of a specific JFN.

3-3

I

I

USING FILES

3.3.1 GTJFN% Monitor Call

The GTJFN% monitor call assigns a JFN to the specified file. It
accepts two words of ar g uments. These argument words are different
depending on the form of GTJFN % being used. The user's program
indicates the desired GTJFN % form by setting bit 17(GJ %SHT) of ACl to
1 for the short for m or by clearing bit 17(GJ %SHT) for the long form.

3.3.1.1 Short Form Of GTJFN% - The short form of the GTJFN % monitor
call requires the followin g two words of arguments.

0 17 18 35
!===!

ACl ! flag bits ! default generation number !

AC2

!===!

0 35
!===!

source designator for file specification per
bit 16 (GJ%FNS) of ACl

!===!

The flag bits that can be specified in ACl are described in Table 3-2 .

Bit Symbol

0 GJ %FOU

1 GJ %NEW

2 GJ %0LD

Table 3-2
GTJFN% Flag Bits

Meaning

The file specification given is to be
assigned the next higher generation
number. This bit indicates that a new
version of a file is to be created and
is normally set if the file is for
output use.

The file specification given must not
ref er to an existing file (i.e., the
file must be a new file).

The file specification given must
refer to an existing file. This bit
has no effect on a parse-only JFN.
(See bit GJ %0FG.)

3-4

•

•

•

•

•

•
Bit Symbol

3 GJ%MSG

• 4 GJ%CFM

5 GJ%TMP

• 6 GJ%NS

7 GJ%ACC

• 8 GJ%DEL

9-10 GJ%JFN

11 GJ%IFG

•

USING FILES

Table 3-2 (Cont.)
GTJFN % Flag Bits

Meaning

One of the appropriate messages
be printed after the
specification is obtained.
message is printed only if the
types the ESC key to end his

is to
file

The
user
file

using specification (i.e., he is
recognition input).

[NEW FILE]
[NEW GENERATION]
[OLD GENERATION]
[OK] if GJ %CFM (bit 4) is off
[CONFIRM] if GJ %CFM (bit 4) is on

Confirmation from the user will be
required to verify that the file
specification obtained is correct. To
confirm the file specification, the
user can press the RETUR~ key.

The file specified is
temporary file .

to be a

Only the first file specification in a
multiple logical name assignment is to
be searched for the file.

The JFN specified is not to be
accessed by inferior processes in this
job. However, any process can access
the file by acquiring a different JFN.
To prevent the file from being
accessed by other processes, the
user's program can set OF %RTD (bit 29)
in the OPENF call (refer to Section
3. 4 .1) .

The file specified is not to be
considered as deleted, even if it is
marked as deleted.

These bits are off in the short form
of the GTJFN call (refer to Section
3.3.1.2 for their description).

The file specification given is
allowed to have one or more of its
fields specified with a wildcard
character (* or %) . This bit is used
to process a group of files and is
generally used for input files. The
monitor verifies that at least one
value exists for each field that
contains a wildcard and assigns the
JFN to the first file in the group.

3-5

Bit

11

12

13

14

15

16

Symbol

GJ %IFG
(Cont.)

GJ%0FG

GJ %F LG

GJ %PHY

GJ%XTN

GJ %FNS

USING FILES

Table 3-2 (Cont.)
GTJFN% Flag Bits

Meaning

The monitor also verifies that fields
not containing wildcards represent a
new or old file according to the
setting of GJ %NEW and GJ %0LD.

The JFN is to be associated with the
given file specification string only
and not to the actual file. The
string may contain a wildcard
character (* or %) in one or more of
its fields. It is checked for correct
punctuation between fields, but is not
checked for the validity of any field.
This bit allows a JFN to be associated
with a file specification even if the
file specification does not refer to
an actual file. The JFN returned
cannot be used to refer to an actual
file (e.g., cannot be used in an OPENF
call) but can be used to obtain the
origina l input string via the JFNS
monitor call (refer to Section 3. 7. 2).

Flags are to be returned in the left
half of ACl on a successful return.

Logical names specified for the
current job are to be i gnored and the
physical de vice is to be used.

This bit is off in the short form of
the GTJFN call (refer to Section
3.3.1.2 for its description).

The contents of AC2 are
interpreted as f ollows:

to be

1. If this bit is on, AC2 contains an
input JFN in the left half and an
output JFN in the right half. The
input JFN is used to obtain the
file specification to be
associated with the JFN. The
output JFN is used to indicate the
dest ina tion for printing the names
of any fields being recognized.
To omit eithe r JFN, the user's
program must specify the symbol
.NULIO (3 77 777).

2 . If this bit i s off, AC2 contains a
pointer to a s tring in memory that
spec i f i es the file to be
associated with the JFN .

3-6

•

•

•

•

•

•
Bit Symbol

17 GJ%SHT

18-35

•

•

•

•

USING FILES

Table 3-2 (Cont.)
GTJFN% Flag Eits

Meaning

This bit must be on for the short form
of the GTJFN% call.

The generation number of the file.
The following values are permitted;
however, 0 is the normal case.

0

1-
377777

-1

-2

-3

3-7

to indicate that the next
higher generation number is to
be used if GJ%FOU (bit 0) is
on, or to indicate that the
highest existing generation
number is to be used if GJ%FOU
is off.

to indicate that the specified
number is to be used as the
generation if no generation
number is supplied.

to indicate that the next
higher generation number is to
be usEd if no generation
number is supplied .

to indicate that the lowest
existing generation number is
to be used if no generation
number is supplied.

to indicate that all
generation numbers are to be
used and that the JFN is to be
assigned to the first file in
the group if no generation
number is supplied. (Bit
GJ%IFG must be set.)

USING FILES

If the GTJFN % call is given with the appropriate flag bit set (GJ%IFG
or GJ %0FG), the file specification given as input can have a wildcard
character (either an asterisk or a percent sign) appearing in the
director y , name, type, or generation number field. (The percent sign
cannot appear in the generation number field.) The wildcard character
is interpreted as matching an y existing occurrence of the field. For
example, the specification

<LIBRARY >*.MAC

identifies all the files with the file type .MAC in the directory
named <LIBRARY >. The specification

<LIBRARY >MYFILE.FO%

identifies all the files in
and a three-character file
.FO. Upon completion of
associated with the first
following:

directory <LIBRAPY > with the name MYFILE
type in which the first two characters are
the GTJFN call, the JFN returned is
file found in the group according to the

• in numerical order by directory number

• in alphabetical order by filename

• in alphabetical order by file t ype

• in ascending numerical order by generation number

The GNJFN % (Get Next JFN) monitor call can then be given to assign the
JFN to the next file in the group (refer to Section 3.7.3). Normally,
a program that accepts wildcard characters in a file specification
will successively reference all files in the group using the same JFN
and not obtain another JFN for each one.

If execution of the GTJFN % call is not successful because problems
were encountered in performing the call, the JFN is not assigned and
an error code is returned in the right half of ACl. The execution of
the program continues at the instruction following the GTJFN% call.

If execution of the GTJFN % call is successful, the JFN assigned is
returned in the right half of ACl and various bits are set in the left
half, if flag bits 11, 12, or 13 were on in the call. (The bits
returned on a successful call are described in Table 3-3.) If bit 11,
12, or 13 was not on in the call, the left half of ACl is zero. The
execution of the program continues at the second instruction after the
GTJFN % call.

3-8

•

•

•

•

•

Bit Symbol

0-1

2 GJ%DIR

3 GJ%NAM

4 GJ%EXT

• 5 GJ%VER

6 GJ%UHV

7 GJ%NHV

•
8 GJ%ULV

9 GJ%PRO

• 10 GJ%ACT

11 GJ%TFS

12 GJ%GND

17 GJ%GIV

•

USING FILES

Table 3-3
Bits Returned on GTJFN % Call

Meaning

Reserved for DEC.

The directory field of
specification contained
characters.

The filename field of
specification
characters.

contained

The file type field of
specification contained
characters.

the file
wildcard

the file
wildcard

the file
wildcard

The generation number field of the
file specification contained wildcard
characters.

The file used has the highest
generation number because a generation
number of 0 was given in the call.

The file used has the next higher
generation number because a generation
number of 0 or -1 was given in the
call.

The file used has t he lowest
generation number because a generation
number of -2 was given in the call.

The protection field of t he
specification was given.

The account field of
specification was given.

The file specification i s
temporary file.

the

file

file

for a

Files marked for deletion will not be
considered when assigning JFNs in
subsequent calls. This b i t is set if
GJ %DEL was not set in the ca ll.

Invisible file s we r e no t considere d
when assigning JFNs .

3-9

I

USING FILES

Examples of the short form of the GTJFN% monitor call are shown in the
following paragraphs.

The following sequence of instructions is used to obtain, from the
user's terminal, the specification of an existing file.

MOVSI AC1,(GJ %0LD+GJ%FNS+GJ%SHT)
MOVE AC2, [. PRIIN,,. PRIOU)
GTJFN%

The bits specified for ACl indicate that the file specification given
must refer to an existing file (GJ%0LD), that the file specification
is to be accepted from the input JFN in AC2 (GJ%FNS), and that the
short form of the GTJFN% call is being used (GJ%SHT). Eecause the
right half of ACl is zero, the standard generation number algorithm
will be used. In this GTJFN% call, the file with the highest existing
generation number will be used. Because GJ%FNS is set in ACl, the
contents of AC2 are interpreted as containing an input JFN and an
output JFN. In this example, the file specification is obtained from
the terminal (. PFI IN) .

The following sequence
user's terminal, the
confirmation from the
obtained.

of instructions is used to obtain, from the
specification of an output file and to require

user once the file specification has been

MOVSI AC1,(GJ %FOU+GJ%MSG+GJ%CFM+GJ%FNS+GJ%SHT)
MOVE AC2,[.PRIIN,,.PRIOU)
GTJFN %

In this example, the bits specified for ACl indicate that

• the file obtained is to be an output file (GJ%FOU),

• after the file specification is obtained, a message is to be
typed (GJ%MSG) ,

• the user is required to confirm the file specification that
was obtained (GJ%CFM),

• the file specification is to be obtained from the input JFN
in AC2 (GJ%FNS),

• the short form of the GTJFN% call is being used (GJ%SHT).

Because the right half of ACl is zero, the generation number given to
the file will be one greater than the highest generation number
existing for the file. The contents of AC2 are interpreted as
containing an input JFN and an output JFN because GJ%FNS is set in
ACl.

The following sequence of instructions is used to obtain the name of
an existing file from a location in the user's program.

MOVSI AC1,(GJ%0LD+GJ%SHT)
MOVE AC2,[POINT 7,NAME)
GTJFN%

NAME:ASCIZ / MYFILE.TXT/

3-10

•

•

•

•

•

•

•

•

•

USING FILES

The bits specified for ACl indicate that the file obtained is to be an
existino file (GJ%0LD) and that the short form of the GTJFN % call is
being used (GJ%SHT). Since the right half of ACl is zero, the file
with the highest generation number will be used. Because GJ %FN S is
not set, the contents of AC2 are interpreted as containing a pointer
to a string in memory that specifies the file to be associated with
the JFN. The setup of AC2 indicates that the string begins at
location NAME in the user's program. The file specification obtained
from location NAME is MYFILE.TXT.

An alternate way of specifying the same file is the sequence

MOVSI ACl, (GJ %0LD+GJ %SHT)
HRROI AC2,[ASCIZ / MYFILE.TXT /]
GTJFN%

3.3.1.2 Long Form Of GTJFN% - The long form of the GTJFN % monitor
call requires the following two words of arguments.

0 17 18 35
!===!

ACl ! 0 ! address of argument table !
!===!

0 35
!===!

AC2 pointer to ASCIZ file specification string, or 0
!===!

The argument table for the long form is described in Table 3-4 below .

Table 3-4
Long Form GTJFN % Argument Block

Word Symbol Meaning

0 .GJGEN Flag bits appear in the left half and
oeneration number appears in the right
half.

1 .GJSRC An input JFN appears in the left half
and an output JFN appears in the right
half. To omit either JFN, the user's
program must specify the symbol . NU LIO
(377777).

2 .GJDEV Pointer to ASCIZ string that specifies
the device to be used when none is
given. If this word is 0, DSK will be
used.

3 . GJDIR Pointer to ASCIZ string that specifies
the directory to be used when none is
given. If this word is 0, the user's
connected directory will be used.

3-11

L__ _

USING FILES

Table 3-4 (Cont.)
Long Form GTJFN% Argument Block

Word Symbol Meaning

4 .GJNAM Pointer to ASCIZ string that specifies
the filename to be used when none is
given. If this word is 0, the input
must specify the filename.

5 .GJEXT Pointer to ASCIZ string that specifies
the file type to be used when none is
given. If this word is 0, a null type
will be used.

6 .GJPRO Pointer to ASCIZ string or 3B2+octal
protection code. This word indicates
the protection to be used when none is
given. If this word is 0, the
protection as specified in the
directory will be used.

7 .GJACT Pointer to ASCIZ string or 3B2+decimal
account number. This word i ndicates
the account to be used when none is
given . If this word is 0, the account
specified when the user logged in will
be used.

10 .GJJFN The JFN to assign to the file
specification if flag bit GJ%JFN is
set in word .GJGEN (word 0) of the
argument block.

ll-15 Additional words allowed if flag bit
GJ%XTN (bit 15) is set in word .GJGEN
(word 0) of the argument block. These
additional words are used when
performing command input parsing and
are described in the TOPS-20 Monitor
Calls Reference Manual. ---

The flao bits accepted in the left half of .GJGEN (word 0) of the
argument block are basically the same as those accepted in the short
form of the GTJFN% call. The entire set of flag bits is listed below.
For further explanations of the bits, refer to Table 3-2.

Bit Symbol Meaning

0 GJ%FOU A new version of the file is to be
created.

1 GJ%NEW The file must not exist.

2 GJ%0LD The file must exist.

3 GJ%MSG A message is to be typed if the user
terminates his input with the ESC key.

3-12

•

•

•

•

•

• Bit Symbol

4 GJ%CFM

5 GJ%TMP

6 GJ%NS

7 GJ%ACC

8 GJ%DEL

9-10 GJ%JFN •

•
11 GJ%IFG

• 12 GJ%0FG

13 GJ%FLG

14 GJ%PHY

15 GJ%XTN

16 GJ%FNS

17 GJ%SHT

•

USING FILES

Meaning

The user must
specification.

confirm

The file is temporary.

the file

Only the first file specification is
to be searched in a multiple logical
name definition.

The JFN cannot be accessed by other
processes in the job.

The "file deleted" bit is to
ignored.

be

The JFN supplied in .GJJFN(word 10) of
the argument block is to be associated
with the file specification given.
The settings of bit 9 and 10 are
interpreted as follows:

1. If bit 9 is on and bit 10 is off,
an attempt is made to assign the
JFN. An error return is given if
the JFN is not available.

2. If bit 9 is on and bit 10 is on,
an attempt is made to assign the
JFN. If it is not available, some
other JFN is assigned.

3. For any other combinations of
these bits, the JFN supplied is
ignored.

The file specification is allowed to
contain wildcard characters.

The JFN is to be associated with the
file specification string and not the
file itself.

Flags are to be returned in ACl on
successful completion of the call.

The physical device is to be used.

The argument block contains more than
8 words. Refer to the TOPS-20 Monitor
~ Reference Manual.

This bit is ignored for the long form
of the GTJFN % call.

This bit must be off for the long form
of the GTJFN % call .

3-13

USING FILES

The generation number values accepted in the right half
(word 0) of the argument block can be 0, -1, -2, -3, or a
number, although 0 is the normal case. Refer to Bits 18-35
3-2 for explanations of these values.

of .GJGEN
specified
of Table

If execution of the GTJFN % call is successful, the JFN assigned is
returned in the right half of ACl and various bits are set in the left
half if flaa bits 11, 12 or 13 were on in the call. Refer to Table
3-3 for the explanations of the bits returned. Execution of the
program continues at the second instruction following the call.

If execution of the GTJFN call is not successful, the JFN is not
assiqned and an error code is returned in the right half of ACl. The
execution of the program continues at the instruction following the
GTJFN % call.

The followina seauence of instructions obtains a specification for an
existing file from the user's terminal, assigns the JFN to the next
higher generation of that file, and specifies default fields to be
used if the user omits a field when he gives his file specification.

JFNTAB:

MOVE! ACl,JFNTAB
SETZ AC2,
GTJFN %

GJ %FOU
XWD .PRIIN,.PRIOU
0
POINT 7, [ASCIZ / TRAIN/)
0
POINT 7,[ASCIZ / MEM /]
0
0
0

;default directory

;default file type

The address of the argument tzble for the GTJFN% call (JFNTAB) is
given in the right half of ACl. AC2 contains 0, which means no
pointer to a string is given; thus, fields for the file specification
will be taken onl¥ from the user's terminal. The first word of the
araument block contains a flaq bit for the GTJFN% call. This bit
(Gj %FOU) indicates that the next higher generation number is to be
assigned to the file. The second word of the argument block indicates
that the file specification is to be obtained from the user's
terminal, and any output generated because of the user employing
recognition is to be printed on his terminal. If the user does not
suppl y a directory name as part of his file specification, the
directory <TRAIN > will be used. And if the user does not give a file
type, the type MEM will be used. If the user omits other fields from
his specification, the system standard value (refer to Table 3-1) will
be used.

3-14

•

•

•

•

•

•

•

•

•

•

USING FILES

3.3.1.3 Summary Of GTJFN% - The GTJFN % monitor call i s req uired to
associate a JFN with a particular file. In mos t cases, the s hort for m
of the GTJFN% call is sufficient for establishing this a ssociation.
However, the long form is more powerful because it provides t he user's
program more control over the file specification t hat is o btained.
The following summary compares the characteristics of the two forms of
the GTJFN% monitor call.

Short Form

Assigns a JFN to a file.
System decides the JFN
to assign.

Accepts the file specification
from a string in memor y
or a file.

Uses standard system values
for fields not given
in the file
specification.

3.4 OPENING A FILE

Lo ng Form

Assigns a JFN to a f il e.
User program ma y req ue s t
a particul a r JFN.

Accep ts the file s pecification
from a string in memor y
and a file.

Allows user-suppli ed values
to be used for fields not
given in the file
s pecification.

Once a JFN has been obtained for a file, t he user's pr og ra m must ope n
the file in order to transfer data. The user's program supplies t he
JFN of the file to be opened and a word of bits indicating t he desired
byte size, data mode, and access to the file.

The desired access to the file is specified by a separate b i t for each
type of access. The file is successfull y opened onl y i f t he desired
access does not conflict with the current a cces s t o the f il e (refer t o
Section 3.1). For example, if the user r eq ues t s bo th r e ad a nd wr ite
access to the file, but write access is not all owed, then t he file i s
not opened for this user. The allowed t ype s of access t o a fil e ar e :

• Read access. The file can be read with by te, st ring , o r
random input .

• Write access. The file can be written with by te, s tring , o r
random output.

• Append access. The file can be written onl y with sequential
byte or dump output, and the current by t e po i n t e r (refer t o
Section 3.5.1) cannot be changed. Th e initial po s i tion o f I
the file pointer is at t he end of t he file.

• Frozen access. The fil e can be concu rrentl y a c c e ssed by at
most one user writing the fil e , but by a ny numbe r of use r s
reading the file. This i s the default acce ss to a fi le.

• Thawed access. The file can be accessed e ven if o t her users
are reading and writing t he file.

• Restricted access. The file cannot be acce s s ed i f ano the r
user already has opened the file .

• Unrestricted read a ccess . The fil e c an be r ead reg a r dl e ss of
what other users might be doing with t he file.

TOPS-20 Version 5 3-15 April 1982

I

USING FILES

3.4.l OPENF% Monitor Call

The OPENF % (Open File) monitor call opens a specified file. It
requires the following two words of arguments.

0 17 18 35
!===!

ACl ! 0 ! JFN of file to be opened !
!===!

0 5 6 9 18 30 31 35
!===!

AC2 byte !data ! 0 access bits G
size !mode !

!===!

If the left half of ACl is
interpreted as a pointer to
Therefore, if the user's program
from the GTJFN % call, it must
OPENF % call.

not zero, the contents of ACl is
a string and not as a JFN of a file.
requested bits to be returned in ACl
clear these bits before executing the

The byte size (0F %BSZ) in AC2 specifies the number of bits in each
byte of the file and can be between 1 and 36 (decimal). This field
can be 0 if subsequent I / O to the file will be performed with the
PMAP% call (refer to Section 3.5.6).

The file data mode field (OF%MOD) can be one of two values:

Value

0

17

Meaning

Normal data mode of the file (i.e., byte
I / O). Dump I / O is illegal.

Dump mode (i.e., unbuffered word I/0). Byte
I / O is illegal and the byte size is ignored.

The access bits are described in Table 3-5.

Bit Symbol

18 OF%HER

19 OF%RD

20 OF%WR

21

Table 3-5
OPENF% Access Bits

Halt on the
device or
subsequent I/O

Meaning

occurrence of an I/O
medium error during
to the file. If this

bit is not set, a software interrupt
is generated if a device or medium
error occurs during subsequent I/O.

Allow read access.

Allow write access.

Reserved for DEC.

3-16

•

•

•

•

•

•

•

•

•

•

Bit Symbol

22 OF%AFP

23 OF%RDU

24

25 OF%THW

USING FILES

Table 3-5 (Cont.)
OPENF% Access Bits

Meaning

Allow append access.

Allow unrestricted read

Reserved for DEC.

Allow thawed access. If

access.

this bit is
not set, the file is opened for frozen
access.

26 OF%AWT Block (i.e., temporarily suspend) the
program until access to the file is
permitted.

27 OF%PDT Do not update the access dates of the
file.

28 OF%NWT Return an error if access to the file
cannot be permitted.

29 OF%RTD Allow access to the file to only one
process (i.e., restricted access).

30 OF%PLN Do not check for line numbers in the
file.

If bits OF%AWT and OF%NWT are both off, an error code is returned if
access to the file cannot be permitted (i.e., the action taken is
identical to OF%NWT being on).

If execution of the OPENF% monitor call is successful, the file is
opened, and the execution of the program continues at the second
instruction after the OPENF% call .

If execution of the OPENF% call is not successful, the file is not
opened, and an error code is returned in ACl. The execution of the
program continues at the next instruction after the OPENF % call.

Two samples of the OPENF% call follow.

The sequence of instructions below opens a file for input.

HRRZ ACl,JFNEXT
MOVE AC2,[44B5+0F%RD+OF%PLN)
OPENF%

The JFN of the file to be opened is contained in the location
indicated by the address in ACl (JFNEXT) . The bits specified for AC2
indicate that the byte size is one word (44B5), that read access is
being requested to the file (0P%RD), and that no check will be made
for line numbers in the file; i.e., the line numbers will not be
discarded (OF%PLN). Because bit OF%THW is not set, the file can be
accessed for reading by any number of processes.

TOPS-20 Version 5 3-17 April 1982

I

I

I

USING FILES

The following sequence of instructions can be used to open a file for
output.

MOVE ACl,JFN
MOVE AC2, [7B5+0F%HER+OF%WR+OF%AWT]
OPENF%

The right half of ACl contains the address that has the JFN of the
file to be opened. The bits specified for AC2 indicate that the byte
size is 7-bit bytes (785), that the program is to be halted when an
I / O error occurs in the file (OF%HER), that write access is being
requested to the file (OF%WR), and that the program is to be blocked
if access cannot be granted (OF%AWT). Because bit OF%THW is not set,
if another user has been granted write access to the file, this user's
program will be blocked until access can be granted.

3.5 TRANSFERRING DATA

Data transfers of seauential bytes are the most common form of
transfer and can be used with any file. For disk files, nonsequential
bytes and entire pages can also be transferred.

3.5.l File Pointer

Every open file is associated with a pointer that indicates the last
byte read from or written to the file. When the file is initially
opened, this pointer is normally positioned before the beginning of
the file so that the first data operation will reference the first
byte in the file. The pointer is then advanced through the file as
data is transferred. However, if the file is opened for append-only
access (bit OF%APF set in the OPENF% call), the pointer is positioned
after the last byte of the file. This allows the first write
operation to append data to the end of the file.

For disk files, the pointer may be repositioned arbitrarily throughout
the file, such as in the case of nonsequential data transfers. When
the pointer is positioned beyond the end of the file, an end-of-file
indication is returned when the program attempts a read operation
using byte input. When the program performs a write operation beyond
the end of the file using byte output, the end-of-file indicator is
updated to point to the end of the new data. However, if the program
writes pages beyond the end of the file with the PMAP% monitor call
(refer to section 3.5.6), the byte count is not updated. Therefore,
it is possible for a file to contain pages of data beyond the
end-of-file indicator. To allow sequential I/O to be performed later
to the file, the program should update the byte count before closing
the file. (Refer to the CHFDB% monitor call description in the
TOPS-20 Monitor Calls Reference Manual.)

3-18

•

•

•

•

•

•

•

•

•

•

USING FILES

3.5.2 Source And Destination Designators

Because I/O operations occur by moving data from
another, the user's program must supply a source and
any I/O operation. The most commonly-used source
designators are the following:

one location to
a destination for

and destination

1. A JFN associated with a particular file. The JFN must be
previously obtained with the GTJFN% or GNJFN% monitor call
before it can be used.

2. The primary input and output designators .PRIIN
respectively (refer to Section 2. 2). These
should be used when referring to the terminal.

and .PRIOU,
designators

3. A byte pointer to the beginning of the string of bytes in the
program's address space that is being read or written. The
byte pointer can take one of two forms:

• A word with a -1 in the left half and an address in the
right half. This form is used to designate a 7-bit ASCIZ
string starting in the left-most byte of the specified
address. A word in this form is functionally equivalent
to a word assembled by the POINT 7,ADR pseudo-op.

• A full word byte pointer with a byte size of 7 bits.

Most monitor calls dealing with strings deal specifically with
strings. Normally, ASCII strings are assumed to terminate with
of 0 (i.e., are assumed to be ASCIZ strings). However some
optionally accept an explicit byte count and / or terminating
These calls are generally ones that handle non-ASCII strings and
sizes other than 7 bits.

3.5.3 Transferring Sequential Bytes

ASCII
a byte
calls
byte.
byte

The BIN% (Byte Input) and BOUT% (Byte Output) monitor calls are used
for sequential byte transfers. The BIN% call takes the next byte from
the given source and places it in AC2. The BOUT% call takes the byte
from AC2 and writes it to the given destination. The size of the byte
is that given in the OPENF% call for the file.

The BIN% monitor call accepts a source designator in ACl, and upon
successful execution of the call, the byte is right-justified in AC2.
If execution of the call is not successful, an illegal instruction I
trap is generated. Control returns to the user's program at the
instruction following the BIN% call.

The BOUT% monitor call accepts a destination designator in ACl and the
byte to be output, right-justified in AC2. Upon successful execution
of the call, the byte is written to the destination. If execution of
the call is not successful, an illegal instruction trap is generated I
Control returns to the user's program at the instruction following the
BOUT % call .

3-19

USING FILES

The following sequence shows the transferring of bytes from an input
file to an output file. The bytes are read from the file indicated by
INJFN and written to the file indicated by OUTJFN.

LOOP: MOVE l,INJFN
BIN %
ERJMP DONE

LOOP2: MOVE l,OUTJFN
BOUT %
JRST LOOP

DONE: GTSTS %
TLNN 2, (GS %EOF)
JRST NOTYET

NOTYET:MOVEI 2,0
JRST LOOP2

3.5.4 Transferring Strings

;get source designator from INJFN
;read a byte from the source
;check for end of file, if 0
;get destination from OUTJFN
:write the byte to the destination
;continue until 0 byte is found
;obtain status of source
;test for end of file
;no, test for 0 in input file
;yes, process end of file condition
;O in input file

The SIN % (String Input) and SOOT % (String Output) monitor calls are
used for string transfers. These calls transfer either a string of a
specified number of bytes or a string terminated with a specific byte.

The SIN % monitor call reads a string from the specified source into
the program's address space. The call accepts four words of arguments
in ACl through AC4.

ACl: source designator

AC2: pointer to area in program's address space

AC3: count of number of bytes to read, or 0

AC4: byte on which to terminate input (optional)

The contents of AC3 are interpreted as the number of characters to
read.

• If AC3 is 0, then reading continues until a 0 byte is found
in the input.

• If AC3 is positive, then readina continues until either the
specified number of bytes is - read, or a byte equal to that
g iven in AC4 is found in the input, whichever occurs first.

• If AC3 is negative, then reading continues until minus the
specified number of by tes is read.

The contents of AC4 needs to be specified only if the contents of AC3
is a positi ve number. The by te in AC4 is right-justified.

The input is terminated when on e of the following occurs:

• The byte count becomes zero.

• The specified terminating byte is reached.

• The end of the file is reached.

• An error occurs during the transfer
occurs).

3-20

(e.g., a data error

•

•

•

•

•

•

•

•

•

•

USING FILES

Control returns to the user's program at the instruction following the
SIN% call. If an error occurs (including the end of the file is
reached), an illegal instruction trap is generated. In addition,
several locations are updated:

1. The position of the file's pointer is updated for subsequent
I / O to the file.

2. The pointer to the string in AC2 is updated to reflect the
last byte read or, if AC3 contained 0, the last nonzero byte
read.

3. The count in AC3 is updated, if pertinent, by subtracting the
number of bytes actually read from the number of bytes
requested to be read (i.e., the count is updated toward
zero). From this count, the user's program can determine the
number of bytes actually transferred.

The SOUT% monitor call writes a string from the program's address
space to the specified destination. Like the SIN % call, this call
accepts four words of arguments in ACl through AC4.

ACl: destination designator

AC2: pointer to string to be written

AC3: count of the number of bytes to write, or 0

AC4: byte on which to terminate output (optional)

The contents of AC3 and AC4 are interpreted in the same manner as they
are in the SIN% monitor call.

The transfer is terminated when one of the following occurs.

• The byte count becomes zero.

• The specified terminating byte is reached. This terminating
byte is written to the destination.

• An error occurs during the transfer .

Control returns to the user's program at the instruction following the
SOUT% call. If an error occurs, an illegal instruction trap is
generated. In addition, the position of the file's pointer, the
pointer to the string in AC2, and the count in AC3, if pertinent, are
also updated in the same manner as in the SIN % monitor call.

The following code sequence shows transferring a string from an input
file to an output file. It is the same procedure as at the end of
Section 3.5.3, but it uses SIN % and SOUT % calls instead of BIN % and
BOUT% calls .

3-21

I

I

I

I

I

I

LO OP: MOV E 1, I NJ FN
HRROI 2 .B UF 128

MOU N! 3 , - [11 28 *5
S IN /.

ERCAL EOF Q
A[l[I! 3 , - [11 28 *5
MOU N 3 , 3
MOV E 1. ouTJFN
HRRO I 2, BUF 128
SOUT /.

EO FQ! MO VE 1, INJFN
GTSTS/.
TLNN 2 , < GSi: EOF)
RE T

USING FILES

;g e t so u rce f r o m INJ FN
;point er to stri n g to read into (128
; ;; o r d bu ff er)
;inPut a ma x imu m of 6 4 0 byte s
; transfe r u n til e n d o f bu ff e r o r e n d of
; f i 1 e
;e rr o r occu rr ed
i d e te rmine nega t iv e nu mbe r o f b wtes tr a nsf erred
iconvert t o Positive
; get d e st i na ti o n f r o m OUT J FN
;po i nte r to string to ;; rit e fr o m
i trans f e r as ma n s bwtes a s r e ad

i ob t a i n s t a tus of sour c e
;test fo r end o f fi l e
i no . co n t in ue c o P~ i n ~

3.5.5 Transferring Nonsequential Bytes

As discussed in Section 3.5.3, the BIN % and BOUT % calls transfer bytes
sequentially, starting at the current position of the file's pointer.
The RIN % (Random Input) and ROUT % (Random Output) monitor calls allow
the user's program to specify where the transfer will begin by
accepting a by te number within the file. The size of the byte is the
size given in the OPENF % call for the file. The RIN% and ROUT% calls
can onl y be used when transferring data to or from disk files.

The RIN % monitor call takes a byte from the specified location in the
file and places it into the accumulator. The call accepts the JFN of
the file in AC! and the by te number within the file in AC3. Upon
successful completion of the call, the byte is right-justified in AC2,
and the file's pointer is updated to point to the byte following the
one just read. If an error occurs, an illegal instruction trap is
generated. Control returns to the user's program at the instruction
following the RIN % call.

The ROUT % monitor call takes a byte from the accumulator and writes it
into the specified location in the file. The call accepts the JFN of
the file i n AC!, the byte to write right-justified in AC2, and the
by te number within the file in AC3. Upon successful completion of the
call, the byte is written into the specified byte in the file, and the
file's pointer is updated to point to the byte following the one just
written. If an error occurs, an illegal instruction trap is
generated. Control returns to the user's program at the instruction
following the ROUT % call.

3.5.6 Mapping Pages

Up to this point, monitor calls have been presented for transferring
bytes and strings of data. The next call to be discussed is used to
transfer entire pages of data between a file and a process.

Both files and process address spaces are divided into pages of
512(decimal) words. A page within a file can be identified by one
word, where the JFN of the file is in the left half and the page
number within the file is in the right half. A page within a process
address space can also be identified by one word, where the identifier
of the process (refer to Section 5.3) is in the left half and the page
number within the process' address space is in the right half. Each
one-word identifier for the pages in the process address space is

3-22

•

•

•

•

•

•

•

•

•

•

USING FILES

placed in what is called the process page map. When identifiers for
file pages are placed in the process page map, references to the
process page actually refer to the file page. The followin g diagram
illustrates a process map that has identifiers for pages from two
files.

File 1

Process Map

JFN1 I Page 1 Page 1

File 2

JFN2 I Page 2 Page 2

MR·S-2033-82

The PMAP% (Page Mapping) monitor call is used to map one or more
entire pages from a file to a process (for input), from a process to a
file (for output), or from one process to another process. In
general, this call changes the entries in the process map by accepting
file page identifiers and process page identifiers as arguments.
Mapping pages between a file and a process is described below:
mapping pages between two processes is described in Chapter 5.

3.5.6.1 Mapping File Pages To A Process - This use of the FMAF % call
changes the map of the process so that references to pages in the
process reference pages in a file. This does not actuall y cause data
to be transferred; it simply changes the contents of the map. Later
when changes are made to the actual page in the process, the changes
will also be made to the page in the file, if write access has been
specified for the file.

Note that you cannot map file pages to pages in a process section that
does not exist in the the process map. If you use PMAP % to input file
pages to pages in a nonexistent section of a process, the monitor
generates an illegal instruction trap.

In addition, you can map one or more file sections (of 512 pages each)
into a process. See Section 8.3.1 for details.

The PMAP% call accepts three words of arguments in ACl through AC3.

ACl:

AC2:

AC3:

JFN of the file in the left half, and the page number in
the file in the right half

process identifier (refer to Section 5. 3) in the left
half, and page number in the process in the right half

repetition count and access

TOPS-20 Version 5 3-23 April 1982

I

USING FILES

The repetition count and access bits that can be specified in AC3 are
described below.

Bit Symbol

0 PM%CNT

2 PM%RD

3 PM %WR

9 PM %CPY

18-35

Meaning

Repeat the mapping operation the number of times
specified by the right half of AC3. The file page
number and the process page number are incremented
by 1 each time the operation is performed.

Allow read access to the page.

Allow write access to the page.

Create a private copy of the page if the process
writes into the page. This is called
copy-on-write and causes the map to be changed so
that it identifies the copy instead of the
orioinal. Write access is allowed to the copy
eve~ if it was not allowed to the original. This
allows a process to change a page of data without
changing the data for other processes that have
also mapped the page.

The number of times to repeat
operation if bit 0(PM %CNT) is set.

the mapping

With this use of the PMAP% call, the present contents of the page in
the process are removed. If the page in the file is currently
nonexistent, it will be created when it is written.

This use of the PMAP% call is valid only if the file is opened for at
least read access. If write access is requested in the PMAP% call, it
is not granted unless it was also specified in the OPENF% call when
the file was opened.

A file cannot be closed whil e any of its pages are mapped into any
process. Thus, before a file is closed, its pages must be unmapped
(refer to Section 3.5.6.3).

After execution of the PMAP% call, control returns to the user's
program at the instruction foll owinq the call. If an erro r occurs, an
illegal instruction trap is gene r ated .

3.5.6.2 Mapping Process Pages To A File - This use of the PMAP% call
a ctually transfers data by moving th e specified page in the process to
the specified page in the file. The process map f or the page is now
empty . Both th e page in the process and the page in the fil e must be
private ; that is, no other process can have the page mapped into its
a ddr ess space . The ownership of the process page is transferred to
the f il e page . The previous contents of the page in the file are
deleted.

The three words of arguments are as follows :

ACl:

AC2:

AC3 :

process identifier (refe r to Section 5 .3) in the left
half , and page numbe r in the process in the right half

JFN of the f il e in the l eft half, a nd the page numbe r in
the file in the right half

repetition count and access (refer to Section 3.5.6.1)

3-24

•

•

•

•

•

•

•

•

•

•

USING FILES

The access requested in the PMAP % call is granted only if it does not
conflict with the access specified in the OPENF % call when the file
was opened.

This use of the PMAP % call does not automatically update the files
byte count and the byte size. To allow the file to be read later with
sequential I / O monitor calls, the program should update the files byte
count and the byte size. (Refer to the CHFDB % monitor call in the
TOPS-20 Monitor Calls Reference Manual).

3.5.6.3 Unmapping Pages In A Process - As stated previous l y, a
cannot be closed if any of its pages are mapped in any process.
unmap a file's pages from a precess, the program must execute
SMAP % call, or the following form of the PMAP % call:

file
To

the

ACl: -1

AC2:

AC3:

process identifier in the left half, and page number in
the process in the right half.

the repeat count for the number of pages to remove from
the process (refer to Section 3.5.6.1).

3.5.7 Mapping File Sections to a Process

A section of memory is a unit of 512 pages of process address space.
File sections also contain 512 pages. The first page of each file
section has a page number that is an integral multiple of 512. Like
memory pages, sections can be mapped from one process to another, from
a process to itself, or from a file to a process. Chapter 8 describes
the SMAP % call completely.

The SMAP% (Section Mapping) monitor call is similar to the PMAP% call.
The SMAP% call maps one or more sections from a file to a process (for
input), or from one process to another process. To map a process
section to a file, you must use the PMAP% call as described in Chapter
5 to map each page .

Mapping a file section to a process section with SMAP % does not cause
data to move from the disk to memory. Instead, SMAP % changes the
contents of the process memory map so that the process section pointer
points to a file section. The monitor transfers data only when your
program references a memory page to which a file page is mapped.

To map a file section to a process section, SMAP % requires three
arguments:

ACl:

AC2:

source identifier: a JFN in the left half, and a file
section number in the right half. If several contiguous
sections are to be mapped, the number in the right half is
that of the first section in the group of contiguous
sections.

destination identifier: process identifier in the left
half, and a process section number in the right half. If
several contiguous sections are to be mapped, the number
in the right half is the number of the first section into
which SMAP % maps a file section.

TOPS-20 Version 5 3-25 April 1982

I
I

AC3:

USING FILES

flags that control access to the process section in the
left half, and, in the right half, the number of sections
to map into the process. The number of sect i ons to map
cannot be less than 1 nor more than 32.

The flags in the left half of AC3 can be the following:

Bit Symbol Meaning

2 SM %RD Allow read access.

3 SM%WR Allow write access.

4 SM%EX Allow execute access.

3.6 CLOSING A FILE

Once data has been transferred to or from a file, the user's program
must close the file. Wh e n a f ile is closed, the system automatically
performs the following:

1. Updates the directory information for the file. For example,
for a file to which sequential by tes had been written, the
byte size and byte count are updated when the file is closed.

2. Relea s es the JFN assoc i ated with the file. However, the
user's program can request to close the file, but retain the
JFN assignment. This is useful if the program plans to
reopen the same file later, but does not want to execute
another G'IJFN% call.

3.6.1 CLOSF% Monitor Call

The CLOSF% (Close File) monitor call closes either the specified
or all files that are opened for the process executing t he call.
CLOSF% call accepts one word of arguments in ACl - flag bits in
left half and the JFN of the file to be closed in the right half.
flag bits are as follows:

file
The
the
The

Bit Symbol

0 CO %NRJ

6 CZ%ABT

Meaning

Do not release the JFN from the file.

Abort any output operations currently being done.
That is, close the file but do not perform normal
cleanup operations (e.g., do not output any data
remaining in the buffers). If output to a new
disk file that has not been closed is aborted, t he
file is closed and then deleted.

If the contents of ACl is -1, all files that are opened for this
process are closed.

If the execution of the CLOSF % call is successful, the specified file
is closed, and the JFN associated with the file is released if CO %NRJ
was not set in the call. The execution of the user's program
continues at the second location after the CLOSF % call.

TOPS-20 Version 5 3-26 April 1982

•

•

•

•

•

•

•

•

•

•

USING FILES

If the execution of the CLOSF% call is not successful, the file is not
closed and an error code is returned in the right half of ACl. The
execution of the user's program continues at the instruction following
the CLOSF% call.

The following , seguence illustrates the closing of two files.
\

CLOSIF: HRRZ l,INJFN :obtain input JFN
CLOSF% :close input file

ERJMP FATAL :if error, print message and stop
CLOSOF: HRRZ l,OUTJFN :obtain output JFN

CLOSF% :close output file
ERJMP FATAL :if error, print message and stop

3.7 ADDITIONAL FILE I/O MONITOR CALLS

3.7.1 GTSTS% Monitor Call

The GTSTS% (Get Status) monitor call obtains the status of
This call accepts one argument word - the JFN of the file in
half of the ACl. The left half of ACl is zero.

a file.
the right

Control always returns to the user's program at the instruction
following the GTSTS call. Upon return, appropriate bits reflecting
the status of the specified JFN are set in AC2. These bits, and their
meanings, are described in Table 3-6. Note that if the JFN is illegal
or unassigned, bit 10 (GS%NAM) will not be set .

Table 3-6
Bits Returned on GTSTS% Call

Bit Symbol Meaning

0 GS%0PN The file is open. If this bit is not
set, the file is not open .

1 GS%P.DF If the file is open (e.g., GS%0PN is
set), it is open for read access.

2 GS%WRF If the file is open, it is open for
write access.

3 Reserved for DEC.

4 GS%RND If the file is open, it is open for
non-append access (i.e., its pointer
can be reset).

5-6 Reserved for DEC.

7 GS%LNG File has pages in existence beyond
page number 511.

8 GS%EOF The last read operation to the file
was at the end of the file.

3-27

I

I

L

USING FILES

Table 3-6 (Cont.)
Bits Returned on GTSTS % Call

Bit Symbol Meaning

9 GS%ERR The file may be in error (e .g., the
bytes read may be erroneous).

10 GS%NAM A file specification is associated
with this JFN. This bit will not be
set if the JFN is in any way illegal.

ll GS%AST One or more fields of the file
specification associated with this JFN
contain a wildcard character.

12 GS %ASG The JFN is currently being assigned
(i.e ., a process other than the one
executing the GTS'I·S call is assigning
this JFN).

13 GS%HLT An I / O error is considered to be a
terminating condition for this JFN.
That is, the OPENF call for this JFN
had bit OF %HER set.

14-16 Rese rved for DEC.

17 GS%FRK Access to the file is restricted to
only one process.

18-31 Reserved for DEC.

32-35 The data mode of the file (refer to
the OPENF call).

Value Symbol Meaning

0 .GS NRM Normal (sequential) I / O
10 .GSIMG Image (binary) I/O
17 .GSDM P Dump I / O

An example of the GTSTS% call is shown in the first program in Section
3. 9.

3.7.2 JFNS% Monitor Call

The JFNS% (JFN to String) monitor call returns the file specification
currently associated with the specified JFN. The call accepts three
words of arguments in ACl through AC3.

ACl: destination designator where the
associated with the JFN is to
specification is an ASCIZ string.

3-28

file specification
be written. This

•

•

•

•

•

•

•

•

•

•

AC2:

AC3:

USING FILES

JFN or pointer to string (see below)

format to be used when returning the specification (see
below)

The contents of ACl can be any valid destination designator (refer to
Section 3.5.2).

The contents of AC2 can be one of two formats. The first format is a
word with either flag bits or 0 in the left half and the JFN in the
right half. The bits that can be given in the left half of AC2 are
the ones returned from the GTJFN % call (refer to Table 3-3). When the
left half of AC2 is nonzero (i.e., contains the bits returned from the
GTJFN% call), the string returned will contain wildcard characters for
appropriate fields and 0, -1, or -2 as a generation number if the
corresponding bit is on in the JFNS % call. When the left half of AC2
is 0, the string returned is the exact specification for the file
(e.g., wildcard characters are not returned for any fields). If the
JFN is associated only with a file specification and not with an
actual file (i.e., bit GJ %0FG was set in the GTJFN % call), the string
returned will contain null fields for unspecified fields and the
actual values for specified fields. The second format allowed for AC2
is a pointer to the string in the program's address space that is to
be returned upon execution of the call. Refer to the TOPS-20 Monitor
Calls Reference Manual for the explanation of this format.

The contents of AC3 specify the format in which the specification is
written to the destination. Bits 0 through 20 are divided into 3-bit
bytes, each byte representing a field in the file specification. The
value of the byte indicates the format for that field. The possible
values are:

0 Do not return this field when returning the file
specification.

1 Always return this field when returning the file
specification.

2 Suppress this field if it is the standard system value for
this field (refer to Tabl€ 3-1).

If the contents of AC3 is zero, the file specification is written in
the format

dev: <directory >name.typ.gen;T

with fields the same as the standard system value (see Table 3-1) not
returned and protection and account fields returned only if bit 9 and
bit 10 in AC2 are on, respectively. The temporary attribute (;T) is
returned only if the file is temporary.

Table 3-7 describes the bits that can be set in AC3 .

3-29

Bit

0-2

3-5

6-8

9-11

12-14

15-1 7

18-20

21

22

23

24

25

26

27-31

32

Symbol

JS %DEV

JS %DIR

JS %NAM

JS %TYP

JS %GEN

JS %PRO

JS %ACT

JS %TMP

JS %SIZ

JS %CRD

JS %LWR

JS %LRD

JS %P'l'R

JS %PSD

USING FILES

Table 3-7
JFNS % Format Options

Meaning

Format for device field.

Format for directory field.

Format for filename field. A value of
2 (i.e., bit 7 set) for this field is
illegal.

Format for file type field. A value
of 2 (i.e., bit 10 set) for this field
is illegal.

Format for generation number field.

Format for protection field.

Format for account field.

Return temporary file indication :T if
the file specification is for a
temporar y file.

Return size of file in pages (see
below.) .

Return creation date of file (see
below).

Return date of last write operation to
file (see below).

Return date of last read operation
from fil e (see below).

AC2 contains a pointer to the string
containina the field to be returned
(refer to - the TOPS-20 Monitor Calls
Reference Manual for a description of
this use of t he JFNS % call) .

Reserved for DEC.

Punctuate the size and date fields
(see below) in the file specification
returneo.

3-3 0

•

•

•

•

•

•

•

•

•

•

USING FILES

Table 3-7 (Cont.)
JFNS % Format Options

Bit Symbol Meaning

33 JS %TBR Place a tab before all fields returned
(i.e., fields whose value is g iven as
1 in the 3-bit field) in the file
specification, except for the first
field.

34 JS%TBP Place a tab before all fields that may
be returned (i.e., fields whose value
is given as 1 or 2 in the 3-bit field)
in the file specification, except for
th e first field.

35 JS %PA F Punctuate all fields (see below)
returned in the file specification
from the device field through the ; 'I'
field.

If bits 32 through 35 are not set, no
punctuation is used between the
fields.

The punctuation used on each field is shown below.
is underscored.)

(The punctuation

dev: <directory>name.typ.gen;A(account) ;P(protection) ;T (temporary)
,size,creation date,write date,read date

Control always returns to the user's program at the instruction
following the JFNS call. If an e rror occurs, a software interrupt is
generated (refer to Chapter 4).

3.7.3 GNJFN% Monitor Call

Occasionally a program may be written to perform similar operations on
a group of files instead of only on one file. However, the program
should not require the user to give a file specification for each
file. Because the GTJFN% call associates a JFN with only one file at
a time, the program needs a method of assigning a JFN to all the files
in the group. By using the GTJFN% call to initially obtain the JFN
and the GNJFN% call to assign the same JFN to each subsequent file in
the group , a program can accept a specification for a group of files
and process each file in the group individually. After the user gives
the initial file specification, the program requires no additional
input.

Before an example showing the interaction of these two calls is given,
a description of the GNJFN % (Get Next JFN) monitor call is
appropriate.

The GNJFN% monitor call assigns a JFN to the next file in a group of
files that have been specified with wildcard characters. The next
file is determined by searching the directory in the order described
in Section 3.3.1.l using the current file as the first file. This
call accepts one argument word in ACl - the flags returned from the
GTJFN% call in the left half and the JFN of the current file in the

3-31

I

USING FILES

right half. In other words, the information returned in ACl from the
GTJFN% call is given as an argument to the GNJFN% call. Therefore,
the program must save this information for use with the GNJFN% call.

If execution of the GNJFN % call is successful, the same JFN is
assigned to the next file in the group. The left half of ACl contains
various flags and the right half contains the JFN. The execution of
the program continues at the second instruction after the GNJFN% call.

The following bits can be returned in ACl on a successful GNJFN% call.

Bit Symbol

14 GN%DIR

15 GN %NAM

16 GN %EXT

Meaning

A change in directory occurred between
the previous file and this file.

A change in filename occurred between
the previous file and this file.

A change in file type occurred between
the previous file and this file. If
GN %NAM is on, this bit will also be on
because the system considers two files
with different filenames but with the
same file type as a change in both the
name and type.

If execution of the GNJFN % call is not successful, an error code is
returned in the right half of ACl. Conditions that can cause an error
return are:

l.

2.

The file currently
and it is not.
CLOSF % call (with
executing a GNJFN %

There are no more
the first GNJFN%
stepped through.
files.

associated with
This means that
CO %NRJ set to
call.

the JFN must be closed,
the program must execute a
retain the JFN) before

files in this group. This return occurs on
call after all files in the group have been
The JFN is released when there are no more

The execution of the program continues at the next instruction after
the GNJFN % call.

Consider the following situation. The user wants to write a program
that will accept from his terminal a specification for a group of
files and then perfo r m an operation on each file individually without
requiring additional input. Assume the user's directory <TRAIN >
contains the following files:

FIRST.MAC.I
FIRST.REL.I
SECOND.REL.!
THIRD. EXE .1

As discussed in Section 3.3.l.l, a group of files can be given to the
GTJFN call by supplying a specification that contains wildcard
characters in one or more of its fields. Thus, the specification

<TRAIN >*.*

would refer to all four files in the user's directory <TRAIN > .

3-32

•

•

•

•

•

•

•

•

•

•

USING FILES

In his program, the user includes a GTJFN % call that will accept the
above specification.

The call is

MOVSI AC1,(GJ %0LD+GJ %IFG+GJ%FLG+GJ %FNS+GJ %SHT)
MOVE AC2,[.PRIIN,,.PRIOU)
GTJFN %

and indicates that

1. The file specification given must refer to an existing file
(GJ %0LD).

2. The file specification given is allowed to contain wildcard
characters (GJ %IFG) .

3. Flags will be returned in ACl on a successful call (GJ %FLG).
The flags must be returned because they will be given to the
GNJFN % call as arguments.

4. The contents of AC2 will be interpreted as containing an
input and output JFN (GJ%FNS).

5. The short form of the GTJFN % call is being used (GJ%SHT).

6. The file specification is to be read from the user's terminal
(. PRIIN,,. PRIOU) .

When the user types the specification <TRAIN >*.* as input, the system
associates the JFN with one file only. This file is the first one
found when searching the directory in the order specified in Section
3.3.1.1. Thus the JFN returned is associated with the file
FIRST.MAC.l.

After the GTJFN% call is successfully executed, ACl contains
appropriate flags in the left half and the JFN assigned in the right
half. The flags that will be returned in this particular situation
are:

GJ%NAM (bit 3)

GJ%EXT (bit 4)

GJ%GND (bit 12)

A wildcard character appeared in the name
field of the file specification given.

A wildcard character appeared in the type
field of the file specification given.

Any files marked for deletion will not be
considered.

These flags inform the program of the fields that contained wildcard
characters.

The user's program must now save the contents of ACl because this word
will be used as the argument to the GNJFN % call. The program then
performs its desired operation on the first file. Once its processing
is completed, the program is ready for the specification of the next
file. But instead of requesting the specification from the user, the
program executes the GNJFN% call to obtain it. The argument to the
GNJFN% call is the contents of ACl returned from the previous GTJFN%
call. Thus, the call in this case is equivalent to:

MOVE AC1,[GJ %NAM+GJ%EXT+GJ %GND,,JFN)
GNJFN%

3-33

USING FILES

Upon successful execution of the GNJFN % call,
associated with the next file in the group (i.e.,
contains appropriate flags in the left half and the
right half. In this example, the flag returned is
indicate that the file type changed between the two

the JFN is now
FIRST.REL.l). ACl
same JFN in the
GN %EXT (bit 16) to
files.

After processing the second file, the user's program executes another
GNJFN % call using the original contents of ACl returned from the
GTJFN % call. The original contents must be used because this word
indicates the fields containing wildcard characters. If the current
contents of ACl (i.e., the flags returned from the GNJFN% call) are
used, a subsequent GNJFN % call would fail because there are no flags
set indicating fields containing wildcard characters. This second
GNJFN % call associates the JFN with the file SECOND.REL.l. The flags
returned in ACl are GN %NAM (bit 15) and GN %EXT (bit 16) indicating
that the filename and file t y pe changed between the two files.
(Remember that a change in filename i~plies a change in file type even
if the two file types are the same.)

After processing this
GNJFN % call usina the
call, the JFN is ~ now
returned are GN %N AM
and file type.

third file, the user's program executes another
original contents of ACl. Upon execution of the
associated with THIRD.EXE.l, and the flags
and GN %EXT, indicating a change in the filename

After processing the file THIRD.EXE.l, the user's program executes a
final GNJFN % call. Since there a re no more files in the group, the
call returns an error code and releases the JFN. Execution of the
user's program continues at the instruction following the GNJFN% call.

3.8 SUMMARY

To read from or write to a file, the user's program must:

1. Obtain a JFN on the file with the GTJFN% monitor call (refer
to Section 3.3.1).

2. Open the flle with the OPENF % monitor call (refer to Section
3. 4 .1) •

3. Transfer the data with byte, string, or page I/O monitor
calls (refer to Section 3.5).

4. Close the file with the CLOSF % monitor call (refer to Section
3. 6 .1).

3-34

•

•

•

•

•

•

•

•

•

•

USING FILES

3.9 FILE EXAMPLES

Example 1 - This program assigns JFNs, opens an input file and an
output file, and copies data from the input file to the output file.
Data is copied until the end of the input file is reached. Refer to
the TOPS-20 Monitor Calls Reference Manual for explanation of the
ERSTR% monitor call.

i*** PROGRAM TO COPY INPUT FILE TO OUTPUT FILE, ***
! USING BIN%/BOUT% AND IGNORI NG NULL ' Sl

TITLE FILEIO
SEAR CH MON SYM

;TITLE OF PROGRAM
;SEARCH SYSTEM JSY S- SYMBOL LIBRARY

i** * IMPURE DATA STORAGE AND DEFINITIONS ***

IN J FN: BLO CK 1
OUTJFN: BLOCK 1

;STORAGE FOR INPUT JFN
iSTORAGE FOR OUTPUT JFN

PDLEN=3
PDLST: BLOCK PDLEN

iSTACK HA S LENGTH 3
iS ET ASIDE STORAGE FOR STACK

A==l
B==2
C== 3
D==4
T1==5

P==17

iJSYS AC 'S

iTEMPORARY AC ' S

iPUSH DOWN POINTER

i*** PROGRAM INITIALIZATION ***

START: RESET/. iCLOSE FILES• ETC.
MOVE p,[IOWD PDLEN,PDLSTJ iESTABLISH STACK

i*** GET INPUT-FILE ***

INFIL: HRROI A,[ASCIZ I
INPUT FILE: /J iPROMPT FOR INPUT FILE

PSOUT% ;ON CONTROLLING TERMINA L
MOVE A,(GJ%0LD+GJZFNSt GJZS HTJiSEARCH MODES FOR GTJFN

iCEXISTING FILE ONLY , FILE-NR ' S IN B
; SHORT CA~L J

MOVE B,C,PRIIN,,,PRIOUJ iGTJFN ' S I/O WITH CONTROLLING TERMINAL
GTJFNZ ;GET JOB FILE NUMBER IJFN l

JRST [PUSHJ p,wARN iIF ERROR, GIVE WARNIN G
JRST INFILJ

MO VEM A,INJFN

i *** GET OUTPUT-FILE ***

OUTFIL: HRROI A,[ASCIZ I

iAND LET HIM TRY AGAIN
;SUCCESS, SAVE THE JFN

OUTPUT FILE: / J iPROMPT FOR OUTPUT FILE
PSOUT% ;pRINT IT
MOVE A,[GJ %FOUtGJ% MSG+GJ%CFM tG J%FNS tG J%S HTJ;GTJFN SEARC H MODES

;(DEFAULT TO NEW GENERATION , PRINT
ME SSAGE , REQUIRE CONFIRMATION

; FILE-NR'S IN B ' SHORT CALL J

MOVE e.c.PRIIN ••• PRI UUJ I / O WITH CONTROLLING TERMINAL
GTJFNZ GE T JOB -FILE NUMB ER

JRST E PUSHJ P,WARN IF ERROR, GIVE WARNING
JRST OUTFILJ AND LE T HIM l RY AGAIN

MOVEM A,OUTJFN SAVE THE JFN

3-35

;Now. OPEN THE FILES WE JUST GOT

INPUT

MOVE A•INJFN
MOVE B,[7B5tOFZRDJ
OPENFZ

JRST FATAL

OUTPUT

MOVE A,OUTJFN
MOVE B.C 7B5 tOFZWRJ
OPENFZ

JRST FATAL

USING FILES

;RETRIEVE THE INPUT JFN
;DECLARE MODES FOR OPENF [7-BIT BYTES t INPUTJ
;OPEN THE FILE
;IF ERROR, GIVE MESSAGE AND STOP

;GET THE OUTPUT JFN
;DECLARE MODES FOR OPENF [7-BIT BYTES t OUTPUTJ
;OPEN THE FILE
;IF ERROR, GIVE MESSAGE AND STOP

i*** MAIN LOOP !COPY BYTES FROM INPUT TO OUTPUT ***

LOOP! MOVE A•INJFN
BINZ
JUMPE B,DON E
MOVE A,OUTJFN
BOUTZ
JRST LOOP

;GET THE INPUT JFN
;TAKE A BYTE FROM THE SOURCE
;IF o, CHECK FOR END OF FILE.
iGET THE OUTPUT JFN
iOUTPUT THE BYTE TO DE ST INATION
iLOOP, STOP ONLY ON A 0 BYTE !FOUND
iAT LOOPt2 >

i*** TEST FOR END OF FILE, ON SUCCESS FINISH UP ***

DONE! GT STS%
TLNN B,CGSZEOF l
JRST LOOP

CLOSIF! MOVE A,INJFN
CLOS FZ

JRST FATAL

CLOSOF! MOVE A,OUTJFN
CL OSFZ

JRST FATAL
HRROI A•CASCIZ /

CDONEJ / J
PSOUTZ
JRST ZAP

iGET THE STA TU S OF INPUT FILE.
iAT END OF FIL E?
iNO, FLU SH NULL AND CONTINUE COPY

iYES, RETRIEVE INPUT JFN
iCLOSE INPUT FILE
;IF ERROR, GIVE MESSAGE AND STOP

;RETRIEVE OUTPUT JFN
;CLOSE OUTPUT FILE
iIF ERROR, GIVE ME SS AGE AND STOP

i SUCCE SSF ULLY DONE
iPRINT IT
i STOP

3-36

•

•

•

•

•

•

•

•

•

•

i*** ERROR HANDLING ***

FATAL: HRROI A,[ASCIZ/
?/]

PUSHJ P•ERROR
.JRST ZAP

WARN: HRROI A,[A SCIZ /
/./ J

ERROR: PSOUTZ

USING FILES

IFATAL ERRORS PRINT ? FIRST
ITHEN PRINT ERROR MESSAGE,
; AND STOF'

IWARNINGS PRINT Z FI RST
; AND FALL THRU 'ERROR ' BACK TO CALLER

IPRINT THE ? OR Z
MOVEI A,[,PRIOUJ
MOVE B1[,FHSLF,,-1J
SETZ c,

IDECLARE PRINCIPA L OUTPUT DEVICE FOR ERROR MESSAGE I
ICURRENT FORK,, LAST ERROR

ZAP:

ERSTRZ
JFCL
JFCL

POF'J P,

HALTFZ
JRST START
EN D START

iNO LIMIT,, FULL MESSAGE
IPRINT THE MESSAGE
iIGNORE UNDEFINED ERROR NUMBER
IIGNORE ERROR DURING EXECUTION OF ERSTR
IRETURN TO CALLER

ISTOP
IWE ARE RESTARTABLE
ITELL LINKING LOADER START ADDRE SS

Example 2 - This program accepts input from a user at the terminal and
then outputs the data to the line printer. Refer to Section 2.9 for
explanation of the ROTTY% call •

TITLE LPTPNT - PROGRAM TO PRINT TERMINAL INPUT ON THE PRINTER

SALL.
SEARCH MACSYM,MONSYM
.REQUIRE SY S :MACREL

T1==1
T 2 = = :)
T3==3
T4="'4

F' == 1 7

BUFSIZ==2 00
PDLEN==50

COUNT: BLOCK 1
BUFFER: BLOCK BUF SI Z
PDL! BLOCK PDLEN

START: RESE TZ IRESET I / O, ETC,

/J

MOVE p,[IOWD PDLEN,PD LJ ISE T UP STACK
HRROI Tl,[ASCIZ/ ENTER TEXT TO BE PRINTED 1END WITH -z 1 :

PSOUTZ
HRROI Tl.BUFFER

~G E T PO J NTER TO PROMP TIN G TE XT
;ouTP UT PROMPTING MESSAGE
IGET POINTER TO BUF FEP

MOVE T2 ,[RDZBRK+BUFSIZ*5J iGET FLAG AND MA X t OF CHARA CTE RS TO READ
SETZM T3 IND RE-TYPE BUFFER
RDTTYZ !INPUT TEXT FROM THE TERMINAL

JSHLT IERRQR, STOP
ADD T21BUFSIZ*5 ICOMPUTE NUMBER OF CHARAC TER S READ
MOVEM T2 ,COUNT ISAVE t OF CHARACTERS INPUT

3-37

I

I

I

I

USING FILES

GET A JFN FOR THE PRINTER AND OPEN THE PRINTER

MOVSI T1. I GJ%SHTIGJ%FOU) ;ouTPUT FILE. SHORT CALL
HRROI T2,[ASCIZ / LPT: / J ;GET POINTER TO NAME .OF FILE
GTJFN% iGET A JFN FOR THE PRINTER

JRST JFNERR iERROR, PRINT ERROR MESSAGE
MOVE T2,[7B5+0F%WRJ ;7 - BIT BYTES, WRITE ACCESS WAN TED
OPENF% ;OPEN THE PRINTER FOR OUTPU T

JRST OPNERR ;ERROR, PRINT ERRO R MESSAGE

NOW OUTPUT THE TE XT WHICH WAS INPUT FROM THE TERMINAL

HRROI T2,BUFFER
MOUN T3,COUNT
SOUT%

ERJMP DATERR
HRROI Tl,[ASCI Z/

;GET POINTER TO TEXT <PRINTER JFN STILL IN Tl>
iGET NUMBER OF CHARACTERS TO OUTPUT
iOUTPUT STRING OF CHARAC TERS TO THE PRINTER
iERROR, PRINT ERROR MESSAGE

OUTPUT HAS BEEN SENT TO THE PRINTER •••
/]

PSOUT%
HALTF%
JRST START

; ERROR ROUTINE S

JFNERR: HRROI Tl,[ASCI Z/

iOUTPUT CONFIRMATION MESSAGE
I FINI SHED
; I F CONTINUED, GO BACK TO START

7 COULD NOT GET A JFN FOR THE PRIN TER
/]

PS OUT%
HALTF %
JR ST START

OPNERR: HRROI Tl,[A SC I Z/
? COULD NOT OPEN THE PRINTER FOR OUTPUT
/]

PS OUT%
HALTF %
JR ST START

DATERR: HRROT 11,[A SC I Z/
? DATA ERROR DURIN G OUTPUT TO PRI NTER
/]

PSOUT%
HALTF %
J RST START

END STAR l

3-38

•

•

•

•

•

•

•

•

•

•

CHAPTER 4

USING THE SOFTWARE INTERRUPT SYSTEM

4.1 OVERVIEW

Program execution usually occurs in a sequential manner, where
instructions are executed one after another. But sometimes a program
must be able to receive asynchronous signals from terminals, the
monitor, or other programs, or as a result of its own execution. By
using the software interrupt system, the user can specify conditions
that will cause his program to deviate from its sequential method of
execution.

An interrupt is defined as a break in the normal flow of control
during a program's execution. The break, or interrupt, is caused by
the occurrence of a prespecified condition. By specifying the
conditions that can cause an interrupt, the program has the capability
of dynamically responding to external events and error conditions and
of generating requests for services. Because the program can respond
to special conditions as they occur, it does not have to explicitly
and repeatedly test for them. In addition, the program's execution is
faster because the program does not have to include a special test
after the possible occurrence of the condition.

When an interrupt occurs, the system transfers control from the main
program sequence to a previously-specified routine that will process
the interrupt. After the routine has completed its processing of the
interrupt, the system can transfer control back to the program at the
point it was interrupted, and execution can continue. See Figure 4-1 .

4-1

USING THE SOFTWARE INTERRUPT SYSTEM

User
Program
Is
Executing

Interrupt
Condition
Occurs

No

Perform System
Default Action
(e.g., stop job,
print message)

User Program
Continues if Job
Has Not Been
Terminated

Yes

Wait uni11
Higher Priority
Interrupt
Finishes

Execute
No User's

>-'=---+1 Interrupt
Routine

MA-S-2027-82

Figure 4-1 Basic Operational Sequence of the Software
Interrupt System

4.2 INTERRUPT CONDITIONS

Conditions that cause the program to be interrupted when the interrupt
system is enabled are:

1. Conditions generated when specific terminal keys are typed.
There are 36 possible codes; each one specifies the
particular terminal character or condition on which an
interrupt is to be initiated. Refer to Table 4-2 for the
possible codes.

4-2

•

•

•

•

•

•

•

•

•

•

USING THE SOFTWARE INTERRUPT SYSTEM

2. Invalid instructions (e.g., I /O instructions given in user
mode) or privileged monitor calls issued by a non-privileged
user.

3.

4.

5.

6.

7.

8.

9.

Memory conditions, such as illegal memory references.

Arithmetic processor conditions, such as arithmetic overflow
or underflow.

Certain file or device conditions, such as end of file.

Program-generated software interrupt s .

Termination of an inferior process.

System resource unavailability.

Interprocess
interrupts .

communication (IPC F) and Enque ue / Dequeue

4.3 SOFTWARE INTERRUPT CHANNELS AND PRIORITIES

Each condition is associated with one of 36 software interrupt
channels . Most conditions are permanently assigned to specific
channels; however, the user 's program can associate some conditions
(e.g., conditions generated by specific terminal keys) to any one of
the assignable channels. (Refer to Table 4-1 for t he channel
assignments.) When the condition associated with a channel occurs, and
that channel has been activated, an interrupt is generated. Control
can then be transferred to the routine responsible for processing
interrupts on that channel.

Th e user program assigns each channel to one of three priority levels.
Priority levels allow the occurrence of some conditions to suspend the
processing of other conditions. The levels are referred to as level
1, 2, or 3 with level l having the highest priority. Level 0 is not a
legal priority level. 1

If an interrupt is generate d in a process wher e the priority l e vel
is 0, the system considers that the process is not prepared to handle
the interrupt. The process is then suspended or terminated according
to the setting of bit 17 (SC %FRZ) in its capabi lity wor d .

4-3

I

USING THE SOFTWARE INTERRUPT SYSTEM

Table 4-1
Software Interrupt Channel Assignments

Channel Symbol Meaning

0-5 Assignable by user program

6 .ICAOV Arithmetic overflow

7 .ICFOV Arithmetic floating point overflow

8 Reserved for DEC

9 .ICPOV Pushdown list (POL) overflow 1

10 .ICEOF End of file condition

11 .ICDAE Data error file condition l

12-14 Reserved for DEC

15 .ICILI Illegal instruction i

16 . ICIFD Illegal memory read i

17 . ICIWR Illegal memory write l

18 Reserved for DEC

19 . ICIFT Inferior process termination

20 .ICMSE System resources exhausted i

21 Reserved for DEC

22 .ICNXP Nonexistent paqe reference

23-35 Assignable by user program

These channels (called panic channels) cannot be completely
deactivated. An interrupt generated on one of these channels
terminates the process if the channel is not activated.

4-4

•

•

•

•

•

•

•

•

•

•

USING THE SOFTWARE INTERRUPT SYSTEM

The software interrupt system processes interrupts on activated
channels only, and each channel can be activated and deactivated
independently of other channels. When activated, the channel can
generate an interrupt for its associated priority level. An interrupt
for any priority level is initiated only if there are no interrupts in
proaress for the same or higher priority levels. If there are, the
system remembers the interrupt request and initiates it after all
equal or higher priority level interrupts finish. This mea ns that a
higher priority level request can suspend a routine processing a lower
level interrupt. Thus, the user must be concerned with several items
when he assigns his priority levels. He must consider 1) when one
interrupt request can suspend the processing of another and 2) when
the processing of a second interrupt cannot be deferred until the
completion of the first. See Figure 4-2.

Level 2

User Program
Execution

L 11 eve

Channel 6
Interrupt
Routine

- - -

Interrupt on
Channel&
that Has a
Priority Level
of 2

-

Channel 4
Interrupt
Routine

- - - - - -
Waiting

- - - - -

Interrupt on
Channel 4
that Has a
Priority Level
of 1

Channel 6 Interrupt
Routine Continues

Level 3 - - - -

Waiting

- - -

Channel4
Interrupt
Completes

- -

Waiting

- - -

Interrupt on
Channel 35
that Has a
Priority Level
of 3

-
Channel35
Interrupt
Routine

- - - - - -

Channel&
Interrupt
Completes

Figure 4-2 Channels and Priority Levels

4.4 SOFTWARE INTERRUPT TABLES

- -
User Program
Continues

Channel 35
Interrupt
Completes

MA-5·2030·82

To process interrupts, the user includes, as part of hi s program,
special service routines for the channels he will be using. He must
then specify the addresses of these routines to the system by setting
up a channel table. In addition, the user must also include a
priority level table as part of his program. Finally, he must declare
the addresses of these tables to the system .

4-5

USING THE SOFTWARE INTERRUPT SYSTEM

4.4.1 Channel Table

The channel table, CHNTAB i , contains a one-word entry for each
channel; thus the table has 36 entries. Each entry corresponds to a
particular channel, and each channel is associated at any given time
with only one interrupt condition. (Refer to Table 4-1 for the
interrupt conditions associated with each channel.)

The CHNTAB table is indexed by the channel number (0 through 35). The
left half of each entry contains the priority level to which the
channel is assigned. The Jight half of each entry contains the
address of the interrupt routine for that channel. If a particular
channel is not used, the corresponding entry in the channel table
should be zero.

The following is an example of a channel table.

CHNTAB: <2B5! <CHNOSV >B35 > ;channel 0
<2B5! <CHN1SV >B35 > ;channel 1
<2B5!<CHN2SV>B35 > ;channel 2
<2B5! <CHN3SV >B35 > ;channel 3
0 ;channel 4
0 ;channel 5
<1E5! <APRSRV >B35 > ;channel 6
0 ;channel 7
0 ;channel 8
<1B5! <STKSRV>B35 > ;channel 9
0 ;channel 10

0 ;channel 35

In this example, channels 0 through 3 are assigned to priority level
2, with the interrupt routine at CHNOSV servicing channel 0, the
routine at CHNlSV servicing channel 1, the routine at CHN2SV servicing
channel 2, and the routine 2t CHN3SV servicinq channel 3. Channels 6
and 9 are assigned to priority level 1, with the routine at APRSRV
servicing channel 6 and the routine at STKSRV servicing channel 9.
All remaining channels are not assigned.

4.4.2 Priority Level Table

The priority level table, LEVTAB 2 , contains a one-word entry for
each of the three priority levels. The left half of each entry is
zero. The right half of each entry contains the address in the user's
program where the system will store the flags and program counter (PC)
for the associated priority level. The system must save the value of
the program counter so that it can return control at the appropriate
point in the program once the interrupt routine has completed
processing an interrupt. If a particular priority level is not used,
its corresponding entry in the level table should be zero.

1 The channel table can be called any name the user desires; it is a
good practice, however, to call the table CHNTAB.

2 The user can call his priority level table any name he desires;
however, it is good practice to call it LEVTAB.

4-6

•

•

•

•

•

•

•

•

•

•

USING THE SOFTWARE INTERRUPT SYSTEM

The following is a sample of a level table .

LEVTAB: O,,PCLEVl ;Addresses to save PC for interrupts
;occurring on priority levels l and 2.
;No priority level 3 interrupts are
;planned.

O,,PCLEV2
0, , 0

4.4.3 Specifying The Software Interrupt Tables

Before using the software interrupt system, the user's program must
set up the contents of the channel table and the priority level table.
The program must then specify their addresses with either t h e SIR% or
XSIR % monitor calls.

These calls are similar, but their differences are important. The
SIR % call can be used in single-section programs, but t h e XSI R% call
must be used in programs that use more than one section of memor y .
The SIR% call works in non-zero sections onl y if the t a bles are in the
same section as the code that makes the call. The code t h at causes
the interrupt must also be in that section, as must the code that
processes the interrupt. Because of the limitations of th e SI R% call,
you should use the XSIR% call.

The SIR % monitor call accepts two words of arguments: the identifier
for the program (or process) in ACl, and the table addr e sses in AC2.
Refer to Section 5.3 for the description of process i d entifiers.

The following example shows the use of the SIR% call .

MOVE! l,.FHSLF ;identifier of current process
;addresses of the tabl e s MOVE 2,[LEVTAB,,CHNTAB]

SIR%

The XSIR%
identifier
to be set;

call accepts the following arguments: in ACl, the
of the process for which the interrupt channel tables are
in AC2, the address of the argument block.

The argument block is a three-word block that has the following
format:

!===!
Length of the argument block, including this word !

!--------------~--!

Address of the interrupt level table !
!---!

Address of the channel table
!===!

Control always returns to the
followinq the SIR% and XSIR%
table addresses are stored in
successful, a software interrupt

user's program at the instruction
calls. If the call is successful, the
the monitor. If the call is not
is generated.

I

Any changes made to the contents of the tables after the XSIR % or SIR% I
calls have been executed will be in effect at the time of the next
interrupt.

TOPS-20 Version 5 4-7 April 1982

I

USING THE SOFTWARE INTERRUPT SYSTEM

4.5 ENABLING THE SOFTWARE INTERRUPT SYSTEM

Once the interrupt tables have been set up and their addresses defined
with the XSIR % monitor call, the user's program must enable the
interrupt s ystem. When the interrupt system is enabled, interrupts
that occur on activa t ed channels are processed by the user's interrupt
routines. When the interrupt s ystem is disabled, the monitor
processes interrupt s as if the channels for these interrupts were not
activated.

The EIR %
argument:

monitor call, used to enable the system,
the ident i fier for the process in ACl.

accepts

MOVE! l,.FHSLF
EIR %

;identifier of current process

Control alwa y s returns to the instruction following the EIR call.

4.6 ACTIVATING INTERRUPT CHANNELS

one

Once the software interrupt s ystem is enabled, the channels on which
interrupts can occur must be activated (refer to Table 4-1 for the
channel assignments). The channels to be activated have a nonzero
e ntr y in th e appropriate word in the channel table.

The AIC % monit o r call activates one or more of the 36 interrupt
channels. This call accepts two words of arguments - the identifier
for the pr ocess in ACl, and the channels to be activated in AC2.

The channels are indicated by setting bits in
indicates that channel n is to be activated.
onl y those chann e ls for which bits are set.

AC2. Setting bit n
The AIC % call activates

MOVE! l,.FHSLF
MOVE 2, [lB <.ICAOV >+lB <.ICPOV >]
AIC %

;identifier of current process
;activate channels 6 and 9

Control alwa y s returns to t he instruction following the AIC call.

Some channels, called panic channels, cannot be deactivated by
disabling the channel or the entire interrupt system. (Refer to Table
4-1 for these channels.) This is because the occurrence of the
conditions a s sociated with these channels cannot be completely ignored
by the monitor.

If one of these conditions occurs, an interrupt is generated whether
the channel is activated or not. If the channel is not activated, the
p rocess is terminated, and usuall y a message is output before control
retur ns to the monitor. If the channel is activated, control is given
to the user' s interru p t routine for that channel.

4.7 GENERATING AN INTERRUPT

A process generates an interrupt by producing a condition for which an
interru p t channel is enabled, such as arithmetic overflow, or by using
the !IC % monitor call. This call can qener a te an interrupt on any of
the 36 interrupt channels of the - process the calling process
specifies. See Section 5.10 for a description of the !IC% call.

TOPS-20 Version 5 4-8 April 1982

•

•

•

•

•

•

•

•

•

•

USING THE SOFTWARE INTERRUPT SYSTEM

4.8 PROCESSING AN INTERRUPT

When a software interrupt occurs on a g iven p riority l eve l, t he
monitor stores the current p rogram count e r (PC) wor d i n the address
indicated in the priority level t able (refer to Section 4.4. 2). The
monitor then transfers control to the interrupt routine associated
with the channel on which the interrupt occurred. The address of this
routine is specified in the channel table (refer to Section 4.4.1).

Since the user's program cannot determine when an interrupt will
occur, the interrupt routine is responsibl e for p re s er v ing the state
of the prograw. so that the program can be resumed properl y . Thus, the
first action taken by the routine is to store the contents of an y user
accumulators that will be used during the processing of the interrupt.
After the accumulators are saved, the interrupt routine processes the
interrupt.

Occasionally, an interrupt routine ma y need to a lter locations in the
main section of the program. For example, a routine ma y change the
stored PC word to resume execution at a location different from where
the interrupt occurred. Or it may alter a value that caused the
interrupt. It is important that care be used when writing routines
that alter data because any changes will remain when control is
returned to the main program. For example, if data is inadvertently
stored in the PC word, return to the main section of the program would
be incorrect when the system attempted to use the word as the value of
the program counter.

If a higher-priority interrupt occurs during the execution of an
interrupt routine, the execution of the lower-priority routine is
suspended. The value of its program counter is stored at the location
indicated in the priority level table for the new interrupt. When the
routine for this new interrupt is completed, the suspended routine is
resumed.

If an interrupt of the same or lower priorit y occurs during th e
execution of a routine, the monitor holds the interrupt until all
higher or equal level interrupts have been processed.

The system considers the user's program unable to process an interrupt
on aP activated channel if any of the following is true:

1. The priority level associated with the channel is 0.

2. The program has not defined its interrupt tables by executing
an XSIF% or SIR % monitor call. I

3. The process has not enabled the interrupt s y stem by executing
an EIR% monitor call, and the channel on which the interrupt
occurs is a panic channel.

In any of the above
channel terminates
iqnored.

cases, the occurrence of an interrupt on a panic
the user's program. All other interrupts are

4.8.l Dismissing An Interrupt

Once the processing of an interrupt is complete, the interrupt
should restore the user accumulators to their initial values.
should return control to the interrupted code by using the
monitor call. This call restores the PC word and resumes the
The call has no arguments, and must be the last statement
interrupt routine.

routine
Then it

DEBRK %
program.

in the

TOPS-20 Version 5 4-9 April 1982

I

USING THE SOFTWARE INTERRUPT SYSTEM

If the interrupt-processing routine has not changed the PC of the
user's program, the DEBRK % call restores the program to the same state
the program was in j ust before the interrupt occurred. If the program
was interrupted while waiting for I / O to complete, for example, the
program will again be waiting for I / O to complete when it resumes
execution after the DEBRK % call.

If the PC word was changed, the program resumes execution at the new
PC location. The state of the program is unchanged.

4.9 TERMINAL INTERRUPTS

The user's program can associate channels 0 through 5 and channels 24
throug h 35 with occurrences of various conditions, such as the
occurrence of a particular character typed at the terminal or the
receipt of an IPCF message . This section discusses terminal
interrupts: refer to Chapters 6 and 7 for other types of assignable
interrupts.

There are 36 codes used to specif y terminal characters or conditions
on which interrupts can b e initiated. These codes, along with their
associated conditions, are shown in Table 4-2.

Table 4-2
Terminal Codes and Conditions

Code Sy mbol Character or Condition

0 .TICBK CTRL/ @ or break

1 .TICCA CTRL/ A

2 . 'l'ICCB CTRL/ B

3 .TICCC CTRL/ C

4 .TICCD CTRL/ D

5 . 'l'ICCE CTRL/ E

6 .TICCF C'l'RL / F

7 .TICCG CTRL/ G

8 .TICCH CTRL / H

9 . TICCI CTRL/ I

10 . TICCJ CTRL/ J

11 .TICCK CTRL/ K

12 .TICCL CTRL/ L

13 .TICCM C'l'RL / M

14 .TICCN CT RL/ N

15 .TICCO CT RL/ O

4-10

•

•

•

•

•

•

•

•

•

•

Code

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

3 3-35

USING THE SOFTWARE INTERRUPT SYSTEM

Table 4-2 (Cont.)
Terminal Codes and Conditions

Symbol Character or Condition

.TICCP CTRL/ P

.TICCQ CTRL/ Q

.TICCR CTRL/ R

.TICCS CTRL/ S

.TICCT CTRL/ T

.TICCU C'I'RL / U

.TICCV CTRL/ V

.TICCW CTRL / W

.TICCX CTRL/ X

.TICCY CTRL/ Y

.TICCZ C'I'RL/ Z

.TICES ESC key

.TICRB Delete (or rubout)

.TICSP Space

.TICRF Dataset carrier off

.TICTI Type in

.TIC'I'O Typeout

Reserved

key

To cause terminal interrupts to be generated, the user's program must
assign the desired terminal code to one of the assignable channels.
The ATI% monitor call is used to assign this code. This call accepts
one word of arguments: the terminal code in the left half of ACl and
the channel number in the right half.

MOVE l,[.TICCE,,IN'I'CHl)
AT!%

;assign CTRL/ E to channel INTCHl

Control always returns to the instruction following the AT! % call. If
the current job is not attached to a terminal (there is no terminal
controlling the job), the terminal code assignments are remembered;
they will be in effect when a terminal is attached.

The monitor handles the receipt of a terminal interrupt character in
either immediate mode or deferred mode. In immediate mode, the
terminal character causes the system to initiate an interrupt as soon
as the user types the character (i.e., as soon as the system receives
it). In deferred mode, the terminal character is placed in the input
stream in sequence with other characters of the input, unless two of

4-11

USING THE SOFTWARE INTERRUPT SYSTEM

the same character are typed in succession. In this case, an
interrupt occurs at the time the second one is typed. If only one
character enabled in deferred mode is typed, the system initiates an
interrupt only when the program attempts to read the character.
Deferred mode allows interrupt actions to occur in sequence with other
actions specified in the input (e.g., when characters are typed ahead
of the time that the program actually requests them). In either mode,
the character is not passed to the program as data. The system
assumes that interrupts are to be handled immediately unless a program
has issued the STIW % (Set Terminal Interrupt Word) monitor call.
(Refer to TOPS-20 Monitor Calls Reference Manual for a description of
this call.)

4.10 ADDITIONAL SOFTWARE INTERRUPT MONITOR CALLS

Additional monitor calls are available that allow the user's program
to check and to clear various parts of the software interrupt system.
Also, there is a call useful for interprocess communication (refer to
the !IC % call in Section 5.10).

4.10.l Testing for Enablement

The SKFI R% monitor call tests the software interrupt system to see if
it is enabled. The call accepts in ACl the identifier of the process.
After execution of the call, control returns to the next instruction
if the s y stem is o ff, and to the second instruction if the system is
on.

MOVE! l,.FHSLF
SKPI R%

return
return

;identifier of current process
;test interrupt system
;s y stem is off
;s y stem is on

4.10.2 Obtaining Interrupt Table Addresses

The RIR % and XRIR% monitor calls obtain the channel and priority level
table addresses for a process. These calls are useful when several
routines in one process want to share the interrupt tables.

4.10.2.l The RIR% Monitor Call - The RIR % monitor call can be used in
any section of memory, but is only useful for obtaining table
addresses if those tables are in the same section of memory as the
code that makes the call. Furthermore, it can only obtain table
a ddress e s that have been set by the SI R call.

The c a ll accepts the identifier of the process in ACl. It returns the
table a ddre s ses in AC2. Th e left half of AC2 contains the
section-relative address of the priority level table, and the right
half contains the section-relative ad d ress of the channel table. If
the process has not set the tabl e addresses with the SIR % monitor
call, AC 2 contains zero.

TOPS-20 Version 5 4-12 April 1982

•

•

•

•

•

•

•

•

•

•

USING THE SOFTWARE INTERRUPT SYSTEM

Control always returns to the instr uction fol l owing the RI R% call .

The following example shows the use of the RI R% call.

MOVE! l,.FHSLF
RIR %

;identifier of current process
;return the table addresses

4.10.2.2 The XRIR% Monitor Call - This call obtains the ad d r e sses of
the interrupt tables defined for a process. The tables can be in any
section of memory. The code that makes the call can also be in any
section. This call can only obtain addr e sses that ha ve bee n set by
the XSIR % call.

The call accepts the identifier of the process in ACl, and the address
of the argument block in AC2. The argument block is three wo rds long ,
word zero must contain the number 3. The call returns t he addresses
into words one and two. The block has the follow i ng format:

!===!
! Length of the argument b lock, including this word !
!---!

Address of the interrupt level table
!---!

Address of the channel table
!===!

Control always returns to the instruction following the XRI R% call •
If the process has not set the table addresses with the XS IR% monitor
call, words one and two of the argument block contain zero.

4.10.3 Disabling the Interrupt System

The DIR% monitor call disables the software interrupt s ystem for the
process. It accepts the identifier of the process in ACl.

MOVE! l,.FHSLF
DIR%

;identifier of current proces s
;disable system

Control always returns to the instruction following the DIR% c a ll.

If interrupts occur while the interrupt system is disabled, t hey are
remembered until the system is reenabled. At that time, the
interrupts take effect unless an intervening CIS % monitor call (refer
to Section 4.10.6) has been issued.

Software interrupts assigned to panic channels are not completely
disabled by the DIR% call. These interrup ts terminate the p r ocess,
and the superior process is notified if it has enabled channel .ICI FT .
In addition, if the terminal code for CTRL/ C (.TICCC) is assigned to a
channel, it causes an interrupt that cannot be disabled by t he DI R%
call. However, the CTRL/ C interrupt can be disabled by deactivating
the channel assigned to the CTRL/ C terminal code .

TOPS-20 Version 5 4-13 April 1982

I

USING THE SOFTWARE INTERRUPT SYSTEM

4.10.4 Deactivating a Channel

The DIC % monitor call is used to deactivate interrupt channels. The
call accepts two words of arguments: the process identifier in ACl,
and the channels to be deactivated in AC2. Setting bit n in AC2
indicates that channel n is to be deactivated.

MOVE! l,.FHSLF
MOVE 2,[lB < .ICAOV>+lB <.ICPOV>]
DIC%

;identifier of current process
;deactivate channels 6 and 9

Control always returns to the instruction following the DIC% call.

When a channel is deactivated, interrupt requests for that channel are
ignored except for interrupts generated on panic channels (refer to
Section 4.6).

4.10.5 Deassigning Terminal Codes

The DTI % monitor call deassigns a terminal code from a particular
channel. This call accepts one argument word: the terminal code in
the left half of ACl, and the channel number in the right half.

MOVE l,[.TICCE,,INTCHl]
DTI %

;deassign CTRL/ E from channel INTCHl

Control always returns to the instruction following the DTI% call.
This monitor call is ignored if the specified terminal code has not
been defined by the current job.

4.10.6 Clearing the Interrupt System

The CIS% monitor call clears the interrupt system for the current
process. This call clears interrupts in progress and all waiting
interrupts. This call requires no arguments, and control always
returns to the instruction following the CIS call. The RESET% monitor
call (refer to Section 2.6.1) performs these same actions as part of
its initializing procedures.

4.11 SUMMARY

To use the software interrupt system, the user's program must:

1. Supply rou t ines that will process the interrupts.

2.

3.

4.

5.

TOPS-20

Set up a channel table containing the addresses of the
routines (refer to Section 4.4.1) and a priority level table
containing the addresses for storing the program counter (PC)
values (refer to Section 4.4.2).

Specify the addresses of the tables with the XSIR% monitor
call (refer to Section 4. 4. 3) •

Enable the software interrupt system with the EIR% monitor
C?.11 (refer to Section 4. 5).

Activate the desired channels with the AIC% monitor call
(refer to Section 4. 6) .

Version 5 4-14 April 1982

•

•

•

•

•

•

•

•

•

•

USING THE SOFTWARE INTERRUPT SYSTEM

4.12 SOFTWARE INTERRUPT EXAMPLE

This program copies one file to another. It accepts the input and
output filenames from the user. The end of file is detected by a
software interrupt, and CTRL/E is enabled as an escape character.

TITLE SOFTWARE INTERRUPT EXAMPL E
SEARCH MONSYM
T1=1
T2=2
INTCHl=l

START: F:ESET/.
MO'JEI Tl,.FHSLF
MOVE! T2•3
MO'JEM T2,ARGBLK
XMOVEI T2,LEVTAB
MOVEM T2 ,ARGBLK+1
XMOVEI T2,CHNTAB
MOVEM T2,ARGBLK+2
XMOVEI T2,ARGBLK
XSIR/.
EIR/.
MOVE T2,[1B <INTCH1 >t1B < .I CEOF >
AI Cl.
MOVE Tl,[.T!CCE,,INTCHlJ
AT I I.

GETIF! HRROI Tl,[ASCI Z/INPUT FIL E: / J
PSOUT/.

; RE LEA SE FILE S , ETC.
iCURRENT PROCES S
;NUMBER OF WORD S IN ARG BLOCK
iPUT NUMBER IN WORD ZERO
;GLOBAL ADDR ESS OF LEVEL TABLE
iMOVE IT TO ARGBLK WORD ONE
iG LOBAL ADDRESS OF CHANNEL TAB LE
iMOVE IT TO ARGBLK WORD TWO
iGLOBAL ADDRESS OF ARGUMENT BLOCK

iENABLE SYSTEM
;ACTIVATE CHANNE LS

iA SS IGN CTRL / E TD CHANNEL

iPROMP T USER FOR INPUT NAME
MOVSI Tl,(GJ/.OLD+GJ/.MSGtGJZCFM+GJ%FNStGJZ SHT l
MOVE T2, [.PRIIN,, .PRIOUJ
GTJFN/. iGET FILENAME FROM USER

ERJMP ERRORl
MOVEM Tl, INJFN

GETOF! HRROI Tl,[ASCI Z/OUT PUT FILE! / J
PSOUT/. iPROMPT USER FOR OUTPUT NAME
MOVSI Tl,CGJ/.FOUtGJZMSGtGJ/.CFMtGJ/.FNStGJi.SHT)
MOVE T2, [.PR! IN,,. F'RIOUJ
GTJ FN i. iGET FILENAME FROM USER

ERJMf· ERROR2
MOVEM T 1, OUT .JFN

OPNIF! MOVE Tl,IN JFN
MOVE T2,[7B5tOF%RDJ
OF'EN F%

ERJMP ERROR3
OPNOF! MOVE Tl,OUTJFN

MOVE T2,[7B5+0Fi.WRJ
Of''ENF /.

ERJMP ERROR 3
CPYBYT: MOVE Tl•INJFN

BINi:

DON E!

MOVE Tl,OUTJFN
BOtJT %
JR ST CPYBYT
MOVE Tl, INJFN
CLO SF/.

JFCL
MOV E Tl,OUTJFN
CLOSF%

JFCL
HAL TF%

;ROU TINE TO HANDLE - E - ABORTS OPER ATION

TOPS-20 Version 5 4-15

iOPEN INPUT FILE

iOPEN OUTPUT FILE

iREAD INPUT BYTE

iWRIT E OUTPUT BYTE

• LOOP UNTIL EOF

;CLOSE INPUT FI LE

iCLOSE OUTPUT FILE

April 1982

I

I

I

I

USING THE SOFTWARE INTERRUPT SYSTEM

CTRLE: MOVE! Tl •• F'Fnou
CFOUF %
HRROI Tl,[ASCIZ / ABORTED, / J
F'SOUT%
CIS%
. .JRST START

;CLEAR OUTF'UT BUFFER

; INFORM usrn
iCLEAR SYSTEM

iRO UTINE TO HANDLE EDF - COMF'LETES OF'ERATION NORMALLY

EOFINT : MOVEM Tl,INTA Cl
XMO\..' EI Tl .r10NE
MOVEM Tl,F'C2
MOVE Tl,INTACl
DEBRK%

;LEVEL TABLE
LE\..1TAB: 0

F'C2
0

F'C2: BLOU; 1
iC HANNEL TABLE
CHN TAB: 0

<2B5! <CTRLE) B35 >
REF'EAT -Ds . <O>
<2B5! <EOFINT >B35 >
REF'EAT " D25, <0>

ARGBLK: BLOCK 3
INJFN: BLOCK 1
OUTJFN! BLOC K 1
INTAC1: BLOCK
ERROR1! TMSG
? INVALID FILE SF'ECIFICA TION >

HALT F%
ERROR2: TMSG
?INV ALID FILE SPECIFICA TION >

HALTF%
ERROR3 : TMSG <
?C ANNOT OF'EN FILE >

HAL Tl0 %
LIT
END START

TOPS-20 Version 5

;SAVE AC 'S
;CHANGE F'C
;To DONE
;RESTORE AC ' S
;DISMISS INTERRUF'T

;UNUSED CHANNELS HAVE 0
;CHANNEL 1 IS CTRL / E
;CHANNEL 2-9 NOT USED
;CHANNEL 10 IS EDF
;CHANNEL 11-35 NOT USED
;ARGUMENT BLOCK FOR XSIR%

4-16

•

•

•

•

•
Ap r il 198 2

•

•

•

•

•

CHAPTER 5

PROCESS STRUCTURE

As stated in Chapter 1, the TOPS-20 operating s y stem allows each job
to have multiple processes that can run simultaneousl y . Each process
has its own environment called its address space. Associated with the
environment is the program counter (PC) of the process and a
well-defined relationship with other processes in the job .

The TOPS-20 operating system schedules the running of processes, not
entire jobs. A process can be scheduled independent of other
processes because it has a definite existence: its begi nning is the
time at which it is created, and its end is the time at wh ich it is
killed. At any point in its existence, a process can be described by
its state, which is represented by a status word and a PC word (re f er
to Section 5.9).

The relationships among processes in a job are shown in the diagram
below. Each process has one immediate superior process (except for
the top-level process) and can have one or more inferior processes.
Two processes are parallel if they have the same immed i ate superior.
A process can create an inferior process b u t not a pa rallel or
superior process.

Process
4

Top-Level
Process

Process
2

Process
5

Process 1 is the superior process of process 4, and process 3 is the
superior of process 5. Processes 4 and 5 are the inferiors of
processes 1 and 3, respectively. Process 2 has no inferior process.
Processes 1, 2 and 3 are parallel because t h e y have the same superior
process (i.e., the top-level process). Processes 4 and 5, although at
the same depth in the structure, are not parallel because they do not
have the same superior process. Process 1 created process 4 but could
not have created any other process shown in the structure above .

5-1

PROCESS STRUCTURE

5.1 USES FOR MULTIPLE PROCESSES

A multiple-process job structu re allows:

1. One j ob to have more than one program runnable at the same
time. These programs can be independent programs, each one
compiled, debugged, and loaded separately. Each program can
then be placed in a separate process. These processes can be
parallel to each other, but are inferior to the main process
that created them. This use allows parallel processing of
the individual programs.

2. One process to wait for an event to occur (e.g., the
completion of an I / O operation) while another process
continues its computations. Communication between the two
processes is such that when the event occurs, the process
that i s computing can be notified via the software interrupt
system. This use allows two processes within a job to
overlap I / O with computations.

One application of a multiple-process job structure is the following
situation: a superior process is responsible for accepting input from
various terminals. After receiving this input, the process sends it
to various infer i or processes as data. These inferior processes can
then initiate other processes, for example, to write reports on the
data that was rece i ved.

TTY
Process that

1---~ Accepts Input
from Terminals

,___---4 TTY

l Processes that
Receive the
Input as Data

l Processes that
Write Reports
on the Data

MR-S-2035-82

Another application is that used for the use r interface on the
DECSYSTEM-20. On the DECSYSTEM-20, the top-level process in the job
structure is the Command Language. This process services the user at
the terminal by accepting input. When the user runs a program (e.g.,
MACRO, FORTRAN), the Command Language process creates an inferior
process, places t he requested program in it, and executes it. The
Command Language can then wa it for an event to occur, either from the
program or from the user. An event from the program can be its
completion, and an event from the user can be the typing of a certain
terminal key (CTRL/ C, for example).

5-2

•

•
I

•

•

•

•

•

•

•

PROCESS STRUCTURE

5.2 PROCESS COMMUNICATION

A process can communicate with other processes in the system in
several ways:

• direct process control

• software interrupts

e IPCF and ENQ/DEQ facilities

• memory sharing

5.2.l Direct Process Control

A process can create and control other processes inferior to it within
the job structure. The superior process can cause the inferior
process to begin execution and then to suspend and later resume
execution. After the inferior process has completed its tasks, the
superior process can delete the inferior from the job structure.

Some of the monitor calls used for direct process control are:
CFORK%, to create a process; SFORK%, to start a process; WFORK%, to
wait for a process to terminate; RFSTS%, to obtain the status of a
process; and KFORK%, to delete a process. Refer to the TOPS-20
Monitor Calls Reference Manual for descriptions of additional monitor
calls dealing with process control .

5.2.2 Software Interrupts

The software interrupt facility enables a process to receive
asynchronous signals from other processes, the system, or the terminal
user or to receive signals as a result of its own execution. For
example, a superior process can enable the interrupt system so that it
receives an interrupt when one of its inferiors terminates. In
addition, processes within a job structure can explicitly generate
interrupts to each other for communication purposes .

Some of the monitor calls used when communication occurs via the
software interrupt system are: SIR%, to specify the interrupt tables;
EIR%, to enable the interrupt system; AIC%, to activate the interrupt
channels; and !IC%, to initiate an interrupt on a channel. Refer to
Chapter 4 and Section 5.10 for more information.

5.2.3 IPCF And ENQ/DEQ Facilities

The Inter-Process Communication Facility (IPCF) enables processes and
jobs to communicate by sending and receiving informational messages.
The MSEND% call is used to send a message, the MRECV% call is used to
receive a message, and the MUTIL% call is used to perform utility
functions. Refer to Chapter 7 for descriptions of these calls •

5-3

PROCESS STRUCTURE

The ENQ/DEQ facility allows cooperating processes to share resources
and facilitates dynamic resource allocation. The ENQ% call is used to
obtain a resource, the DEQ% call is used to release a resource, and
the ENQC% call is used to obtain status about a resource. Refer to
Chapter 6 for descriptions of these calls.

5.2.4 Memory Sharing

I Each page or section in a process' address space is either private to
the process or shared with other processes. Pages are shared among
processes when the same page is represented in more than one process'
address space. This means that two or more processes can identify and
use the same page of physical storage. Even when several processes
have identified the same page, each process can have a different
access to that page, such as access to read or write that page.

I

A type of page access that facilitates sharing is the copy-on-write
access. A page with this access remains shared as long as all
processes read the page. As soon as a process writes to the page, the
system makes a private copy of the page for the process doing the
writing. Other processes continue to read and execute the original
page. This access provides the capability of sharing as much as
possible but still allows the process to change its data without
changing the data of other processes. A monitor call used when
sharing memory is PMAP. Refer to Section 5.6.2 for more information.

5.3 PROCESS IDENTIFIERS

In order for processes to communicate with each other, a process must
have an identifier, or handle, for referencing another process. When
a process creates an inferior process, it is given a handle on that
inferior. This handle is a number in the range 400001 to 400777 and
is meaningful only to the process to which it is given (i.e., to the
superior process). For example, if process A creates process B,
process A is given a handle (e.g., 400003) on process B. Process A
then specifies this handle when it uses monitor calls that refer to
process B. However, process B is not known by this handle to any
other process in the structure, including itself. The handle 400003
may in fact be known to process B, but it would describe a process
inferior to process B. For this reason, process handles are sometimes
called "relative fork handles" because they are relative to the
process that created them.

There are several standard process handles that are never assigned by
the system but have a specific meaning when used by any process in the
structure. These handles are used when a process needs to communicate
with a process other than its immediate inferior or with multiple
processes at once. These handles are described in Table 5-1.

TOPS-20 Version 5 5-4 April 1982

I

•

•

•

•

•

•

•

•

•

Number Symbol

400000 .FHSLF

-1 .FHSUP

-2 .FHTOP

-3 .FHSAI

-4 • FHINF

-5 .FHJOB

PROCESS STRUCTURE

Table 5-1
Process Handles

The current

Meaning

process (or self).

The immediate superior of the current
process.

The top-level process in the job
structure.

The current process and all of its
inferiors.

All of the inferiors of the current
process.

All processes in the job structure.

Consider the job structure below .

The following indicates the specific process or processes being
referenced if process E gives the handle:

.FHSLF refers to process E

.FHSUP refers to process D

.FHTOP refers to process A

.FHSAI refers to processes E' G, and H

. FHINF refers to processes G and H

.FHJOB refers to processes A through H

The process must have the appropriate capability enabled in its
capability word to use the handles .FHSUP and .FHTOP (refer to Section
5. 5 .1) .

5-5

PROCESS STRUCTURE

Process E can reference one of i ts inferiors (e.g., G) with the handle
it was given when it created the inferior. Process E can reference
other processes in the structure (e.g., F) by executing the GFRKS
monitor call to obtain a handle on the desired process. Refer to the
TOPS-20 Monitor Calls Reference Manual for a description of the GFRKS
call.

5.4 OVERVIEW OF MONITOR CALLS FOR PROCESSES

Monitor calls exist for creating, loading, starting, suspending,
resuming, interrupting, and deleting processes. When a process is
created, its address space is assigned, and the process is added to
the job structure of the creating process. The contents of its
address space can be specified at the time the process is created or
at a later time. The process can also be started at t he time it is
created. A process remains potentially runnable until it is
explicitly deleted or its superior is deleted.

A process may be suspended if one of the following conditions occurs:

1. The process executes an instruction that causes a software
interrupt to occur, and it is not prepared to process the
interrupt.

2. The process executes the HALTF monito r call.

3. The superior process requests suspension of its inferior .

4. The superior process is suspended. When a process is
suspended, all of its inferior processes are also suspended.

5.5 CREATING A PROCESS

A process creates an inferior process by executing the CFORK% (Create
Process) ~onitor call. (The term fork is synonymous with the term
process.) This monitor call can also be used to specify the address
space, capabilities, ACs, and PC for the inferior process and to start
the execution of the inferior.

The CFORK % call accepts two words of arguments in ACl and AC2.

ACl:

AC2:

characteristics for the inferior in the left half, and PC
address for the inferior in the right half.

address of a 20(octal) word block containing t he AC values
for the inferior.

5-6

•

•

•

•

•

•

•

•

•

•

PROCESS STRUCTURE

The characteristics for the inferior process are defined by the
following bits:

Bit Symbol

0 CR%MAP

1 CR%CAP

2

3 CR%ACS

4 CR%ST

Meaning

Set the map of the inferior process to the
same as the map of the superior (i.e.,
creating) process. This means that the
superior and the inferior will share the same
address space. Changes made by one process
will be seen by the other process.

If this bit is not on in the call, the
inferior's map will contain all zeros.

Set the capability word of the inferior
process to the same as the capability word of
the superior process. (Refer to Section
5.5.1 for the description of the capability
word.)

If this bit is not on in the call, the
inferior will have no special capabilities.

Reserved for DEC (must be zero).

Set the A Cs of the inferior process to the
values beginning at the address given in AC2.

If this bit is not on in the call, the
inferior's A Cs will be set to zero, and the
contents of AC2 is ignored.

Set the PC for the inferior process to the
address given in the right half of ACl and
start execution of the inferior.

If this bit is not on in the call, the right
half of ACl is ignored, and the inferior is
not started.

If execution of the CFORK% call is not successful, the inferior
process is not created and an error code is returned in ACl. The
execution of the program in the superior process continues at the
instruction following the CFORK% call.

If execution of the CFORK% call is successful, the inferior process is
created and its process handle is returned in the right half of ACl.
This handle is then used by the superior process when communicating
with its inferior process. The execution of the program in the
superior process continues at the second instruction following the
CFORK% call .

5-7

I

PROCESS STRUCTURE

Assume that process A executes the CFORK % monitor call twice to create
two parallel inferior processes. This is represented pictorially
below .

Process A
Creates Process B
by Executing a CFORK

I
Process B Is Created
and Its Handle Is
Given to Process A

Process A Executes
Another CFORK to
Create Process C

I
I I

Process C Is Created
Process B and Its Handle

Given to Process A

M~-S-2034 -82

Note that process A has been given two handles, one for process B and
one for process C. Process A can refer to either of its inferiors by
giving the appropriate handle or to both of its inferiors by giving a
handle of -4 (.FHINF).

5.5.1 Process Capabilities

When a new process is created, it is given the same capabilities as
its superior, or it is given no special capabilities. This is
indicated by the setting of the CR %CAP bit in the CFORK % call. The
capabilities for a process are indicated by two capability words. The
first word indicates if the capability is available to the process,
and the second word indicates if the capability is enabled for the
process. This second word is the one being set by the CR %CAP bit in
the CFORK % call.

Types of capabilities represented in the capability words are
process, and user capabilities. Each capability corresponds
particular bit in the capability words and thus can be activated
protected independently of the other capabilities. Refer to
TOPS-20 Monitor Calls Reference Manual for more information on
capability words-.~~

5.6 SPECIFYING THE CONTENTS OF THE ADDRESS SPACE OF A PROCESS

Once a process is created, the contents of its address space can
specified. This can be accomplished by one of three ways.
mentioned in Section 5.5, bit CR %MAP can be set in the CFORK % call
indicate that the address space of the inferior process is to be

5-8

job,
to a

and
the
the

be
As
to

the

•

•

•

•

•

•

•

•

•

•

PROCESS STRUCTURE

same as the address space of the creating process. In addition, the
creating process can execute the GET % monitor call to map specified
pages from a file into the address space of the inferior process.
Finally, the creating process can execute the PMAP % monitor call to
map specified pages from another process into the address space of the
inferior process.

If the creating process does not Sfecify the contents of the
inferior's address space, the address space will be filled with zeros.

5.6.l GET Monitor Call

The GET% monitor call is used to map pages from a file into the
address space of the specified process. The file must be a saved file
that was created with either the SAVE % or SSAVE % monitor calls (refer
to the TOPS-20 Monitor Calls Reference Manual).

The GET% monitor call accepts two words of arguments in ACl and AC 2 .
The first word specifies the handle of the desired process and the JFN
of the desired file. The second word specifies where the pages from
the file are to be placed in the address space of the process. Thus,

ACl:

AC2:

process handle in the left half, and JFN in the right
half. If GT %ADR (bit 19) is on, AC2 is used for the
memory limits. If GT %ADR is not on, all existing pages in
the file are mapped into the process.

number of lowest page in the left half and number of
highest page in the right half. These page numbers are
for the address space of the process and are used to
control the portions of memory that are loaded. These
values are specified only if GT %ADR is on in ACl.

process'
pages are

overwritten
there is no

When the pages of the file are mapped into pages in the
address space, the previous contents of the process
overwritten. Any full pages in the process that are not
are unchanged. Any portions of process pages for which
data in the file are filled with zeros.

For example, a GET % call executed for a file that contains 2 1 / 2 pages
sets up the process' address space as shown in the following diagram.

Process
~----~- - - - - -

Page 1 Data

Page 2 Data

Page 3 Data

GET
Call

I-----~- - - - - -

Page 4-
Page 512

0

Unchanged

5-9

File

Data Page 1

Data Page 2

Data Page 3

EOF

MA-S-2032-82

L

PROCESS STRUCTURE

After execution of the GET call, control returns to the user's program
at the instruction following the call. If an error occurs, a software
interrupt is generated, which the program can process via the software
interrupt s y stem.

5.6.2 PMAP% Monitor Call

The PMAP % monitor call is used to map pages from one process to the
address space of a second process. Data is not actually transferred;
only the contents of the page map of the second (i.e., destination)
process are changed.

The PMAP % monitor call accepts three words of arguments in AC! through
AC3. The first word contains the handle and page number of the first
page to be mapped in the source process (i.e., the process whose pages
are being mapped). The second word contains the handle and page
number of the first page to be mapped in the destination process
(i.e. ,the process into which the pages are being mapped). The third
word contains a count of the number of pages to map and bits
indicating the access that the destination process will have to the
pages mapped. Thus,

ACl: source process handle in the left half, and page number in
the process in the right half.

AC2: destination process handle in the left half, and page
number in the process in the right half.

AC3: count of number of pages to map and the access bits.

The count and access bits that can be specified in AC3 are described
below.

Bit Symbol

0 PM %CNT

2 PM %RD

3 PM %WR

9 PM %CPY

18-35

Meaning

Repeat the mapping operation the
number of times specified by the right
half of AC3. The page numbers in both
processes are incremented by 1 each
time the operation is performed.

Allow read access to the page.

Allow write access to the page.

Allow copy-on-write access to
page.

the

The number of times to r e peat the
mapping operation if bit 0 (PM%CNT) is
set.

5-10

•

•

•

•

•

•

•

•

•

•

PROCESS STRUCTURE

Upon successful execution of the PMAP % call, addresses in the
destination process actually refer to addresses in the source process.
The contents of the destination page previous to the execution of the
call have been deleted. The access requested in the PMAP% call is
granted if it does not conflict with the current access of the
destination page (i.e., an AND operation is performed between the
specified access and the current access). Control returns to the
user's program at the instruction followinq the PMAP % call. If an
error occurs, an illegal instruction trap is- generated, which the
program can process via the software interrupt system or with an ERJMP
or ERCAL instruction.

5.7 STARTING AN INFERIOR PROCESS

A program in an inferior process can be started in one of two ways.
As mentioned in Section 5.5, the superior process can specify in the
CFORK% call the PC for the inferior process and start its execution .
Alternatively, the superior process, after executing the CFORK% call
to create an inferior process, can execute the SFORK % (Start Process)
monitor call to start it.

The SFORK% monitor call accepts two words of arguments in ACl and AC2.
The first word contains the handle of the desired process. The
address of the PC word at which the process is to be started is in the
second word. Thus,

ACl: process handle

AC2: address of inferior's PC

The process handle given in ACl cannot refer to a superior p rocess, to
more than one process (e.g., .FHINF), or to a process that has already
been started.

After execution of the SFORK% call, control returns to the user's
program at the instruction following the call. If an error occurs, a
software interrupt is generated, which the program can process via the
software interrupt system •

5.8 INFERIOR PROCESS TERMINATION

The superior process has one of two ways in which it can be notified
when its inferiors terminate execution: via the software interrupt
system or by executing the WFORK % monitor call. An inferior process
will terminate normally when it executes a HALTF % monitor call.
Alternatively, the process will terminate abnorma lly when it executes
an instruction that generates a s oftware interrupt, such as an illegal
instruction, and it h as not ac tivated the appropriate channe l.

By activating channel .ICIFT (channel 19) for inferior process
termination and enabling the software interrupt system, the superior
process will receive an inte rrupt when one of its inferiors
terminates. (Refer to Section 4.6 for information on activating
channel .ICIFT.) The interrupt occurs when the first process
terminates. Use of the interrupt system allows the superior to do
other process ing until an interrupt occurs , indicating that an
inferior process has terminated .

5-11

I

PROCESS STRUCTURE

In some cases, however, the superior cannot do additional processing
until either a specific process or all of its inferior processes have
completed execution. If this is the case, the superior process can
execute the WFORK% (Wait Process) monitor call. This call blocks the
superior until one or all of its inferiors have terminated.

The WFORK% monitor call accepts one argument in ACl, the handle of the
desired process. This handle can be .FHINF (-4) to block the superior
until all inferiors terminate, but cannot be a handle on a superior
process.

After execution of the WFORK% monitor call, control returns to the
user's program at the instruction following the call, when the
specified process or all of the inferior processes terminate. If an
error occurs, it generates a software interrupt, which the program can
process via the software interrupt system.

5.9 INFERIOR PROCESS STATUS

The superior process can obtain the status of one of its inferiors by
executing the RFSTS% (Read Process Status) monitor call. This call
returns the status and PC words of the given inferior process.

The RFSTS% monitor call accepts one argument in ACl, the handle of the
desired process. This handle cannot refer to a superior process or to
more than one process.

After execution of the RFSTS% call, control returns to the user's
program at the instruction following the call. If the RFSTS% call is
successful, ACl contains the status word of the given process and AC2
contains the PC word. The status word is shown in Table 5-2.

Bit Symbol

0 RF%FRZ

1-17 RF%STS

Table 5-2
Process Status Word

Meaning

The process is suspended (i.e., frozen) .
If this bit is not on, the process is not
suspended.

The status of the process.

Value Symbol Meaning

0 .RFRUN The process is
runnable.

1 .RFIO The process is halted
waiting for I/O

2 .RFVPT The process is halted
by a HFORK% or HALTF%
monitor call or was
never started.

5-12

•

•

•

•

•

•

•

•

•

•

Bit Symbol

18-35 RF%SIC

PROCESS STRUCTURE

Table 5-2 (Cont.)
Process Status Word

Value Symbol

3 .RFFPT

4 .RFWAT

5 .RFTIM

The channel number
occurred, which
prepared to handle
.RFFPT above).

Meaning

Meaning

The process is halted
by the occurrence of a
software interrupt for
which it was not
prepared to handle.
The right half of the
status word contains
the number of the
channel on which the
interrupt occurred .

The process is halted
waiting for another
process to terminate.

The process is halted
for a specified amount
of time.

on which an interrupt
the process was not

(see process status code

If an error occurs during execution of the RFSTS% call, a software
interrupt is generated, which the program can process via the software
interrupt system.

5.10 PROCESS COMMUNICATION

A superior process can communicate with its inferiors by sharing the
same pages of memory. This sharing is accomplished with the CFORK%
(bit CR%MAP) or the PMAP% monitor call. When the superior executes
either of these calls, both the superior and the inferior share the
same pages. Changes made to the shared pages by either process will
be seen by the other process.

Alternatively, processes can communicate via the software interrupt
system. The superior process can cause a software interrupt to be
generated in an inferior process by executing the IIC% (Initiate
Interrupt on Channel) monitor call. For this type of communication to
occur, the inferior's interrupt channels must be activated and its
interrupt system enabled .

5-13

PROCESS STRUCTURE

The IIC % monitor call accepts two words of arguments in ACl and AC2.
The handle of the process to receive the interrupt is given in the
right half of ACl. AC2 contains a 36-bit word, with each bit
representing one of the 36 software channels. If a bit is on in AC2,
a software interrupt is initiated on the corresponding channel. For
example, if bit 5 is on in AC2, an interrupt is initiated on channel
5. Thus,

ACl: process handle in the right half

AC2: 36-bit word, with bit n on to initiate a software interrupt
on channel n

The process handle given cannot refer to a superior process or to more
than one process.

After execution of the IIC % call, control returns
program at the instruction follow i ng the call. If an
generates a software interrupt, which the program can
software interrupt system.

5.11 DELETING AN INFERIOR PROCESS

to the user's
error occurs, it
process via the

A process is deleted from the job structure when the superior process
executes the KFORK % (Kill Process) monitor call. When a process is
deleted, its address space, its handle, and any JFNs acquired by the
process are released. If t h e process being deleted has processes
inferior to it, the inferiors are also deleted. For example, in the
structure:

Process A

Process B

Process C

MA·S-2028-82

if process A deletes process B by executing a KFORK% call, process C
is also deleted.

The KFORK% monitor call accepts one argument in the right half of ACl,
the handle of the process to be deleted. This handle cannot refer to
a superior process, to more than one process (e.g., .FHINF), or to the
process executing the call (i.e., .FHSLF). The RESET % monitor call is
used to reinitialize the current process: refer to Section 2.6.l.

After execution of the KFORK% call, control returns to the user's
program at the instruction following the call. If an error occurs, a
software interrupt is generated, which the program can process via the
software interrupt system.

5-14

•

•

•

•

•

•

•

•

•

•

PROCESS STRUCTURE

5.12 PROCESS EXAMPLES

Example l - This program creates an inferior process to provide timing
interrupts.

TITLE TIMINT - EXAMPLE OF USIN G AN I N~ ERI O R PROCESS TO PROVID E TIMING INTERRUPT S

SEAR CH MON SY M, MAC SY M
.REQUIRE SYS !MACREL

Tl ==l
T2===2
T3== 3
·r 4 '" '"4
f"= o·.17

START: RE SET i;
MOV E p,[IOWD 50; PDLJ
MOV X Tl,CR /. MAP
CF ORK/.

JS HLT
MO lJEM T 1 , HANDL E

i RELEA SE FILE S • ET C.
;INI TIA LI ZE PUSH- DOWN LIS ~ IN CASE OF ERROR S
iMA KE NEW PR OCESS SHARE THI S PR OC ESS ' S MEMOR Y
; CR EATE A NEW PR OCE SS
i UNEX PEl l ED ERRO R.
i SAVE PRO LE SS HAND LE

; HERE TO START THE INF ERIOR PROCE SS

STPROC! SETZB T4,FLA G
MOVE Tl.HANDLE
MOVE I T2 ,SLEEP
!3FORK/.

; MAIN PRO CES S IN G LOOP

LOOF': AO S T4
SK lF'N FLAG
JRST L CJ OP

iINITIAL IZ E COUNT ER AN D FLAG
;GET PROCE SS HANDLE
;GET ADD RESS AT WHI CH TO STA RT NEW PROC ESS
i START THE NEW PROC ESS

;INCREMENT COUNTER
iHAS TIME ELAP SED YET ~

i NO• GO DO MORE PR OC ESS IN G

HERE WHEN LOWER PROCE SS HA S INTERRUPTED

TMSG
Counter has reached

MOVX Tl,,PRIOU
MOVE T2.T4
MOVEI T3,~D10

NOUT/.
JSERR

TMSG

JRST STPROC

;OUTPUT FIRST PART OF ME SS AGE
;GET PRIMAR Y OUT PUT JFN
;GET COUNTER VALU E
;usE DECIMAL RADI X
iOUTPUT CURRENT COUN TE R VALUE
;UNE XPECTED ERRO R

;CONTINUE COUNTING

PROGRAM PERFORMED BY INFERIOR PROCESS TO WAIT FOR ONE-HALF MINUT E

SLEEP! MOVX T1,-D30*-D1000
DISM S/.
SETOM FLAG
HAL TF/.

CONSTANTS AND VARIABLES

F'DL! BLOCK 50
HANDLE: BLOCK 1
FLAG: BLOCK 1

END START

;SLEEP FOR ONE - HALF MINUTE
;DI SMISS FOR SPECIFIED TIM E
;TELL SUPERI OR PROCE SS 30 SECONDS HA VE ELAPSED
;FINI SHED

;PROCE SS HANDLE

5-15

PROCESS STRUCTURE

Example 2 - This program illustrates how an inferior process may be
used as a source of timer interrupts. The main program increments a
counter. It has an inferior process running for the sole purpose of
timing 10 second intervals. Each time the inferior process has timed
10 seconds, it stops and interrupts the main program. The main
program then reports how many more times it has incremented the
counter since the last 10 second interrupt.

SEARC H MON SYM , MAC SYM
.REQUIRE SYS !MA CREL

Tl==l
T 2 = =:'.
T3 ==3
T4= ~, 4

START : RE SET/. iRELEASE FILE S , ETC.

i SET UP THE INTERRUP T SYS TEM

MOl,,'X Tl • . FH SLF i GET OUR PROCE SS HANDLE
MOVE T2 ,[LEVTAB , , CHNTABJiGE T TABLE ADDRESSES
SI RI.
MO VX T2 ,1B < .I CIFT >
A I Cl.
EIR/.

i SET INTERRUPT TABLE ADDRE SSES
iGET PROCESS- TERMINA TIO N-C HANNEL BIT
i ACTIVATE PROCE SS TERMINATION CHANNEL
iENABLE THE SYS TEM.

CREATE AN D STAR T THE INFE RIOR PRO CESS

MOV X Tl,CR /. MAP+CR/. ST+ SLEEP
CF ORK/. iCREATE AND START TI MER AT 'SLEEP'

ERJ MP [JSHLT J iUN EX PECTED ERROR.
MOVEM Tl.HANDLE iSAVE PROCESS HANDLE

iINITIALIZE THE CO UNTER

STPROC! SETZB T4,0LDT4 i CLEAR T~E CO UNTER

iMAIN LOOP OF PROGRAM WHI CH JUST KEEPS CO UNTING, <REAL
iAPPLICATION WOULD PRESUMABLY HAVE A MORE USEFUL MAIN PR OGRA M. I

LOOP! AOJA T4,LOOF· iJUST KEEP INCREMENTING, • •

i HERE WHEN LOWER PROCESS HAS INTERRUPTED

PRO INT: MOVEM 17 ,JACSt1 7 iSAVE AC 17
MOVE! 17 ,IACS iMAKE POINTER FOR REST OF ACS
BLT 17,IACS t16 iSAVE REST OF ACS
TMSG <NUMBER OF COUNTS:
MOVEI Tl .. PRIOU
EXCH T4,0LDT4
SU B T4,0UIT4
MOVM T2,T4
MOVE! T3,~D10

NOUTI.
ERCAL (JSERR

RET J
TMSG

MOVE Tl.HANDLE
MOVE! T2,SLEEF'
SFORK/.
MOVSI 17 .IAC S
BLT 17 '1 7
DEBRK/.

iGET PRIMARY OUTPUT JFN
iSAVE NEW COUNTER VALUE.
iFIND NUMBER OF COUNTS SINCE LAST TIME
iMAKE IT POSITIVE
iUSE DECIMAL RADI X
iTYPE NUMBER OF COUNTS SINCE LAST TIM E
iUNEXPECTED NOUT FAILURE
; RETURN

; END THE LINE
iGET HANDLE ON TIMER PROCESS,
iGET THE PC WE WANT TO START IT AT,
iRESTART THE TIMER.
i GET POINTER TO SAVED ACS
iRESTORE SAVED AC S
iDISMISS INTERRUPT

5-16

•

•

•

•

•

•

•

•

•

•

PROCESS STRUCTURE

;THE FOLLOWING LOOP IS EXECUTED AS A LOWER PROCESS TO DO THE
;TIMING. IT SLEEPS FOR 10 SECONDS AND THEN STOP S,

SLEEP! MOVX T1, - D10•-D1000

DISMS;-:
HAL TF;~

CONSTANTS AND VARIABLES

CHNTAB! REPEAT - D19, <EXP O>
1,,PROINT
REPEAT -D15, <EXP O>

LEVTAB! RETF'Cl
0
()

HANDLE! BLOCK
l~ETP Cl : BLOCK
OLDT4! BLOCK
IACS! BLOCK 20

END START

;GET 10 SECONDS

i SLEEP
I STOP AND INTERRUPT THE MAIN PROGRAM

ICHANNELS 0-18 ARE NOT USED
iPROCESS TERMINAT ION INTERRUPT CHANN EL
IREMAINING CHANNELS ARE NOT USE D
;RETURN PC STORED AT RETPC1 FOR LEVEL 1
iLEVEL 2 NOT USED
;LEVEL ~ NOT USE D
;PROCESS HANDL E
iRETURN PC STORED HER E ON INTERRUP TS
iHOLDS TIMER VALUE AT LAST INT ERRUPT
;STORAGE FOR ACS DURIN G IN TERR U~ lS

5-17

PROCESS STRUCTURE

Example 3 - This program creates an inferior process which waits until
a line has been typed on the terminal.

TITLE FRKDO C - EXAMPLE OF USING AN INFERIOR PROCESS TO WAIT UNTIL A LINE IS TYPED

SEARCH MONSYM, MACSYM
.REQUIRE SYS !MACREL

Tl==l
T2==2
T3==3
T4==4
P==l?

START! RESET/.
MOVE p,[IOWD 50,PDLJ
MOVX T 1, CR/.MAF'
CFORKi:
~ISHL T

SETZE< T4,FLAG
MOVEI T2,GET CO M
SFORK%

; MAIN PROCES SING LOOP

LOOP: ADS T4
SK IPN FLA G
.JRS T LOOP

iRELEASE FILES, ETC.
;INITIALIZE PUSH-DOWN LIST IN CASE OF ERRORS
;MAKE NEW PROCESS SHARE THIS PROCESS'S MEMORY
;CREATE A NEW PROCESS
;UNEXPECTED ERROR.
;INITIALIZE COUNTER AND FLAG
;GET ADDRESS AT WHICH TO START NEW PROCESS
;START THE NEW PROCESS

;INCREMENT COUNTER
iHAS A LINE BEEN INPUT YET ?
i NO , GO DO MORE PROCESSING

HERE WHEN INF ERIOR PROCESS HAS INPUT A LINE OF TEXT

TMSG
Co unter has reached

MOV X Tl, .PRIOU
MOVE T2•T4
MOVE! T3, ~ D10

NOUT%
JSERR

TMSG
Echo checl<.:

HRROI Tl.BUFFER
PSO UT%
HAL TF%
JRST START

i OU TPUT FIRST PART OF MESSAGE
;G ET PRIMARY OUTPUT JFN
; GET COUNTER VALUE
iU SE DECIMAL RAD IX
;o uTP UT CURRENT COU NTER VALUE
iUN EXPECTED ERROR

; OU TPUT FIRST PART OF MESSAGE
;GET POINT ER TO BUFFER
iOUTPUT TEXT JUST ENTERED
; STOP
;IN CASE PROGRAM CONTINUED

PROGRAM PERFORMED BY INFERIOR PROCESS TO INPU T A LINE OF TEXT

GETCO M! HRROI Tl.BUFFER
MOVEI T2,~D120

SE TZM T3
RDTTY/.
~'SERF:

SETOM FLAG
HAL TF%

CONSTANTS AND VARIABLES

PDL: BLOC K 50
BUFFER! BLO CK 50
FLAG: BLOCK

END START

;GET POINTER TO TEXT BUFFER
;GET COUN T OF MAX t OF CHARACTERS
iNO RETYPE BUFFER
;READ A LINE FROM THE TERMINAL
iUN EXP ECTED ERROR
iT ELL SUPERIOR PROCESS A LINE HAS BEEN INPUT
;FINI SHED

5-18

I

•
I

•

I

•

•

•

CHAPTER 6

ENQUEUE/DEQUEUE FACILITY

6.1 OVERVIEW

Many times users are placed in situations where they must share files
with other users. Each user wants to be guaranteed that whi le reading
a file, other users are reading the same data and while writing a
file, no users are also writing, or even reading, the same portion of
the file.

Consider a data file used by members of an insurance company. When
many agents are reading individual accounts from the data file, they
can all access the file simultaneously because no one is changing any
portion of the data. However, when an agent desires to modify or
replace an individual account, that portion of the fil e should be
accessed exclusively by that agent. None of t he other agents wants to
access accounts that are being changed until after the changes are
made •

By using the ENQ/DEQ facility, cooperating users can insure that
resources are shared correctly and that one user's modifications do
not interfere with another user's. Examples of resources that can be
controlled by this facility are d~vices, files, operations on files
(e.g., READ, WRITE), records, and memory pages. This facility can be
used for dynamic resource allocation, computer networks, and internal
monitor queueing. However, control of simultaneous updating of files
by multiple users is its most common application.

The ENQ/DEQ facility insures data integrity among processes only when
the processes cooperate in their use of both the faci l ity and the
physical resource. Use of the facilit y does not prevent
non-cooperating processes from accessing a resource without first
enqueueing it. Nor does the facility provide protection from
processes using it in an incorrect manner.

A resource is defined by the processes using it and not b y the system.
Because there is competition among processes for use of a resource,
each resource is associated with a queue. This queue is the ordering
of the requests for the resource. When a request for the resource i s
granted, a lock occurs between the proce s s that made the request and
the resource. For the duration of the lock, t hat process is the owner
of the resource. Other processes requesting access to the resource
are placed in the queue until the owner relinquishes the loc k .
However, there can be more than one owner of a resource at a time;
this is called shared ownership (refer to Section 6.2).

6-1

ENQUEUE/DEQUEUE FACILITY

Processes obtain access to a specific resource by placing a request in
the queue for the resource. This request is generated by the ENQ%
monitor call. When finished with the resource, the process then
issues the DEQ % monitor call. This call releases the lock by removing
the request from the queue and makes the resource available to the
next waiting process. This cycle continues until all requests in the
queue have been satisfied.

6.2 RESOURCE OWNERSHIP

Ownership for a resource can be requested as either exclusive or
shared. Exclusive ownership occurs when a process requests sole use
of the resource. When a process is granted exclusive ownership, no
other process will be allowed to use the resource until the owner
relinquishes it. This type of ownership should be requested if the
process plans on modifying the resource (e.g., the process is updating
a record in a data file). Shared ownership occurs when a process
requests a resource, specifying that it will share the use of the
resource with other processes. When a process is given shared
ownership, other processes also specifying shared ownership are
allowed to simultaneously use the resource. Access to a resource
should be shared as long as any one process is not modifying the
resource.

Two conditions determine when a lock to a resource is given to a
process:

1. The position of the process' request in the queue for the
resource.

2. The t ype of ownership specified by the process' request.

Because each resource has only one queue associated with it, requests
for both exclusive and shared ownership of the resource are placed in
the same queue. Requests are placed in the queue in the order in
which the ENQ facility receives them, and the first request in the
queue will be the first one serviced (except in the case of single
requests for multiple resources; refer to Section 6.4.1). In other
words, the ENO facility processes requests on a first in, first out
basis. If this first request is for shared ownership, that request
will be serviced along with all following shared ownership requests up
to but not including the first exclusive ownership request. If the
first request is for exclusive ownership, no other processes are
allowed use of the resource until the first process has released the
lock.

Consider the following queue for a particular resource.

!===!
! request 1 (shared) !
!---!
! request 2 (shared)
!---!

request 3 (exclusive) !
!---!
! request 4 (shared)
!---!

request 5 (shared)
!===!

6-2

•

•

•

•

•

•

•

•

•

ENQUEUE/DEQUEUE FACILITY

Request 1 will be serviced first because it is the first request in
the queue. However, since this request is for shared ownership,
request 2 can also be serviced. Request 3 cannot be serviced until
the processes with request 1 and request 2 release the lock on the
resource. Eventually the lock is released by the two processes, and
the first two requests are removed from the queue. The queue now has
the following entries:

'===!

---!
---!

request 3 (exclusive)
---!

request 4 (shared)
---!

request 4 (shared)
======================== ===============================!

Request 3 is now first in the queue and is given a lock on the
resource. Because the request is for exclusive ownership, no other
requests will be serviced. Once the process associated with request 3
releases the lock, both request 4 and request 5 can be serviced
because they both are for shared ownership .

6.3 PREPARING FOR THE ENQ/DEQ FACILITY

Before using the ENQ/DEQ facility, the user mus t obtain an ENQ quota
from the system administrator and must obtain the name of the r esource
desired, the type of protection requir ed , and the level number
associated with the resource .

The ENO quota indicates the total number of requests that can be
outstanding for the user at any given time. Any request that would
cause the quota to be exceeded results in an error. The user cannot
use the ENQ facility if the quota is set to zero .

The resource name has a meaning agreed upon by all users of the
specific resource and ser ves as an identifier of the r esource. The
system makes no association between the resource name and the phys ical
resource itself~ it is the responsibility of the user's process to
make that association. The system merely uses the resource name to
process requests and handles different resource names as requests for
different resources.

The resource name has two parts. In most cases , the first part is the
JFN of the file being accessed . Be f ore us ing the ENQ facility, the
user must initialize the file using the apprbpriate monitor calls
(refer to Section 3.1). The second part of the name is a modifier,
which is either a pointer to a string or a 33-bit user code. The
string uniquely identifies the resource to all use rs. The po inter can
either be a standard byt e pointer or be in the form

-1,,ADR

where ADR is the location o f the le ft -justi fied ASCIZ text string.
The 33-bit user code similarly identifies the resource by representing
an item such as a record number or block numbe r. The ENQ facility
considers these modifiers as logica l strings and does not check for

6-3

ENQUEUE/DEQUEUE FACILITY

cooperation among the users. Thus, users must be careful when
assigning these modifiers to prevent the occurrence of two different
modifiers referring to the same resource.

The type of protection desired for the resource is indicated by the
first part of the resource name. This part of the name can be one of
four values. When the user specifies the JFN of the desired file, the
file is subject to the standard access protection of the system. This
is the most typical case. When the user specifies -1 instead of a
JFN, it means that resources defined within a job are to be accessed
only by processes of that job. Other jobs requesting resources of the
same name are queued to a different resource. When the user specifies
-2 instead of a JFN, it means that the resource can be accessed by any
job on the system. A process must have bit SC %ENQ enabled in its
capability word to specify this type of protection. If the user
specifies -3 instead of a JFN, it means the same type of protection as
that given when -2 is specified. However, t h is is reserved for t he
monitor and requires that the process have WHEEL or OPERATOR
capability enabled. Quotas are not checked when -3 is given instead
of a JFN.

In addition to specifying the resource name and type of protection,
the user also assigns a level number to each resource. The use of
level numbers prevents the occurrence of a deadly embrace situation:
the situation where two or more processes are waiting for each to
complete, but none of the processes can obtain a lock on the resource
it needs for completion. This situation is represented by Figure 6-1.

Process A Is
Waiting for a
Resource Process

! B Has.

Process B Is
Waiting for a
Resource Process
C Has.

I Process C Is
~

Waiting for a
Resource Process
A Has.

MR·S-2029-82

Figure 6-1 Deadly Embrace Situation

Each process is in the queue wai ting for the resource it needs, but no
request is being serviced because the desired resources are
unavailable.

The use of l evel numbers forces cooperating processes to order their
use of resources by requiring that processes request resources in an
ascending numerical order and that all processes assign the same level
number to a specific resource. This means that the order in which
resources are requested is the same for all processes and therefore,
requests for the first resource will always precede requests for the
second one.

6-4

•

•

•

•

•

•

•

•

•

ENQUEUE/DEQUEUE FACILITY

If both of the above requirements are not met, the process requesting
the resource receives an error, unless the appropriate flag bit is set
(refer to Section 6.4.1.2), and the request is not placed in the
queue. Thus, instead of waiting for a resource it will never get, the
process is informed immediately that the resource is not available.

6.4 USING THE ENQ/DEQ FACILITY

There are three monitor calls available for the ENQ/ DEQ facility:
ENQ%, to request use of a resource; DEQ%, to release a lock on a
resource; and ENQC%, to obtain information about the queues and to
specify access to these queues.

6.4.l Requesting Use Of A Resource

The user issues the ENQ% monitor call to place a request in the queue
associated with the desired resource. This call is used to specify
the resource name, level number, and type of protection required.

A single ENQ% monitor call can be used to request any number of
resources. In fact, when desiring multiple resources, the user should
request all of them in one call. This method of requesting resources
guarantees that the user gets either none or all of the resources
requested because the ENQ/ DEQ facility never allocates only some of
the resources specified in one call. Because all resources in a
single call must be available at the same time, the first user
requesting a resource (i.e., the first user in the queue for the
resource) may not be the first user obtaining it if other resources in
the request are currently not available.

A single call for multiple resources is not functionally the same as a
series of single calls of those resources. In a single call, the
entire request is rejected if an error is returned for one of the
resources specified. In a series of single calls, each request that
did not return an error will be queued.

The ENQ% monitor call accepts two words of arguments in ACl and AC2 .
The first word contains the code of the desired function, and the
second contains the address of the argument block. Thus,

ACl: function code

AC2: address of argument block

6.4.1.1 ENQ% Functions - The functions that can be requested in the
ENQ% call are described in Table 6-1 .

6-5

Code Symbol

0 .ENQBL

1 .ENQAA

2 .ENQSI

3 .EN QMA

ENQUEUE/DEQUEUE FACILITY

Table 6-1
ENQ% Functions

Meaning

Queue the requests and block the
process until all requested locks are
acquired. This function returns an
error code only if the ENQ% call is
not correctly specified.

Queue the requests and acquire the
locks only if all requested resources
are immediately available. If the
resources are available, all will be
allocated to the process . If any one
of the resources is not available, no
requests are queued, no locks are
acquired, and an error code is
returned in ACl.

Queue the requests for all specified
resources. If all resources are
available, this function is identical
to the .ENQBL function. If all
resources are not immediately
available, the requests are queued,
and a software interrupt is generated
when all requested resources have been
given to the process.

Change the ownership access of a
previously-queued request (refer to
bit EN%SHR below) • The access for
each lock in this request is compared
with the access for each lock in the
request already queued. No action is
taken if the two accesses are the
same. If the access in this request
is shared and the access in the
previous request is exclusive, the
ownership access is changed to shared
access. Otherwise, an error is
returned if:

1. The process tries to change
the ownership access from
shared to exclusive. If this
is desired, the process should
issue a DEQ% monitor call for
the shared request and then
issue another ENQ% monitor
call for exclusive ownership.

6-6

•

•

•

•

•

•

•

•

•

•

Code

3

Symbol

. ENQMA
(Cont .)

ENQUEUE/DEQUEUE FACILITY

Table 6-1 (Cont .)
ENQ% Functions

Meaning

2. Any one of the specified locks
does not have a pending
request.

3. Any one of the specified locks
is a pooled resource (refer to
Section 6.4.1.2).

Each lock specified is checked, and
the access is changed for all locks
that were correctly given. On
receiving an error, the process
should issue the ENQC % monitor call
to determine the current state of
each lock (refer to Section 6.4.3).

6.4.1.2 ENQ% Argument Block - The format of the argument block is
described below.

Word

0

1

0 8 9 17 18 35
'===!

Number of locks ! Length of block !
---!

Interrupt channel Request ID
---!

Flags !Level number ! JFN, -1, -2, or -3 !
---!

Pointer to string or user code
!---!

Number in pool Number requested
!---!
\ \
\ Repetition of each lock specification \
\ \
!---!
! Flags !Level number ! JFN, -1, -2, or -3
!---!

Pointer to string or user code
!---!
! Number in pool ! Number requested !
!===!

Symbol

.ENQLN

. ENQID

Meaning

Number of locks being requested in the left
half, and length of argument block
(including this word) in the right half .

Number of software interrupt channel in the
left half, and request ID in the right
half.

6-7

Word Symbol

2 .ENQLV

3 .ENQUC

4 .ENQRS

ENQUEUE/DEQUEUE FACILITY

Meaning

Flags and level number in the left half, and
JFN, -1, -2 or -3 (refer to Section 6.3) in
the right half.

Pointer to string or 582+33-bit user code
(refer to Section 6.3).

Number of resources in the pool in the left
half, and number of resources requested in
the right half.

Words .ENQLV, .ENQUC, and .ENQRS (words 2 through 4) are repeated for
each lock being requested. These three words are called the lock
specification.

Software Interrupts

The software interrupt system is used in conjunction with the .ENQSI
function (refer to Section 6.4.1.1). If all locks are not available
when the user requests them, the .ENQSI function causes a software
interrupt to be generated when the locks become available. The user
specifies the software channel on which to receive the interrupt by
placing the channel number in the left half of word .ENQID in the
argument block.

When the user is waiting for more than one lock to become available,
he will receive an interrupt when the last lock is available. If he
desires to be informed as each lock becomes available, he can assign
the locks to separate channels by issuing multiple ENQ % calls. The
availability of each lock will then be indicated by the occurrence of
an interrupt on each channel.

When the user requests the .ENQSI function, he must initialize the
interrupt system first or else an interrupt will not be generated when
the locks become available (refer to Chapter 4).

Request ID

The 18-bit request ID is currently not used by the system, but is
stored for use by the process. Thus, the process can supply an ID to
use as identification for the request. This ID is useful on the
.DEQID function of the DEQ monitor call (refer to Section 6.4.2.1).

6-8

I

•

•

•

•

•

•

•

•

•

ENQUEUE/DEQUEUE FACILITY

Flags and Level Numbers

The left half of the first word of each lock specification (.ENQLV) is
used for the following flags.

Bit Symbol

EN %SHR

Meaning

0

1 EN%BLN

Ownership for this resource is to be
shared. If this bit is not on,
ownership for this resource is to be
exclusive.

Ignore the level number associated
with this resource. If this bit is
set, sequencing errors in level
numbers are not considered fatal, and
execution of the call continues .

On successful completion of the call,
ACl contains either an error code if a
sequencing error occurred, or zero if
a sequencing error did not occur.

WARNING

A deadly embrace situation may
occur when level numbers are
not used. Use of these
numbers guarantees that such a
situation cannot arise; for
this reason bit EN %BLN should
not be set.

2-8 Reserved for DEC.

9-17 EN%LVL Level number associated with this
resource. This number is specified by
the user and must be agreed upon by
all users of the resource. In order
to eliminate a deadly embrace
situation, users must request
resources in numericall y increasing
order.

The request is not queued, and an error is given, if EN %BLN is not set
and

1. The user requests a resource with a level number less than or
equal to the highest numbered resource he has requested so
far.

2. The level number of this request does not match the level
number supplied in previous requests for this resource •

6-9

ENQUEUE/DEQUEUE FACILITY

Pooled Resources

Word .ENQRS of each lock specification is used to allocate multiple
copies from a pool of identical resources. Bit EN%SHR, indicating
shared ownership, is meaningless for pooled resources because each
resource in the pool can be owned by only one process at a time. A
process can own one or more resources in the pool; however, it cannot
own more than there are in the pool or more than there are unowned in
the pool.

The left half of word .ENQRS contains
existing in the pool. This number
users of the pooled resource. The
resource sets this number, and all
the same number or an error is given.

the total number of resources
is previously agreed upon by all
first user who requests the

subsequent requests must specify

The right half of word .ENQRS contains the number of resources being
requested by this process. This number must be greater than zero if a
pool of resources exists and cannot be greater than the number in the
left half. This means that if a pool of resources exists, the user
must request at least one resource, but cannot request more than are
in the pool.

Once the number of pooled resources is determined, the resources are
allocated until the pool is depleted or until a request specifies more
resources than are currently available. In the latter case, the user
making the request is not given an y resources until his entire request
can be satisfied. Subsequent requests from other users are not
granted until this request is satisfied even though there may be
enough resources to satisfy these subsequent requests. As users
release their resources, the resources are returned to the pool. When
all resources have been returned, they cease to exist, and the next
request completel y redefines the number of resources in the new pool.

The system assumes that the resource is in a pool if the left half of
word .ENQRS of the lock specification is nonzero. Thus the user
should set the left half to zero if onl y one resource of a specific
type exists. If this is the case, then the right half of this word is
a number defining the group of users who can simultaneously share the
resource. This means that when the resource is allocated to a user
for shared ownership, only other users in the same group will be
allowed access to the resource. The use of sharer groups restricts
access to a resource to a set of processes smaller than the set for
shared ownership (which is sharer group 0) but larger than the set for
exclusive ownership. (Refer to Section 6.5 for more information on
sharer groups).

6.4.2 Releasing A Resource

The user issues the DEQ % monitor call to remove a request from the
queue associated with a resource. The request is removed whether or
not the user actually owns a lock on the resource or is only waiting
in the queue for the resource.

The DEQ % monitor call can be used to remove any number of requests
from the queues. If one of the requests cannot be removed, the
dequeueing procedure continues until all lock specifications have been
processed. An error code is then returned for the last request found
that could not be dequeued. The process can then execute the ENQC%
call (refer to Section 6.4.3) to determine the status of each lock.
Thus, unlike the operation of the ENQ% call, the DEQ% call will

6-10

I

•

•

•

•

•

•

•

•

•

ENQUEUE/DEQUEUE FACILITY

dequeue as many resources as it can, even if an error is returned for
one of the lock specifications in the argument block. However, when a
user attempts to dequeue more pooled resources than he originally
allocated, an error code is returned and none of the resources are
dequeued.

The DEQ% monitor call accepts two words of arguments in ACl and AC2.
The first word contains the code for the desired function, and the
second word contains the address of the argument block. Thus,

ACl: function code

AC2: address of argument block

6.4.2.1 DEQ% Functions - The DEQ% functions are described in Table
6-2 .

Code Symbol

0 .DEQDR

1 .DEQDA

2 .DEQID

Table 6-2
DEQ% Functions

Meaning

Remove the specified requests from the
queues. This function is the only one
that requires an argument block .

Remove all requests for this process
from the queues. This action is taken
on a RESET monitor call. An error
code is returned if this process has
not requested any resources (i.e., if
this process has not issued an ENQ%).

Remove all requests that correspond to
the specified request identifier.
When this function is specified, the
user must place the 18-bit request ID
in AC2 on the DEQ% call. This
function allows the user to release a
class of locks in one call without
itemizing each lock in an argument
block. The function should be used
when dequeueing in one call the same
locks that were enqueued in one call.
For example, with this function the
user can specify the ID to be the same
as the JFN used in the ENQ % call and
thus remove all locks to that file at
once .

6-11

ENQUEUE/DEQUEUE FACILITY

6.4.2.2 DEQ% Argument Block - The format of the argument block for
function .DEQDR is described below.

Word Symbol

0 .ENQLN

1 .ENQID

2 .ENQLV

3 .ENQUC

4 .ENQRS

Meaning

Number of locks being requested in the left
half, and length of argument block
(including this word) in the right half.

Number of software interrupt channel in the
left half, and request ID in the right
half.

Flags and level number in the left half,
and JFN, -1, -2 or -3 (refer to Section
6.3) in the right half .

Pointer to string or 582+33-bit user code
(refer to Section 6.3).

Number of resources in the pool in the left
half, and number of resources requested in
the right half.

Words .ENQLV, .ENQUC, and .ENQRS (words 2 through 4) are repeated for
each request being dequeued. These three words are called the lock
specification.

6.4.3 Obtaining Information About Resources

The user issues the ENQC% monitor call to obtain information about the
current status of the given resources. This call can also be used by
privileged users to perform various utility functions on the queue
structure. The format of the ENQC% call is different for these two
uses. (Refer to the TOPS-20 Monitor Calls Reference Manual for the
explanation of the privileged use of the ENQC% call.)

The ENQC% monitor call accepts three words of arguments in A Cl through
AC3:

ACl: function code (.ENQCS)

AC2: address of argument block

AC3: address of area to receive status information

The format of the argument block
ENQ% and DEQ% argument blocks.
returned should be three times
specified in the argument block.

is identical to the format of the
The area in which the status is to be

as long as the number of locks

6-12

•

•

•

•

•

•

•

•

•

•

ENQUEUE/DEQUEUE FACILITY

On successful execution of the ENQC% call, the current status of each
lock specified is returned as a 3-word entry. This 3-word entry has
the following format.

===
Flag bits indicating status of lock

36-bit time stamp

Reserved Request ID
===

The following flag bits are defined.

Bit

0

1

2

3

4

5-8

9-17

18-35

Symbol

EN%QCE

EN%QCO

EN%QCQ

EN%QCX

EN%QCB

EN%LVL

EN%JOB

Meaning

An error has occurred in the
corresponding lock request. Bits
18-35 contain the appropriate error
code.

The process issuing the ENQC% call is
the owner of this lock.

The process issuing the ENQC% call is
in the queue waiting for this
resource. This bit will be on when
EN%QCO is on because a request remains
in the queue until a DEQ% call is
given.

The lock has been
exclusive ownership.
off, there is no way
the number of sharers

allocated for
When this bit is

of determining
of the resource.

The process issuing the ENQC% call is
in the queue waiting for exclusive
ownership to the resource. This bit
will be off if EN%QCQ is off.

Reserved for DEC.

The level number of the resource.

The number of the job that owns the
lock. For locks with shared
ownership, this value will be the job
number of one of the owners. However,
this value will be the current job's
number if the current job is one of
the owners. If this lock is not
owned, the value is -1.

If EN%QCE is on, this field contains
the appropriate error code .

6-13

ENQUEUE/DEQUEUE FACILITY

The 36-bit time stamp indicates the last time a process
resource. The time is in the universal date-time standard.
currently has a lock on the resource, this word is zero.

locked the
If no one

The request ID returned in the right half of the third word is either
the request ID of the current process if that process is in the queue
or the request ID of the owner of the lock.

6.5 SHARER GROUPS

Processes can specify the sharing of resources by using sharer group
numbers (refer to Section 6.4.1.2). The use of sharer groups
restricts the ownership for a resource to a set of processes smaller
than the set for shared ownership but larger than the set for
exclusive ownership.

Sharer group number 0 is used to indicate the group of all cooperating
processes of the resource. This group number is assumed when no group
is specified in the ENQ% call. To restrict use of the resource, a
group number other than 0 must be explicitly specified in the call.

Consider the following example. The resource is the WRITE operation
on a file. There are four types of uses of this resource as shown in
Figure 6-2.

Process' Own Use of
the Resource

Write
Not Allowed
to Write

Other
Process' Use
of the Resource

1 2
Write

No Need to Use Shared, Group O
ENQIDEQ

Not Allowed 3 4

to Write Exclusive Shared, Group 1

MA-S-2038-82

Figure 6-2 Use of Sharer Groups

In block 1 of the figure, the process owning the lock wishes to allow
all cooperating processes to also lock the resource (i.e., to perform
the WRITE operation). Therefore, in the ENQ% call, the process
specifies the resource can be locked by all cooperating processes. In
block 2 of the figure, the process does not plan on locking the
resource and does not care if other processes lock it. Thus, there is
no need for the process to use the ENQ/ DEQ facility. In block 3 of
the figure, the process desires to lock the resource exclusively and
does not want other processes to lock it. Thus, the process obtains
exclusive ownership for the resource. In block 4 of the figure, the
process does not want to lock the resource i mmediately but also does
not want other processes to lock it b e cause it soon plans to request a
lock on the resource. If the process were the only one requesting
this type of use, exclusive ownership would be sufficient, because the
resource would be unavailable to others as long as the process owned
the lock. However, if other processes desire this same type of use,

6-14

•

•

•

•

•

•

•

•

•

•

ENQUEUE/DEQUEUE FACILITY

exclusive ownership is not sufficient, because once one process
releases the lock, another process with a different type of use could
obtain its own lock. Thus, in this example, sharer group 1 is defined
to include all processes with the same type of use (i.e., all
processes who do not want to lock the resource immediately but also do
not want other processes to lock it). This elimates the problem of
another user obtaining the resource for a different type of use.

Sharer group 0 should be sufficient for most uses of the ENQ/ DEQ
facility. Additional groups should only be needed in those situations
where a subset of the cooperating processes must have a specific use
of a resource, as in the above example.

6.6 AVOIDING DEADLY EMBRACES

Processes can interact in many undesirable ways if improper
communication occurs among the processes or if resources are
incorrectly shared. An example of one undesirable situation is the
occurrence of a deadly embrace: when two processes are waiting for
each other to complete but neither one can gain access to the resource
it needs for completion. This situation can be avoided when processes
consider the following guidelines.

1. Processes should request resources at the time they need
them. If possible, processes should request resources one at
a time and release each resource before requesting the next
one.

2. Processes should request shared ownership whenever possible .
However, the process should not request shared ownership if
it plans on modifying the resource.

3. When a process needs more than one resource, it should
request these resources in one ENQ% call instead of multiple
cails for each resource. The process should also release the
entire set of resources at once with a single DEQ% call.

4. When the use of one resource depends on the use of a second
one, the process should define the two resources as one in
the ENQ% and DEQ% calls. However, there is no protection of
the resources if they are also requested separately.

5. Occasionally processes use a set of resources and require a
lock on the second resource while retaining the lock on the
first. In this case, the order in which the locks are
obtained should be the same for all users of the set of
resources. The same ordering of locks is accomplished by the
processes assigning level numbers to each resource. The
requirements that processes request resources in ascending
numerical order and that all processes use the same level
number for a specific resource ensure that a deadly embrace
situation will not occur .

6-15

•

•

•

•

•

•

•

•

•

CHAPTER 7

INTER-PROCESS COMMUNICATION FACILITY

7.1 OVERVIEW

The Inter-Process Communication Facility (IPCF) allows communication
among jobs and system processes. This communication occurs when
processes send and receive information in the form of packets. Each
sender and receiver has a Process I. D. (PIO) assigned to it for
identification purposes.

When the sender sends a packet of information to another process, the
packet is placed into the receiver's input queue. The packet remains
in the queue until the receiver checks the queue and retrieves the
packet. Instead of periodically checking its input queue, the
receiver can enable the software interrupt system (refer to Chapter 4)
to generate an interrupt when a packet is placed in its input queue.

The <SYSTEM >INFO process is the information center for the
Inter-Process Communication Facility. This process performs system
functions related to PIDs and names, and any process can request these
functions by sending <SYSTEM >INFO a packet.

7.2 QUOTAS

Before using IPCF, the user must obtain two quotas from the system
administrator: a send packet quota and a receive packet quota. These
quotas designate, on a per process basis, the number of sends and
receives that can be outstanding at any one time. For example, if the
process has a send quota of two and it has sent two packets, it cannot
send any more until at least one packet has been retrieved by its
receiver. A send packet quota of two and a receive packet quota of
five are assumed as the standard quotas. If these quotas are zero,
the process cannot use IPCF.

7.3 PACKETS

Information is transferred in the form of packets. Each packet is
divided into two portions: a packet descriptor block of four to six
words and a packet data block the length of the message. The format
of the packet is shown in Figure 7-1 .

7-1

INTER-PROCESS COMMUNICATION FACILITY

Packet Descriptor Block

. I PCFL

. I PCFS

. I PC FR

. I PCFP

. I PCFD

. IPCFC

!===
flags

!---
PID of sender

!---
PID of receiver

!---
length of message

n
address of message

ADR
!---

sender's connected sender's logged in
directory ! directory

!---
enabled capabilities of sender

!===

Packet Data Block

!===!
ADR ! message word 1 !

!===!

!===!
! message word n !
!===!

Figure 7-1 IPCF Packet

7.3.1 Flags

There are two types of flags that can be set in word .IPCFL of the
packet descriptor block. The flags in the left half of the word are
instructions to IPCF for packet communication, and the flags in the
right half are descriptions of the data message. The flags in the
right half are returned as part of the associated variable (refer to
Section 7.4.2) The packet descriptor block flags are described in
Table 7-1.

7-2

I

•

•

•

•

•
Bit

0

l

2

• 3

4

5 • 6

• 7

8-17

18

19

20-23

•

INTER-PROCESS COMMUNICATION FACILITY

Symbol

IP%CFB

IP%CFS

IP%CFR

IP%CFO

IP%TTL

IP%CPD

IP%JWP

IP%NOA

IP%CFP

IP%CFV

Table 7-1
Packet Descriptor Block Flags

Meaning

Do not block the process if there are no
messages in the queue. If this bit is on,
the process receives an error if there are
no messages.

Use the PID obtained from the address in
word .IPCFS of the packet descriptor block
as the sender's PID.

Use the PID obtained from the address in
word .IPCFR of the packet descriptor block
as the receiver's PID .

Allow the process one send above the send
quota. (The standard send quota is two.)

Truncate the message if it is longer than
the area reserved for it in the packet data
block. If this bit is not on, the process
receives an error if the message is too
long.

Create a PID to use as the sender's PID.
The PID created is returned in word .IPCFS
of the packet descriptor block.

Make the PID created be permanent until the
job logs out (if both bits IP%CPD and
IP%JWP are on). Make the PID created be
temporary until the process executes a
RESET% monitor call (if bit IP%CPD is on
and bit IP%JWP is not on). If bit IP%CPD
is not on, bit IP%JWP is ignored .

Do not allow other processes to use the PID
created when bit IF%CPD is on. If bit
IP%CPD is not on, bit IP%NOA is ignored.

Reserved for DEC.

The packet is privileged.
set only by a process with
enabled. Refer to the
Calls Reference Manual for
this bit.

This bit can be
WHEEL capability
TOPS-20 Monitor
a description of

The packet is a page of 512 (decimal) words
of data.

Reserved for DEC.

7-3

Bit

24-29

30-32

33-35

INTER-PROCESS COMMUNICATION FACILITY

Symbol

IP%CFE

IP%CFC

IP%CFM

Table 7-1 (Cont.)
Packet Descriptor Block Flags

Meaning

Field for error code returned from <SYSTEM >
INFO.

Code Symbol Meaning

15 .IPCPI insufficient privileges

16 .IPCUF invalid function

67 .IPCSN <SYSTEM >INFO needs name

72 .IPCFF <SYSTEM >INFO
exhausted

free space

74 .IPCBP PID has no name or is invalid

75

76

77

.IPCDN duplicate name has
specified

.IPCNN unknown name has
specified

.IPCEN invalid name
specified

has

been

been

been

System and sender code. This code can be
set only by a process with WHEEL capability
enabled, but the monitor will return the
code so a nonprivileged process can examine
i t.

Code Symbol

1 . IPCCC

2 .IPCCF

Meaning

Sent by <SYSTEM >IPCF

Sent by
<SYSTEM >INFO

system-wide

3 .IPCCP Sent by receiver's
<SYSTEM > INFO

Field for special messages. This code can
be set only by a process with WHEEL
capability enabled, but the monitor will
return the code so that a nonprivileged
process can examine it.

Code Symbol Meaning

1 .IPCFN Process' input queue contains

7-4

a packet that could not be
delivered to intended PID.

•

•

•

•

•

•

•

•

•

•

INTER-PROCESS COMMUNICATION FACILITY

7.3.2 PIDs

Any process that wants to send or receive a packet must obtain a PID.
The process can obtain a PID by sending a packet to <SYSTEM >INFO
requestinq that a PID be assigned. The process must also include a
symbolic name that is to be associated with the assigned PID.

The symbolic name can be a maximum of 29 characters and can contain
any characters as long as it is terminated by a zero word. There
should be mutual understanding among processes as to the symbolic
names used in order to initiate communication. Once the name is
defined, any process referring to that name must specify it exactly
character for character.

Before a process can send a packet, it must know the receiver's
symbolic name or PID. If only the receiver's name is known, the
sender must ask <SYSTEM >INFO for the PID associated with the name,
since all communication is via PIDs •

The association between a PID and a name is broken:

1. On a RESET% monitor call.

2. When the process is killed or the job logs off the system.

3. When a request to disassociate the PID from the name is made
to <SYSTEM>INFO.

<SYSTEM >INFO will not allow a name already associated with a PID to be
assigned again unless the owner of the name makes the request. Nor
will <SYSTEM >INFO assign a PID once it has been used. This action
protects against messages being sent to the wrong receiver by
accident.

The PIDs of the sender and the receiver are indicated by words .IPCFS
and .IPCFR, respectively, of the packet descriptor block .

7.3.3 Length And Address Of Packet Data Block

Word .IPCFP of the packet descriptor block contains the length and
beginning address of the message. The length specified is one of
types, depending on the type of message (refer to Section 7.3.5).
the message is a short-form message, the length is the actual
length of the message. If the message is a long-form message,
length is 1000 (octal) words, i.e., one page.

the
two
If

word
the

The address specified is either an address or a page
on the type of message (refer to Section 7.3.5).
sent, it is taken from this address. When a message
is placed in this address •

number, depending
When a message is
is received, it

7-5

I

INTER-PROCESS COMMUNICATION FACILITY

7.3.4 Directories And Capabilities

Words .IPCFD and .IPCFC describe the sender at the time the message
was sent and are used by the receiver to validate messages sent to it.
These two words are not used when a message is sent, and if the sender
of the packet supplies them, they are ignored. However, when a
message is received, if the receiver of the packet has reserved space
for these words in the packet descriptor block, the system supplies
the appropriate values of the sender of the packet. The receiver of
the packet does not have to reserve these words if it is not
interested in knowing the sender's directories and capabilities.

7.3.5 Packet Data Block

The packet data block contains the message being sent or received.
The message can be either a short-form message or a long-form message.

A short-form message is one to n words long, where n is defined by the
installation. (Usually, n is assumed to be 10 words.) When a
short-form message is sent or received, word .IPCFP of the packet
descriptor block contains the actual word length of the message in the
left half and the address of the first word of the messaqe in the
right half. A process always uses the short form when sending
messages to <SYSTEM >INFO.

A long-form message is one page in length (1000 octal words). When a
long-form message is sent or received, word .IPCFP of the packet
descriptor block contains 1000 (octal) in the left half and the page
number of the message in the right half. To send and receive a
long-form message, both the sender and receiver must have bit IP%CFV
(bit 19) set in the first word of the packet descriptor block, or else
an error code is returned.

7.4 SENDING AND RECEIVING MESSAGES

To send a message, the sending process must set up the first four
words of the packet descriptor block. The process then executes the
MSEND% monitor call. After execution of this call, the packet is sent
to the intended receiver's input queue.

To receive a message, the receiving process must also set up the first
four words of the packet descriptor block. The last two words for the
directories and capabilities of the sender can be supplied, and the
system will fill in the appropriate values. The process then executes
the MRECV monitor call. After execution of this call, a packet is
retrieved from the receiver's input queue. The input queue is emptied
on a first-message-in, first-message-out basis.

7-6

•

•

•

•

•

•

•

•

•

•

INTER-PROCESS COMMUNICATION FACILITY

7.4.1 Sending A Packet

The MSENO% monitor call is used to send a message via IPCF. Messages
are in the form of packets of information and can be sent to a
specified PIO or to the system process <SYSTEM>INFO. Refer to Section
7.5 for information on sending messages to <SYSTEM>INFO.

The MSENO% call accepts two words of arguments. The length of the
packet descriptor block is given in ACl, and the beginning address of
the packet descriptor block is given in AC2. Thus,

ACl: length of packet descriptor block. The length cannot be
less than 4.

AC2: address of packet descriptor block

The packet descriptor block consists of the following four words:

.IPCFL

.IPCFS

.IPCFR

.IPCFP

Flags
Sender's PIO
Receiver's PIO
Pointer to packet data block containing the
message being sent.

Refer to Section 7.3 for the details on the packet descriptor and
packet data blocks.

The fla~s that are meaningful when sending a packet are described
below. Refer to Table 7-1 for the complete list of flag bits .

Bit Symbol

1 IP%CFS

2 IP%CFR

3 IP%CFO

5 IP%CPD

6 IP%JWP

7 IP%NOA

Table 7-2
Flags Meaningful on a MSENO% Call

Meaning

The sender's PIO is given in word .IPCFS of
the packet descriptor block .

The receiver's PIO is given in word .IPCFR
of the packet descriptor block.

Allow the sender to send one message above
its send quota.

Create a PIO for the sender and return it
in word .IPCFS of the packet descriptor
block. The PIO created is to be permanent
and useable by other processes according to
the setting of bits IP%JWP and IP%NOA.

The PIO created is to be job wide and
permanent until the job logs out. If this
bit is not on, the PIO created is to be
temporary until the process executes the
RESET monitor call.

The PID created is not to be used by other
processes.

7-7

INTER-PROCESS COMMUNICATION FACILITY

Table 7-2 (Cont.)
Flags Meaningful on a MSEND% Call

Bit Symbol Meaning

18 IP %CFP The message being sent is privileged (refer
to the 'I'OPS-20 Monitor Calls Reference
Manual) .

19 IP%CFV The message being sent is a long-form
message (i.e., a page). The page the
message is being sent to cannot be a shared
page; it must be a private page.

When bit IP%CFS is on in the flag word, the sender's PID is taken from
word .IPCFS of the packet descriptor block. This word is zero if bit
IP%CPC is on in the flag word, indicating that a PID is to be created
for the sender. In this case, the PID created is returned in word
.IPCFS.

When bit IP%CFR is on in the flag word, the receiver's PID is taken
from word .IPCFR of the packet descriptor block. If this word is 0,
then the receiver of the message is <SYSTEM >INFO. Refer to Section
7.5 for information on sending messages to <SYSTEM >INFO.

On successful execution of the MSEND % monitor call, the packet is sent
to the receiver's input queue. Word .IPCFS of the packet descriptor
block is updated with the sender's PID. Execution of the user's
program continues at the second location after the MSEND call.

If execution of the MSEND% call is not successful, the message is not
sent, and an error code is returned in ACl. The execution of the
user's program continues at the instruction following the MSEND% call.

7.4.2 Receiving A Packet

The MRECV% monitor call is used to retrieve a message from the
process' input queue. Before a process can retrieve a message, it
must know if the message is a long-form message and also must set up a
packet descriptor block.

The MRECV% monitor call accepts two words of arguments. The length of
the packet descriptor block is given in ACl, and the beginning address
of the packet descriptor block is given in AC2. Thus,

ACl: length of packet descriptor block. The length cannot be
less than 4.

AC2: address of packet descriptor block

7-8

•

•

•

•

I

•

•

•

•

INTER-PROCESS COMMUNICATION FACILITY

The packet descriptor block can consist of the following six words.
The last two words are optional, and if supplied by the receiver, the
values of the sender will be filled in by the system.

. IPCFL

. IPCFS

. IPCFR

.IPCFP

. IPCFO
• IPCFC

Flags
Sender's PIO
Receiver's PIO
Pointer to packet data block where the message is
to be placed.
Connected and logged-in directories of the sender •
Enabled capabilities of the sender •

Refer to Section 7.3 for the details on the packet descriptor and
packet data blocks.

The flags that are meaningful when receiving a packet are described
below. Refer to Table 7-1 for the complete list of flag bits .

Table 7-3
Flags Meaningful on a MRECV% Call

Bit Symbol Meaning

0 IP%CFB If there are no packets in the receiver's
input queue, do not block the process and
return an error code if the queue is empty.
If this bit is not on, the process waits
until a packet arrives, if the queue is
empty.

2 IP%CFR The receiver's PIO is given in word . IPCFR
of the packet descriptor block.

4 I P%'I'TL Truncate the message if it is larger than
the space reserved for it in the packet
data block. If this bit is not on and the
message is too large, an error code is
returned and no message is received.

19 IP%CFV The message is expected to be a long-form
message (i.e., a page). The page the
message is being stored into cannot be a
shared page; it must be a private page.

The information in word .IPCFS is not supplied by the
the MRECV% call is executed. The system fills in
sender of the packet when the packet is retrieved.

receiver when
the PID of the

Word .IPCFR is supplied by the receiver. If bit IP%CFR is on in the
flag word, then the PIO receiving the packet is taken from word .IPCFR
of the packet descriptor block. If bit IP%CFR is not on in the flag
word, then word .IPCFR contains either -1, to receive a packet for any
PIO belonging to this process, or -2, to receive a packet for any PIO
belonging to this job. When -1 or -2 is given, packets are not
received in any particular order except that packets from a specific
PIO are received in the order in which they were sent. Any other
values in this word cause an error code to be returned.

7-9

INTER-PROCESS COMMUNICATION FACILITY

The information in words .IPCFO and .IPCFC is also not supplied by the
receiver. If these two words have been specified by the receiver, the
system fills in the information when the packet is retrieved. Word
.IPCFO contains the sender's connected directory in the left half and
the sender's logged-in directory in the right half. Word .IPCFC
contains the enabled capabilities of the sender. These words describe
the sender at the time the message was sent.

On successful execution of the MRECV% monitor call, the packet is
retrieved and placed into the packet data block as indicated by word
.IPCFP of the packet descriptor block. ACl contains the length of the
next packet in the queue in the left half and flags from the next
packet in the right half (see below). This word returned in ACl is
called the associated variable of the next packet in the queue. If
there is not another packet in the queue, ACl contains zero.
Execution of the user's program continues at the second instruction
after the MRECV% call.

The flags returned in the right half of ACl on successful execution of
the MRECV% monitor call are described below .

Bit Symbol

30-32 IP%CFC

33-35 IP%CFM

Meaning

System and sender code, set only by a
privileged process. The packet was sent by
<SYSTEM >IPCF if the code is 1 (. IPCCC). The
packet was sent by the system-wide
<SYSTEM > INFO if the code is 2(.IPCCF). The
packet was sent by the receiver's
<SYSTEM > INFO if the code is 3(.IPCCP).

Field for return of special messages. If
the field con ta ins 1 (. IPCFN) , then the
process' input queue contains a packet that
was sent to another PIO, but was returned
to the sender because it could not be
delivered.

If execution of the MRECV% call is not successful, a packet is not
retrieved, and an error code is returned in ACl. The execution of the
user's program continues at the instruction following the MRECV% call.

7.5 SENDING MESSAGES TO <SYSTEM>INFO

The <SYSTEM >INFO process is the central information utility for IPCF.
It performs functions associated with names and PIOs, such as,
assigning a PIO or a name or returning a name associated with a PIO.

A process can request functions to be performed by <SYSTEM>INFO by
executing the MSENO% monitor call (refer to Section 7.4.1). The
message portion of the packet (i.e., the packet data block) sent to
<SYSTEM >INFO contains the request being made. In other words, the
total request to <SYSTEM >INFO is a packet consisting of a packet
descriptor block and a packet data block containing the request.

7-10

•

•

•

•

•

•

•

•

•

•

INTER-PROCESS COMMUNICATION FACILITY

Packet Descriptor Block

===!
flag word

---!
sender's PIO

---!
0

---!
pointer to request

===!

Packet Data Block

===!
code function

---!
PIO

---!
function argument !

===!

Refer to Section 7.4.l for the descriptions of the words in the packet
descriptor block. The receiver's PIO (word .IPCFR) is 0 when sending
a packet to <SYSTEM >INFO .

7.5.l Format Of <SYSTEM>INFO Requests

As mentioned previously, the packet data block (i.e., the message
portion) of the packet contains the request to <SYSTEM >INFO.

The first word (word .IPCIO) contains a user-defined code in the left
half and the function being requested in the right half. The
user-defined code is used to associate the response from <SYSTEM >INFO
with the correct request. The functions that the process can request
of <SYSTEM >INFO are described in Table 7-4.

The second word (word .IPCil) contains a PIO associated with a process
that is to receive a duplicate of any response from <SYSTEM >INFO. If
this word is zero, the response from <SYSTEM >INFO is sent onl y to the
process making the request.

The third word (word .IPCI2) contains the argument for the function
specified in the right half of word .IPCIO. The argument is different
depending on the function being requested. The arguments for the
functions are described in Table 7-4 .

7-11

Function

.IPCIW

.IPCIG

.IPCII

INTER-PROCESS COMMUNICATION FACILITY

Table 7-4
<SYSTEM >INFO Functions and Arguments

Argument

name

PIO

name in
ASCIZ

Meaning

Return the PIO associated with the
given name (refer to Section 7.3.2 for
the description of the name).

Return the name associated with the
given PIO.

Assign the given name to the PIO
associated with the process making the
request. The PIO is permanent if
IP%JWP was set in the flag word when
the PIO was originally created (refer
to Table 7-1).

7.5.2 Format Of <SYSTEM>INFO Responses

Responses from <SYSTEM >INFO are in the form of a packet sent to the
process that made the request. A copy of the response is sent to the
PIO given in word .IPCil, if any.

The message portion (i.e., the packet data block) of the packet
contains the response from <SYSTEM >INFO. The format of this response
is

===!
code function

---!
response

---!
response

===!

The first word (word .IPCIO) contains the user-defined code in the
left half and the function that was requested in the right half.
These values are copied from the values given in the request.

The second and third words (words .IPCil and .IPCI2) contain the
response from the function requested of <SYSTEM>INFO. The response is
different depending on the function requested. The responses from the
functions are described in Table 7-5.

7-12

•

•

•

•

•

I

•

•

•

•

INTER-PROCESS COMMUNICATION FACILITY

Table 7-5
<SYSTEM>INFO Responses

Function Requested Response

• IPCIW The PIO associated with the name given in
the request is returned in word . IPCil.

.IPCIG The name associated with the PIO given in
the request is returned in word . IPCil.

• IPCII No response is returned .

7.6 PERFORMING IPCF UTILITY FUNCTIONS

A process can request various functions to be performed by executing
the MUTIL% monitor call. Some of these functions are enabling and
disabling PIOs, creating and deleting PIOs, and returning quotas.
Several of the functions that can be requested are privileged
functions. These are described in the TOPS-20 Monitor Calls Reference
Manual.

The MUTIL% monitor call accepts two words of argument. The length of
the argument block is given in ACl, and the beginning address of the
argument block is given in AC2.

The argument block has the following format:

!===!
! function code
!---!
! argument for function !
!---!
! argument for function
!===!

The arguments are different, depending on the function being
requested. Any values resulting from the function requested are
returned in the argument block, starting at the second word.

Table 7-6 describes the functions that can be requested, the arguments
for the functions, and the values returned from the functions .

7-13

Function

.MUENB

.MUDIS

• MUGTI

.MODES

• MUCRE

INTER-PROCESS COMMUNICATION FACILITY

Table 7-6
MUTIL% Functions

Meaning

Allow the PID given to receive packets. If the
process executing the call is not the owner of
the PID, the process must be privileged.

Argument
PID

Value Returned
None

Disable the PID given from
If the process executing
owner of the PID, the
privileged.

Argument
PID

Value Returned
None

receiving packets.
the call is not the
process must be

Return the PID associated with <SYSTEM>INFO •

Argument
PID or job number

Value Returned
PID of <SYSTEM >INFO

Delete the PID given. The process executing the
call must own the PID being deleted.

Argument
PID to be deleted

Value Returned
None

given. If
the process

must be
specified

Create a PID for the process or job
the job number given is not that of
executing the call, the process
privileged. The flag bits that can be
are IP%JWP and IP%NOA (refer to Table
their descriptions).

7-1 for

Argument
- flag bits in the left half, and process

handle or job number in the right half

Value Returned
PID that was created

7-14

•

•

•

•

•

•
Function

.MUFOJ

. MUFJP

•
.MUFSQ •
.MUFFP

•
.MUFPQ

•

INTER-PROCESS COMMUNICATION FACILITY

Table 7-6 (Cont.)
MUTIL% Functions

Meaning

Return the number of the job associated with the
PIO given.

Argument
PIO

Value Returned
Job number associated with PIO given

Return all PIOs associated with the job given .

Argument
job number or PIO belonging to the job

Values Returned
Two-word entries for each PIO belonging to
the job. The first word of the entry is the
PIO, and the second word has bits IP%JWP and
IP%NOA set if appropriate (refer to Table
7-1 for the descriptions of these bits).
The list of entries returned is terminated
by a zero word.

Return the send guota and the receive quota for
the PIO given.

Argument
PIO

Values Returned
Send quota in bits 18-26 and receive
quota in bits 27-35.

Return all PIOs associated with the process of
the PIO given .

Argument
PIO

Values Returned
Two-word entries for each PIO belonging to
the process. The first word of the entry is
the PIO, and the second word has bits IP%JWP
and IP%NOA set if appropriate (refer to
Table 7-1 for the descriptions of these
bits). The list of entries returned is
terminated by a zero word.

Return the maximum number of PIOs allowed for
the job given.

Argument
Job number or PIO belonging to the job

Value Returned
Number of PIOs allowed for the job given

7-15

Function

. MUQRY

. MUAPF

. MUPIC

.MUMPS

INTER-PROCESS COMMUNICATION FACILITY

Table 7-6 (Cont.)
MOTIL% Functions

Meaning

Return the packet descriptor block for the next
packet in the queue of the PID given.

Argument
PID, -1 to return the next descriptor block
for the process, or -2 to return the next
descriptor block for the job

Values Returned
Packet descriptor block of next packet in
queue.

Associate the PID given with the process given .

Arguments
PID
process handle

Value Returned
None

Place the PID given on the software channel
given in order to cause an interrupt to be
generated when a packet is received in the input
gueue of the PID given.

Argument
PID
channel number, or -1 to remove the given
PID from its current channel

Value Returned
None

Return the maximum packet size for the PID
given.

Argument
PID

Value Returned
Maximum packet size for PID

On successful completion of the MUTIL% monitor call, the function
requested is performed, and any value is returned are in the argument
block. Execution of the user's program continues at the second
location following the MUTIL% call.

If execution of the MUTIL% monitor call is not successful, no
requested function is performed and an error code is returned in ACl.
Execution of the user's program continues at the location following
the MOTIL% call.

7-16

•

•

•

•

•

•

•

•

•

•

CHAPTER 8

USING EXTENDED ADDRESSING

The term "extended addressing" refers to the size of the addresses
that TOPS-20 uses on the DECSYSTEM-20 KL processor (model B) . Older
versions of TOPS-20 (Release 4 and before) used half-word (18-bit)
addresses; newer versions (Release 5 and after) use full-wor d
(30-bit) addresses.

This chapter discusses the two main activities associated with using
TOPS-20 monitor calls with extended addressing: writing new programs
for execution in sections of memory other than section zero, a nd
converting existing programs so that they can be executed i n sections
other than section zero. This chapter also contains information on
hardware instructions and macros useful to MACRO programmers who use
extended addressing.

The discussion in this chapter depends heavily on the material in t he
DECsystem-10/ DECSYSTEM-20 Processor Reference Manual. Re f er to that
manual for a description of the format of 30-bit add resses, the
algorithm the processor uses to calculate effective addresses, and the
way that individual machine instructions wor k .

8.1 OVERVIEW

The TOPS-20 address space is made up of 32 (decimal) sections. Each
section contains 512K pages. An 18-bit address, called a local or
section-relative address, can reference any word in a giv en section •
A 30-bit, or global, address can reference any word in a ny section of
memory.

In contrast, TOPS-20 provided an 18-bit, 256K-word address space in
release 4 and earlier. This means that:

• The Program Counter PC register was 18 bits

• For each instruction executed, the first action taken was t he
computation of an 18-bit effective addres s . The algorithm
for calculating the effective addre s s (includ i ng ind e xing a nd
indirecting rules) was the same for all instr uctions.

The DECsystem-20 supports 30-bit addressing. But the v irtual address
space of TOPS-20 is 32 sections of 256K words each , t hus, because
section numbers longer than 5 bits are illegal, the largest legal
address is 23 bits long. When addressing data, y ou c an view this
address space as one large memory area .

TOPS-20 Version 5 8-1 April 1982

USING EXTENDED ADDRESSING

From the point of view of program execution, however, memory is
divided into 32 discrete sections. A program can have code in more
than one section of memory, and it can execute that code (assuming the
constraints discussed below), but it must change sections explicitly,
as discussed below.

Compatibility for existing programs is provided by section 0. A
program running in section 0 behaves exactly as though it were being
executed on a system without extended addressing.

8.2 ADDRESSING MEMORY AND AC'S

The PC contains a section field and a word field. When an instruction
is executed, only the word field is incremented. Column overflow is
never carried from the word field to the section field. If the last
word of a section is executed, and it is not a jump instruction, then
the next instruction is fetched from word 0 of the same section. Thus
a program can only change sections explicitly, by means of a PUSHJ,
JRST, or XJRSTF instruction, and only an XJRSTF can change control
from section 0 to another section.

Because a whole word is required to
two-word entity. The flag bits are
represents the second word. Figure
address fields of the PC.

hold a 30-bit address, the PC is a
in word one, and the figure below

8-1 shows the format of the

0 5 6

! un-
! used !

Figure 8-1

section
number

17 18

word within the
section

Program Counter Address Fields

35

The word (word-within-section) field consists of 18 bits and thus
represents a 256K-word address space similar to the single-section
address space of release 4 and earlier. The section number field is
12 bits, of which only the right-hand 5 bits are used. This provides
room to address 32 separate sections, each of 256K words.

Each section is further divided into pages of 512 words,
earlier releases. The paging facilities allow the
determine the existence and protection of each section.

just as
monitor

in
to

The PC's section field determines what section a program is said to be
running in. If the section field contains a zero, the program is
running in section O. No extended addressing features are available
to a program running in section 0. All addresses, when calculated
from section zero, are considered to be 18 bits.

This means that a program executing in section 0 cannot address memory
in any other section. It also means that the program cannot jump from
section O to another section unless it uses a monitor call or the
XJRSTF instruction. Furthermore, it means that the program runs
exactly as it would run on a nonextended machine.

If the section field contains a number between 1 and 32, the program
is said to be executing in a non-zero section (a section other than
section 0.) The hardware considers addresses to be 23 bits, and the
program can use extended addressing features.

TOPS-20 Version 5 8-2 April 1982

•

•

•

•

•

•

•

•

•

•

USING EXTENDED ADDRESSING

The following paragraphs explain
calculated in nonzero sections.
the processor reference manual.

the way effective addresses are
In addition, see the description in

8.2.1 Instruction Format

The format of a machine instruction is the same as on a nonextended
machine. The effective address computation depends on the address
field (Y, 18 bits), the index field (X, 4 bits), and the indirect
field (I, 1 bit). Figure 8-2 show these fields.

0 8 9 12 13 14 17 18 35

! OPCODE ! AC ! I ! x y

Figure 8-2 Instruction-Word Address Fields

If the instruction does not use indexing or indirection (if the I and
X fields are zero), the effective address is 18 bits. The section
number, since it is not specified in the address, is taken from the
section field of the PC. The PC section field contains the number of
the section from which the instruction was fetched. Such an 18-bit
address is called a section-relative address .

The following instruction is an example of an instruction that
evaluates to an 18-bit effective address.

3,,400/ MOVEM T,1000

The effective address is word 1000 of the current section. The
section from which the instruction was fetched is section 3, so the
instruction moves the contents of register Tinto memory word 3,,1000 .

8.2.2 Indexing

The first step in the effective address calculation i s indexing. I f
the X field contains the number of a register, indexing is used. The
calculation of the effective address depends on the contents of the
index register. The following outcomes are possible:

• If the left half of the index register contains a negati ve
number or zero, the contents of the right half are added to Y
(from the instruction word) to yield an 18-bit local address.

This is the way indexing is done on a nonextended machine.
This allows a program to use the usual AOBJN pointer and
stack pointer formats for tables and stacks that are in the
same section as the program. Note, however, that if the left
half of the index register contains a positive number, t he
results are not the same.

• If the left half of the index register contains a positive
number, the contents bits 6-17 of the register are added to Y
to yield a 30-bit global address.

TOPS-20 Version 5 8-3 April 1982

USING EXTENDED ADDRESSING

This means that instructions can reference 30-bit (global)
addresses by means of an index register. If t he Y field is
0, the instruction refers to the address contained in X. The
Y field can contain a positive or negative offset of
magnitude less than 2~17.

8.2.3 Indirection

If the instruction specifies indirection (if the I field contains a
1), an indirect word is fetched from the address determined by Y and
indexing (if any). Two types of indirect words exist.

8.2.3.1 Instruction Format Indirect Word (IFIW) - This word contains
Y, X, and I fields of the same size and in the same position as
instructions (in bits 13-35). Bit 0 must be 1, and bit 1 must be O;
bits 2-12 are not used.

Figure 8-3 shows an instruction-format indirect word.

0 1 2 12 13 14 17 18

! ! ! !
!l!O! (not used) !I ! X
! ! !

y

Figure 8-3 Instruction-Format Indirect Word

35

The effective address computation continues with the quantities in
this word just as for the original instruction. Indexing can be
specified and can be local or global depending on the left half of the
index. Further indirection can also be specified.

Note that the default section for any local addresses produced from
this indirect word is the section from which the word itself was
fetched. This means that the default section can change during the
course of an effective address calculation that uses indirection. The
default section is always the section from which the last indirect
word was fetched.

8.2.3.2 Extended-Format Indirect Word (EFIW) - This word also
contains Y, X, and I fields, but in a different format. Figure 8-4
shows an extended-format indirect word.

0 1 2 5 6 17 18 35

! ! !
!O!I! X
! ! !

<-------------!- y ------------------->
(section) (word)

Figure 8-4 Extended-Format Indirect Word

TOPS-20 Version 5 8-4 April 1982

•

•

•

•

•

•

•

•

•

•

USING EXTENDED ADDRESSING

If indexing is specified in this indirect word (bits 2-5 set), the
contents of the entire index register are added to t he 30-bit Y t o
produce a global address. This type of indirect word never produces a
local address. The type of address calculation used does not depend
on the contents of the index register specified in the X f i eld.

Hence either Y or C(X) can be used as an address or an offset within
the extended address space, just as is done in the 1 8- b it address
space. If further indirection is specified (bit 1 set) , the next
indirect word is fetched from Y as modified by indexing (if any). The
next indirect word can be in instruction format or extended format,
and its interpretation does not depend on t he format of t h e previous
indirect word.

8.2.4 AC References

A section-relative address in the range 0-1 7 (octal) re f erences t he
hardware ACs. This is true in every s e ction of memor y .

A global address in section 1 in the range 1,,0 to 1,, 17
refers to the hardware AC's. A global address in any
refers to memory. (In section O, global addresses are
local addresses.) This means that the following behavior

(octal) also
other section
e valuated as
occurs.

1. Simple addresses in the usual AC range reference AC's as
expected. The instruction

MOVE 2,3

fetches the contents of hardware register 3 regardless of
what section the instruction executes in.

2. To make a global reference to an AC, the global address must
contain a section number of 1.

3. Arrays can cross section boundaries. Globa l addresses
evaluated in any section except section 1 alwa y s refer to
memory, never to the hardware ACs. For t hi s rea son,
incrementing the address 6,,77777 7 , for e xa mple, yields
address 7, ,000000, w!1ich is a memor y location.

4. AC references are always considered local refe rence s; hence
a jump instruction which yields an efferitive address of 0-17
in any section will cause code to be executed from the ACs.

8.2.5 Extended Addressing Examples

These instructions make local references within t h e c urrent PC
section:

3,,400/ MOVE T,1000
JRST 2000

fetches from 3,,1000
jumps to 3,, 2 000

The following instructions scan table TABL, wh ich is in t h e current
section:

LP:

TOPS-20 Version 5

MOVSI X,-SIZ
CAMN T,TABL(X)
JRST FOUND
AOBJN X,LP

8-5

TABL in current section

April 1982

USING EXTENDED ADDRESSING

The followina instructions scan table TABL, which is in section TSEC,
by using a global address in extended format:

MOVE! X,O
LP: CAMN T, @[GFIWM TSEC,TABL (X)]

JRST FOUND
extended format

CAIGE X,SIZ-1
AOJA X,LP

The IFIWM macro creates a pointer that points to an argument. We
assume that the pointer either uses a alobal address in the index
register or uses indirect i on through a word containing a global
address, and so represents a global address. Because the pointer is a
global address, t he argument can reside in any non-zero section of
memory. Such a pointer is ordinarily passed to a subroutine in an
argument list.

AGRLST: IFIWM @VAR(X)

Note that if indexing or indirection are used with an instruction­
format indirect word, as in this example, the address is calculated
relative to the section the IFIW is in.

8.2.6 Immediate Instructions

Each effective address computation y ields a 30-bit address, defaulting
the section if necessary. Immediate instructions use only the
low-order 18-bits of this as their operand, however, and set the
high-order 18 bits to O. Hence instructions such as MOVE! and CAI
produce identical results regardless of the section in which they are
executed.

Two immediate instructions retain the section field of their effective
addresses. These instructions are the following.

• XMOVEI (opcode 415) Extended Move Immediate

• XHLLI (opcode 501) Extended Half Left to Left Immediate

8.2.6.1 XMOVEI - The XMOVEI instruction loads the 30-bit effective
address into the AC, and sets bits 0-5 to O. If no indexing or
indirection is used, the number of the current section is copied from
the PC to the AC. This instruction can replace MOVE! when a global
address is needed.

The following example shows the use of the XMOVEI instruction in a
subroutine c a ll. The subroutine is in section XSEC, but the argument
list is in the same section as the calling program.

XMOVEI AP,ARGLIST
PUSHJ P, @[GFIWM XSEC,SUBR]

The subroutine c an reference the arguments with the
instruction.

MOVE T, @l(AP)

TOPS-20 Version 5 8-6

following

April 1982

I

•

•

•

•

•

•

•

•

•

USING EXTENDED ADDRESSING

To construct the addresses of arguments, the subroutine can use the
following instruction.

XMOVEI T,@2(AP)

The last two instructions assume that register AP contains t h e
argument list pointer. If the address the calling program placed in
AP is an IFIW, the section number in the effective address is that of
the calling program. If the address the calling program placed in AP
is an EFIW, the section number in the effective address of the
argument block is determined by the section number the calling program
placed in AP.

The argument list would be found in the caller's section because of
the global address in AP. The section of the effective address is
determined by the caller, and is implicitly the same as t he caller if
an IFIW is used as the arglist pointer, or is explicitly given if an
EFIW is used .

8.2.6.2 XHLLI - The XHLLI instruction replaces the left half of the
accumulator with the section number of the PC, and places a zero in
the right half of the AC. This instruction is useful for constructing
global addresses.

8.2.7 Other Instructions

The instructions discussed in this section are affected b y extended
addressing, but not necessarily in the way that their effective
addresses are calculated. In addition to the material presented here,
see the DECsystem-10/DECSYSTEM-20 Processor Reference Manual regarding
the following instructions: tuuo•s, BLT, XBLT, XCT, XJRSTF, XJEN,
XPCW, SFM.

8.2.7.1
PUSHJ,
flags •

Instructions that Affect the PC - These instructions are
POPJ, JRST. PUSHJ stores a 30-bit PC address, but stores no
It sets bits 0-5 of the destination word to 0.

POPJ restores a 30-bit PC address from the stack, but does not restore
the flags. It also sets bits 0-5 of the destination word to 0.

Note that JSR, JSA, JRA, and JSP load and store 18-bit addresses only.
For this reason they are not useful for intersection calls.

8.2.7.2 Stack Instructions - These instructions are PUSHJ, POPJ,
PUSH, POP, and ADJSP. These instructions use a local or global
address for the stack according to the contents of the stack register.
Whether the stack address is local or global depends on the same rules
as those that govern indexing in effective address calculation. (See
section 8.2.)

TOPS-20 Version 5 8-7 April 1982

USING EXTENDED ADDRESSING

In brief, if the left half of the stack pointer is 0 or negative
(prior to incrementing or decrementing), the stack pointer references
a local address. The address in the right half of the stack pointer
is used to compute the effective address of the stack. The stack
pointer is incremented or decremented by adding or subtracting,
respectively , 1 from both sides.

If the left half of the stack pointer is positive, the entire word is
taken as a global address. The stack pointer is incremented by adding
1, and decremented by subtracting 1.

A stack that contains global addresses can be used the same way a
local stack is used. The global stack, however, can contain pointers
to routines in other sections.

To protect against stack overflow and underflow, make the pages before
and after the stack inaccessible. This method must be used because a
global stack has no room for a count in the left half of the pointer
word.

8.2.7.3 Byte Instructions - Instruction format byte pointers are
section-relative byte pointers. To reference a byte in another
section, you must use either a one-word global byte pointer, or a two­
word global by te pointer. Monitor calls accept only one-word global
byte pointers as arguments, but programs can use either pointer.

Chapter 1 of the TOPS-20 Monitor Calls Reference Manual describes
one-word global byte pointers. The DECSYSTEM-10 / DECsystem-20
Processor Reference Manual describes two-word global b1te pointers.

8.3 MAPPING MEMORY

The PMAP % monitor call accepts an 18-bit page number, half of which is
a section number. Thus PMAP % can be used to map a page from one
section to another. If the destination section does not exist, the
monitor generates an illegal instruction trap.

The SMAP % monitor call maps one or more sections of memory. It works
like the PMAP call, but maps sections instead of groups of pages. If
the destination section does not exist, SMAP % creates the section.

Access to the sections in a process map is determined by the same
algorithm that determines access to a page within a given section. If
a process section and a page in that section have different accesses,
the access privileges are ANDed together. The process requesting
access to the page gains access only if it has access rights at least
equal to the ANDed protections.

For example, if a process has read access to a section and
into that section for which the process has read and write
page is mapped, but the process gets onl y read access to
pag e.

The following sections describe the SMAP % functions.

TOPS-20 Version 5 8-8

maps a page
access, the
the mapped

April 1982

•

•

•

•

•

•

•

•

•

•

USING EXTENDED ADDRESSING

8.3.1 Mapping File Sections to a Process

This function maps one or more sections of a file to a
pages that exist in the source sections are mapped to
sections. Access to the mapped pages is determined
access allowed to the file and the access specified in

process. All
the destination
by ANDing the
the SMAP% call.

Although files do not actually have section boundaries, this monitor
call views them as having sections that consist of 512 contiguous
pages. Each file section starts with a page number that is an integer
multiple of 512.

This call cannot map a process memory section to a file. To map a
process section to a file, use the PMAP% monitor call to map the
section page-by-page.

This function of the SMAP% call requires three words of arguments, as
follows:

ACl: source identifier: JFN,,file section number

AC2: destination identifier: fork handle,,process section number

AC3: flags,,count

The flags determine access to the destination section, and the count
is the number of contiguous sections to be m~pped. The count must be
between 0 and 37 (octal). The flags are as follows.

B2(SM%RD)

B3(SM%WR)

B4(SM%EX)

Allow read access

Allow write access

Allow execute access

818-35 The number of sections to map. This number must
be between 1 and 37 (octal).

8.3.2 Mapping Process Sections to a Process

The SMAP% monitor call also maps sections from one process to another
process. In addition, you can map one section of a process to another
section of the same process. The SMAP% call maps all pages that exist
in the source section to corresponding pages in the destination
section.

If you map a source section into a destination section with SM%IND
set, SMAP% creates the destination section using an indirect pointer.
This means that the destination section will contain all pages that
exist in the source section, and the contents of the destination pages
will be identical to the contents of the source pases.

Furthermore, after SMAP% has mapped the destination
that occur in the source section map cause the same
in the destination section map. This ensures that
section and the destination section contain the same

section, changes
changes to be made

both the source
data.

If SM%IND is not set, SMAP% creates the new section using a shared
pointer. After SMAP% maps the destination section, chan9es that occur
in the source section's map do not cause any change in the destination
section's map. Thus after a short time the source and destination
sections miaht contain different data.

TOPS-20 Version 5 8-9 April 1982

USING EXTENDED ADDRESSING

If you request a shared pointer (SM %IND not set) to the destination
section, what happens depends on the contents of the source section
when the SMAP % call executes. The outcome is one of the following.

1. If the source section does not exist, the SMAP% call creates
the section.

2. If the source is a private section, a mapping to the private
section is established, and the destination process is
co-owner of the private section.

3. If the source section contains a file section, the source
section is mapped to the destination section.

4. If the source section map is made by means of an indirect
section pointer, SMAP % follows that pointer until the source
section is found to be nonexistent, a private section, or a
section of a file.

This SMAP % function requires three words of arguments in ACl through
AC3.

ACl:

AC2:

AC3:

fork handle in the left half, and a section number in the
right half. This is the source identifier.

fork handle in the left half, and a section number in the
ri ght half. This is the destination identifier.

access flags,,the number of contiguous sections to map.
The number of sections mapped, th~ number in the right
half of AC3, must be between 1 and 37.

The flags determine access to the destination section.
The flags are as follows.

B2(SM %R D) Allow read access

B3(SM %WR)

B4(SM %EX)

B6 (SM %IND)

Allow write access

Allow execute access

Map the destination section using an indirect
section pointer. Once the destination section map
is created, the indirect section pointer causes
the destination section map to change in exactly
the same way that the source section map changes.

8.3.3 Creating Sections

Before you can use a nonzero section of memory, you must create it.
If your program references a nonzero section of memory that does not
exist (that is not mapped), the instruction that makes the reference
fails.

This SMAP % function requires three words of arguments in ACl through
AC3, as follows:

ACl: 0

AC2: process identifier,,section number

AC3: flags,,number of sections to create

TOPS-20 Version 5 8-10 April 1982

•

•

•

•

•

•

•

•

•

•

USING EXTENDED ADDRESSING

The process handle in AC2 identifies the section to be created (the
destination section.) If more than one section is to be created, this
section is the first of them, and the new sections are contiguous.

The number of sections cannnot be less than 1 nor more than 37
(octal).

The flags in the left half of AC3 can be the following:

B2(SM%RD) Allow read access

B3(SM%WR)

B4(SM%EX)

818-35

Allow write access

Allow execute access

The number of sections to create. This number
must be between 1 and 37. All created sections
are contiguous .

8.3.4 Unmapping a Process Section

You can use the SMAP% monitor call to unmap one or more sections of
memory in a process. The contents of the section are lost.

If the section contains pages mapped from a file, this function does
not cause the unmapped sections to be written back to the file from
which they were mapped. Such pages must be mapped to the file by
means of the PMAP% call .

This function requires three words of arguments in ACl through AC3, as
follows.

ACl:

AC2:

AC3:

-1

fork handle in the left half, and a section number in the
right half. This identifies the section to be unmapped
(the destination section).

zero in the left half, and, in the right half, the number
of contiguous sections to be unmapped.
The number of sections unmapped must be between 1 and 37.

8.4 MODIFYING EXISTING PROGRAMS

Existing programs can be modified to run in any section of memory,
including both section zero and all other sections. The sections that
follow discuss the changes that must be made to an existing program so
that it runs in a single nonzero section.

A good strategy for conversion of a section-zero program is to move
one module at a time to the new section, debugging each module in the
new section before attempting to move the next module.

Two macros in PROLOG.MAC are useful in the debugging process: EA.ENT,
which, from section zero, calls a subroutine in another section and
returns control to the code in section zero; and EO.ENT, which, from
any other section, calls a subroutine in section zero and returns
control to the code in the calling section.

TOPS-20 Version 5 8-11 April 1982

USING EXTENDED ADDRESSING

8.4.l Data Structures

Stacks, tables, and other data structures used in the past have often
contained words with an address in the right half and a count in the
left half. The count could be positive or negative because all
programs ran onl y in section 0, and when the contents of a word are
evaluated in section O, only the right half is considered.

In all other sections, the entire word is considered to be an address.
If the left half of the word is negative, the left half is ignored
when the address is evaluated, and the address is considered to be a
section-relative address. Thus for a word to contain an address in
the right half and a count in the left half, the count must be
negative.

8.4.l.l Index Words - Be sure the left half of index words contain a
nonpositive quantity. To use the left half of an index register to
hold a count, the count must be negative. If the left half is unused,
it must be zero so that the effective address is a local address. If
the left half contains a positive number, the effective address will
be global.

8.4.1.2 Indirect Words - To be sure that an indirect word is
evaluated in a nonzero section as a section-relative or local address,
always set bit O of the indirect word. Argument lists that produce
section-relative addresses in section zero , for example, will produce
section-relative addresses in any section if bit zero is set.

8.4.1.3 Stack Pointers - As mentioned above, the left half of stack
pointers must contain zero or a negative number to produce section­
relative addresses. A negative number in the left half is considered
to be a count. A positive number in the left half is considered to be
a section number.

8.4.2 Using Monitor Calls

If a program runs in a single section, even though that section is not
section zero, most monitor calls execute exactly the way they do in
section zero. This is because when no section number is specified,
the current section is the default.

The GTFDB% call, for example, requires that AC3 contain the address of
the block in which to store the data it obtains from the file data
block. This address can be an 18-bit address regardless of what
section the monitor call is made from. When the monitor sees that the
address is section-relative, it obtains the section number from the PC
of the process that makes the call.

The same is true of calls
page number is passed as
number from the PC of the
arguments are discussed
Reference Manual.

TOPS-20 Version 5

that accept page numbers. If a nine-bit
an argument, the monitor obtains the section
process that made the call. Monitor calls

in Chapter l of the TOPS-20 Monitor Calls

8-12 April 1982

•

•

•

•

•

•

•

•

•

•

USING EXTENDED ADDRESSING

Another restriction on arguments passed to monitor calls executed in
sections other than section 0 concerns universal device designators,
which have the format Sxxxxx,,xxxxxx or 6xxxxx,,xxxxxx (.DVDES).
Universal device designators are not legal except in section O. This
is because of the existence of one-word global byte pointers, which
can have the same format.

Thus monitor calls that accept either a device designator or a byte
pointer when called from section 0 do not accept universal device
designators in any other section. Other device designators, such as
.TTDES (0,,4xxxxx), can be used in any section.

The calls SIR% and RIR% should not be used in sections other than
section zero. These calls work in other sections only if all the code
associated with these calls exists in the same section as the code
that makes the call.

For example, if an SIR% call is executed in section 4, it executes
correctly if and only if the code that generates the interrupts, the
interrupt-processing routines, and all associated tables are also
located in section 4. Thus, in programs intended to run in a section
other than section 0, the XSIR% and XRIR% calls, described in Chapter
4, should be used in place of SIR% and RIR%.

8.5 WRITING MULTISECTION PROGRAMS

Multisection programs, programs that use more than one section of
memory, are similar to single-section programs that run in nonzero
sections. They allow you to place tables needed for processing
interrupts in any section of memory (See Chapter 4), to use ve ry large
arrays, and to write modules of code that can be dynamically mapped
into a section of memory and executed.

In a single-section program, local addresses and byte pointers are
sufficient to specify any word or byte in the program's address space.
In a multisection program, local addresses and byte pointers cannot
specify any word or byte in the program's address space. Most monitor
calls use only one AC per argument, so passing two-word global
addresses or byte pointers is not possible. Thu s it is necessary to
either keep monitor call arguments in the same sect ion of memo ry as
the code making the call, or use global arguments or, if applicable,
the global form of the monitor call .

In many multisection programs it is not necessary to keep all the
arguments required by a call in the same sect ion as t he code that
makes the call. Global arguments are required, and they take several
forms. Chapter 1 of the TOPS-20 Monitor Calls Reference Manual gives
details on the use of these arguments.

The rest of this chapter describes the variou s fu nctions that monitor
calls provide for multisection programs .

TOPS-20 Version 5 8-13 April 1982

'

USING EXTENDED ADDRESSING

8.5.1 Controlling a Process in an Extended Section

Like processes that exist only in section O, processes that exist in
nonzero sections can be controlled by monitor calls. Most of the
calls that control such ,processes are the same calls that control
processes that exist only in section O. There are some calls that you
must use to control. a process that uses memory in a nonzero section.

8.5.1.1 Starting a Process in a Nonzero Section - You can use most of
the calls described in Chapter 5 to control programs that run in a
nonzero section. The SFORK% monitor call is an exception, and will
not start a program in a nonzero section.

The XSFRK% monitor call starts a process in any section of memory. If
the process is frozen (by means of the FFORK% call), XSFRK% changes
the double-word PC, but does not resume execution of the process. To
resume the execution of any frozen fork, use the RFORK% call.

The XSFRK% call requires 3 words of arguments in ACl through AC3.

ACl:

AC2:

AC3:

flags,,process handle

Flags:

SF%CON(lB0)

PC flags,,O

continue a
If SF%CON
is ignored
from where

process that has halted.
is set, the address in AC3

and the process continues
it was halted.

address to which this call is to set the PC

The XSFRK% call also starts a process in section zero. To do so, set
the left half of AC3 to zero and the right half of AC3 to the address
in section 0 at which you want the process to start.

Most other calls consider an address with a zero in the left half to
be a section-relative address. The XSFRK% call, however, uses the
contents of AC3 to set the PC. A PC with a zero in the left half
indicates an address in section zero.

Setting the Entry Vector in Nonzero Sections - The SEVEC
call has room in its argument ACs for only a half-word
so it cannot be used to set a process entry vector to an
in a nonzero section. The XSVEC% call, on the other hand,

8.5.1.2
monitor
address,
address
uses an
length
section

AC for the address of the entry vector, and another AC for the
of the entry vector, and can specify an entry vector in any
of memory.

The XSVEC% call requires three words of arguments in ACl through AC3.

ACl: process handle

AC2: length of the entry vector, or O

AC3: address of the beginning of the entry vector

The length of the entry vector specified in AC2 must be less than 1000
words. If AC2 contains 0, TOPS-20 assumes a default length of 2
words.

TOPS-20 Version 5 8-14 April 1982

•

•

•

•

•

•

•

•

•

•

USING EXTENDED ADDRESSING

8.5.2 Obtaining Information About a Process

Although the monitor calls described in Chapter 5 work in any section
of memory, several of them can only return information about the
section in which they are executed. The following paragraphs describe
the monitor calls you can use to obtain information about any section
of memory.

8.5.2.1 Memory Access Information - Several kinds of information
about memory are important. Among them are whether a page or section
exists (is mapped), and, if so, what the access to a page or section
is. The RSMAP% and XRMAP% calls provide this information.

The RSMAP% monitor call reads a section map, and provides information
about the mapping of one section of the address space of a process.
RSMAP% requires one word of arguments in ACl: a fork handle in the
left half, and a section number in the right half. It returns the
access information in AC2 .

The map information that RSMAP% returns can be the following:

-1

0

no current mapping present (the section does not
exist)

the mapping is a private section

n, ,m where n is a fork handle or a JFN, and m is a
section number. If n is a fork handle,
the mapping is an indirect or shared
mapping to another fork's section. If n
is a JFN, the mapping is a shared
mapping to a file section.

The access information bits are the following:

B2(SM%RD)

B3(SM%WR)

Read access is allowed

Write access is allowed

B4(SM%EX) Execute access is allowed

B6(SM%IND) The section was created using an indirect pointer.

Although the RSMAP% call does not return information on individual
pages, the data it does return is useful in preventing error returns
from the XRMAP% monitor call.

The XRMAP% call returns access information on a page or group of pages
in any section of memory. Although the RMAP% call returns access data
about a page in the current section, and you can use the RSMAP% call
in any section of memory, you must use the XRMAP% call to obtain
information about pages in any section other than the current section.

The XRMAP% call requires two words of arguments in ACl and AC2.

ACl: process handle in the left half, 0 in the right half

AC2: address of the argument block

TOPS-20 Version 5 8-15 April 1982

USING EXTENDED ADDRESSING

The argument block addressed b y AC2 has the following for mat:

!===!
! Length of the argument block, including this word
!===
! number of pages in this group on which to return data
!---
! number of the f irst page in this group
!---

address at which to return the data block
!===!
\
\
\

===
number of pages in this group on which to return data

number of the first page in this group

address at which to return the data block
===

\
\
\

The number of words in the argument block is three times the number of
groups of pages for which y ou want access data, plus one. Each group
of pages requires three arguments: the number of pages in the group,
the number of the first page in the group, and the address at which
the monitor is to return the access data.

Note that the address to which the monitor returns data should be in a
section of memory that already exists. If it does not exist, the call
will fail with an illegal memory reference.

The access information returned for each group of pages specified in
the argument block is the following:

B2(RM%RD)
B3(RM%WR)
B4(RM%EX)
BS(RM%PEX)
B9(RM%CPY)

read access allowed
write access allowed
execute access allowed
page exists
copy-on-write access

For each page specified in the argument block that does not exist,
XRMAP % returns a -1. It also returns a zero flag word for each such
page. The data block . to which XRMAP % returns the access information
should therefore contain twice as many words as the number of groups
of pages about which you want information.

If you execute an XRMAP% call to obtain information about a page in a
nonexistent section, the XRMAP% call fails with an illegal memor y
reference. For this reason it is recommended to execute an RSMAP %
call to determine that the section exists before you use XRMAP% to
obtain information about any page within that section.

8.5.2.2 Entry Vector Information - To obtain the entry vector of a
process in any section of memory, use the XGVEC% call. This call
returns the length of the entry vector in AC2 and the address of the
entry vector in AC3.

The XGVEC% call requires one word of argument:
the fork for which you want the entry vector.

TOPS-20 Version 5 8-16

in ACl, the handle of

April 1982

•

•

•

•

•

•

•

•

•

•

USING EXTENDED ADDRESSING

8.5.2.3 Page-Failure Information - A page-fail word, described in the
DECSYSTEM-10/DECsystem-20 Processor Reference Manual, contains
information that allows a program to determine the cause of a page
trap and the address of the instruction that caused the trap. This
information allows a program to correct the cause of the page-fail
trap. Once the program has corrected the cause of the page-fail trap,
the program can continue execution.

The XGTPW% call obtains the page-fail word from the monitor's
base, and returns it to the calling program's address space.
XGTRP% call requires two words of arguments in ACl and AC2.

ACl: process handle

AC2: address of the block in which to return data

data
The

TOPS-20 Version 5 8-17 April 1982

•

•

•

•

•

•

•

•

•

•

APPENDIX A

ERROR CODES AND MESSAGE STRINGS

Many monitor calls return an error number (usually in the right half
of ACl) on a failure return. This error number indicates the reason
that the call could not perform its intended function. The error
number is associated with a unique error symbol and message string,
all three of which are defined in the MONSYM file. The ERSTR% monitor
call can be used to translate the returned number into its
corresponding message string. Refer to the TOPS-20 Monitor Calls
Reference Manual for the description of this call.

LGINXl 600010 Invalid account identifier
LGINX2
LGINX3
LGINX4
LGINX5
CRJBXl
CRJBX2
CRJBX3
CRJBX4
CRJBX5
CRJBX6
CRJBX7
LOUTXl
LOUTX2
CACTXl
CACTX2
EFCTXl
EFCTX2
EFCTX3
GJFXl
GJFX2
GJFX3
GJFX4
GJFX5
GJFX6
GJFX7
GJFXB

GJFX9
GJFXlO
GJFXll
GJFX12
GJFX13
GJFX14
GJFX15
GJFX16
GJFX17
GJFX18
GJFX19

600011 Directory is "files-only" and cannot be logged in to
600012 Internal format of directory is incorrect
600013 Invalid password
600014 Job is already logged in
600020 Invalid parameter or function bit combination
600021 Illegal for created job to enter MINI-EXEC
600022 Reserved
600023 Terminal is not available
600024 Unknown name for LOGIN
600025 Insufficient system resources
600026 Reserved
600035 Illegal to specify job number when logging out own job
600036 Invalid job number
600045 Invalid account identifier
600046 Job is not logged in
600050 WHEEL or OPERATOR capability required
600051 Entry cannot be longer than 64 words
600052 Fatal error when accessing FACT file
600055 Desired JFN invalid
600056 Desired JFN not available
600057 No JFN available
600060 Invalid character in filename
600061 Field cannot be longer than 39 characters
600062 Device field not in a valid position
600063 Directory field not in a valid position
600064 Directory terminating delimiter is not preceded by a

valid beginning delimiter
600065 More than one name field is not allowed
600066 Generation number is not numeric
600067 More than one generation number field is not allowed
600070 More than one account field is not allowed
600071 More than one protection field is not allowed
600072 Invalid protection
600073 Invalid confirmation character
600074 No such device
600075 No such directory name
600076 No such filename
600077 No such file type

A-1

I

I

I

I
I

I

GJFX20
GJFX21
GJFX22
GJFX23
GJFX24
GJFX27
GJFX28
GJFX29
GJFX30
GJFX31
GJFX32
GJFX33
GJFX34
GJFX35
OPNXl
OPNX2
OPNX3
OPNX4
OPNX5
OPNX6
OPNX7
OPNX8
OPNX9
OPNXlO
OPNX12
OPNX13
OPNX14
OPNX15
OPNX16
OPNX17
OPNX18
OPNX19
OPNX20
OPNX21
OPNX22
DESXl
DESX2
DESX3
DESX4
DESX5
DESX6
DESX7

DESX8
CLSXl
CLSX2
RJFNXl
RJFNX2
RJFNX3
DELFXl
SFPTXl
SFPTX2
SFPTX3
CNDIXl
CNDIX3
CNDIX5
SFBSXl
SFBSX2
IOXl
IOX2
IOX3
IOX4
IOX5
IOX6

ERROR CODES AND MESSAGE STRINGS

600100 No such generation number
600101 File was expunged
600102 Insufficient system resources (Job Storage Block full)
600103 Exceeded maximum number of files per directory
600104 File not found
600107 File already exists (new file required)
600110 Device is not on line
600111 Device is not available to this job
600112 Account is not numeric
600113 Invalid wildcard designator
600114 No files match this specification
600115 Filename was not specified
600116 Invalid character "?" in file specification
600117 Directory access privileges required
600120 File is already open
600121 File does not exist
600122 Read access required
600123 Write access required
600124 Execute access required
600125 Append access required
600126 Device already assigned to another job
600127 Device is not on line
600130 Invalid simultaneous access
600131 Entire file structure full
600133 List access required
600134 Invalid access requested
600135 Invalid mode requested
600136 Read / write access required
600137 File has bad index block
600140 No room in job for long file page table
600141 Unit Record Devices are not available
600142 IMP is not up
600143 Host is not up
600144 Connection refused
600145 Connection byte size does not match
600150 Invalid source / destination designator
600151 Terminal is not available to this job
600152 JFN is not assigned
600153 Invalid use of terminal designator or string pointer
600154 File is not open
600155 Device is not a terminal
600156 Illegal use of parse-only JFN or output

wildcard-designators ·
600157 File is not on disk
600160 File is not open
600161 File cannot be closed by this process
600165 File is not closed
600166 JFN is being used to accumulate filename
600167 JFN is not accessible by this process
600170 Delete access required
600175 File is not open
600176 Illegal to reset pointer for this file
600177 Invalid byte number
600200 Invalid password
600202 Invalid directory number
600204 Job is not logged in
600210 Illegal to change byte size for this opening of file
600211 Invalid byte size
600215 File is not opened for reading
600216 File is not opened for writing
600217 File is not open for random access
600220 End of file reached
600221 Device or data error
600222 Illegal to write beyond absolute end of file

TOPS-20 Version 5 A-2 April 1982

•

•

•

•

•

•

•

•

•

•

PMAPXl
PMAPX2
SPACXl
FRKHXl
FRKHX2
FPKHX3
FRKHX4
FRKHX5
FRKHX6
SPLFXl
SPLFX2
SPLFX3
GTABXl
GTABX2
GTABX3
RUNTXl
STADXl
STADX2
ASNDXl
ASNDX2
ASNDX3
ATACXl
ATACX2
ATACX3
ATACX4
ATACX5
STDVXl
DEVXl
DEVX2
DEVX3
MNTXl
MNTX2
MNTX3
TERMXl
TLNKXl
A'I'IXl
ATIX2
TLNKX2
TLNKX3
TTYXl
RSCNXl
RSCNX2
CFRKX3
KFRKXl
KFRKX2
RFRKXl
HFRKXl
GFRKXl
GETXl
GETX2
TFRKXl
TFRKX2
SFRVXl
NOUTXl
NOUTX2
TFRKX3
IFIXXl
IFIXX2
IFIXX3
GFDBXl
GFDBX2
GFDBX3
CFDBXl
CFDBX2

ERROR CODES AND MESSAGE STRINGS

600240 Invalid access requested
600241 Invalid use of PMAP
600245 Invalid access requested
600250 Invalid process handle
600251 Illegal to manipulate a superior process
600252 Invalid use of multiple process handle
600253 Process is running
600254 Process has not been started
600255 All relative process handles in use
600260 Process is not inferior or equal to self
600261 Process is not inferior to self
600262 New superior process is inferior to intended inferior
600267 Invalid table number
600270 Invalid table index
600271 GETAB capability required
600273 Invalid process handle -3 or -4
600275 WHEEL or OPERATOR capability required
600276 Invalid date or time
600300 Device is not assignable
600301 Illegal to assign this device
600302 No such device
600320 Invalid job number
600321 Job already attached
600322 Incorrect user number
600323 Invalid password
600324 This job has no controlling terminal
600332 No such device
600335 Invalid device designator
600336 Device already assigned to another job
600337 Device is not on line
600345 Internal format of directory is incorrect
600346 Device is not on line
600347 Device is not mountable
600350 Invalid terminal code
600351 Illegal to set remote to object before object to remote
600352 Invalid software interrupt channel number
600353 Control-C capability required
600356 Link was not received within 15 seconds
600357 Links full
600360 Device is not a terminal
600361 Overflowed rescan buffer, input string truncated
600362 Invalid function code
600363 Insufficient system resources
600365 Illegal to kill top level process
600366 Illegal to kill self
600367 Processes are not frozen
600370 Illegal to halt self with HFORK
600371 Invalid process handle
600373 Invalid save file format
600374 System Special Pages Table full
600375 Undefined function code
600376 Unassigned fork handle or not immediate inferior
600377 Invalid position in entry vector
600407 Radix is not in range 2 to 36
600410 Column overflow
600411 Fork(s) not frozen
600414 Radix is not in range 2 to 10
600415 First nonspace character is not a digit
600416 Overflow (number is greater than 2**35)
600424 Invalid displacement
600425 Invalid number of words
600426 List access required
600430 Invalid displacement
600431 Illegal to change specified bits

A-3

I

I

I

I

I

I

I

I

I

I

I

I

CFDBX3
CFDBX4
DUMPXl
DUMPX2
DUMPX3
DUMPX4
RNAMXl
RNAMX2
RNAMX3
RNAMX4
BKJFXl
TIMEXl
ZONEXl
ODTNXl
DILFXl
TILFXl
DATEXl
DATEX2
DATEX3
DATEX4
DATEX5
DATEX6
SMONXl
SACTXl
SACTX2
SACTX3
SACTX4
GACTXl
GACTX2
FFUFXl
FFUFX2
FFUFX3
DSMXl
RDDIXl
SIRXl
SSAVXl
SSAVX2
SEVEXl
WHELXl
CAPXl
PEEKX2
CRDIXl
CRDIX2
CRDIX3
CRDIX4
CRDIX5
CRDIX7
GTDIXl
GTDIX2
FLINXl
FLINX2
FLINX3
FLINX4
FLOTXl
FLOTX2
FLOTX3
HPTXl
FDFRXl
FDFRX2
GTHSXl
GTHSX2
GTHSX3
ATNXl
ATNX2

ERROR CODES AND MESSAGE STRINGS

600432 Write or owner access required
600433 Invalid value for specified bits
600440 Command list error
600441 JFN is not open in dump mode
600442 Address error (too big or crosses end of memory)
600443 Access error (cannot read or write data in memory)
600450 Files are not on same device
600451 Destination file expunged
600452 Write or owner access to destination file required
600453 Quota exceeded in destination of rename
600454 Illegal to back up terminal pointer twice
600460 Time cannot be greater than 24 hours
600461 Time zone out of range
600462 Time zone must be USA or Greenwich
600464 Invalid date format
600465 Invalid time format
600466 Year out of range
600467 Month is not less than 12
600470 Day of month too large
600471 Day of week is not less than 7
600472 Date out of range
600473 System date and time are not set
600516 WHEEL or OPERATOR capability required
600530 File is not on multiple-directory device
600531 Insufficient system resources (Job Storage Block full)
600532 Directory requires numeric account
600533 Write or owner access required
600540 File is not on multiple-directory device
600541 File expunged
600544 File is not open
600545 File is not on multiple-directory device
600546 No used page found
600555 File(s) not closed
600560 Illegal to read directory for this device
600570 Table address is not greater than 20
600600 Illegal to save files on this device
600601 Page count (left half of table entry) must be negative
600610 Entry vector length is not less than 1000
600614 WHEEL or OPERATOR capability required
600615 WHEEL or OPERATOR capability required
600617 Read access failure on monitor page
600620 WHEEL or OPERATOR capability required
600621 Illegal to change number of old directory
600622 Insufficient system resources (Job Storage Block full)
600623 Superior directory full
600624 Directory name not given
600626 File(s) open in directory
600640 WHEEL or OPERATOR capability required
600641 Invalid directory number
600650 First character is not blank or numeric
600651 Number too small
600652 Number too large
600653 Invalid format
600660 Column overflow in field l or 2
600661 Column overflow in field 3
600662 Invalid format specified
600670 Undefined clock number
600700 Not a multiple-directory device
600701 Invalid directory number
600704 Unknown host number
600705 No number for that host name
600707 No string for that host number
600710 Invalid receive JFN
600711 Receive JFN not opened for read

TOPS-20 Version 5 A-4 April 1982

•

•

•

•

•

•

•

•

•

•

ATNX3
ATNX4
ATNX5
A'I'NX6
ATNX7
A TN XS
ATNX9
ATNXlO
ATNXll
ATNX12
ATNX13
CVHSTl
CVSKXl
CVSKX2
SNDIXl
SNDIX2
SNDIX3
SNDIX4
SNDIX5
NTWZXl
ASNSXl

ASNSX2
SQXl
SQX2
GTNCXl
GTNCX2
RNAMX5
RNAMX6
RNAMX7
RNAMXS
RNAMX9
RNMXlO
RNMXll
RNMX12
GJFX36
ILINSl
ILINS2
ILINS3
CRLNXl
INLNXl
LNSTXl
MLKBXl
MLKBX2
MLKBX3
MLKBX4
VBCXl
RDTXl
GFKSXl
GTJIXl
GTJIX2
GTJIX3
IPCFXl
IPCFX2
IPCFX3
IPCFX4
IPCFX5
IPCFX6
IPCFX7
IPCFXS
IPCFX9
IPCFlO
IPCFll
I PC Fl 2

ERROR CODES AND MESSAGE STRINGS

600712 Receive JFN not open
600713 Receive JFN is not a NET connection
600714 Receive JFN has been used
600715 Receive connection refused
600716 Invalid send JFN
600717 Send JFN not opened for write
600720 Send JFN not open
600721 Send JFN is not a NET connection
600722 Send JFN has been used
600723 Send connection refused
600724 Insufficient system resources (No NVT's)
600727 No string for that Host number
600730 Invalid network JFN
600731 Local socket invalid in this context
600732 Invalid message size
600733 Insufficient system resources (No buffers available)
600734 Illegal to specify NCP links 0 - 72
600735 Invalid header value for this queue
600736 IMP down
600737 NET WIZARD capability required
600740 Insufficient system resources (All special queues in

use)
600741 Link(s) assigned to another special queue
600742 Special network queue handle out of range
600743 Special network queue not assigned
600746 Invalid network JFN
600747 Invalid or inactive NVT
600750 Destination file is not closed
600751 Destination file has bad page table
600752 Source file expunged
600753 Write or owner access to source file required
600754 Source file is nonexistent
600755 Source file is not closed
600756 Source file has bad page table
600757 Illegal to rename to self
600760 Internal format of directory is incorrect
600770 Undefined operation code
600771 Undefined JSYS
600772 uuo simulation facility not available
601000 Logical name is not defined
601001 Index is beyond end of logical name table
601002 No such logical name
601003 Lock facility already in use
601004 Too many pages to be locked
601005 Page is not available
601006 Illegal to remove previous contents of user map
601007 Display data area not locked in core
601010 Invalid string pointer
601011 Area too small to hold process structure
601013 Invalid index
601014 Invalid terminal line number
601015 Invalid job number
601016 Length of packet descriptor block cannot be less than 4
601017 No message for this PID
601020 Data too long for user's buffer
601021 Receiver's PID invalid
601022 Receiver's PIO disabled
601023 Send quota exceeded
601024 Receiver quota exceeded
601025 IPCF free space exhausted
601026 Sender's PIO invalid
601027 WHEEL capability required
601030 WHEEL or IPCF capability required
601031 No free PID's available

A-5

I

I

I

I

I

I

IPCF13
IPCF14
IPCF15
IPCF16
I PC Fl 7
IPCF18
IPCF19
IPCF20
IPCF21
IPCF22
IPCF23
IPCF24
IPCF25
IPCF26
IPCF27
IPCF28
IPCF29
IPCF30
GNJFXl
ENQXl
ENQX2
ENQX3
ENQX4
ENQX5
ENQX6
ENQX7
ENQX8
ENQX9
ENQXlO
ENQXll
ENQX12
ENQX13
ENQX14
ENQX15
ENQX16
ENQX17
ENQX18
ENQX19
ENQX20
ENQX21
IPCF31
IPCF32
PMAPX3
PMAPX4
PMAPX5
PMAPX6
SNOPXl
SNOPX2
SNOPX3
SNOPX4
SNOPX5
SNOPX6
SNOPX7
SNOPX8
SNOPX9
SNOPlO
SNOPll
SNOP12
SNOP13
SNOP14
SNOP15
SNOP16
IPCF33
SNOP17

ERROR CODES AND MESSAGE STRINGS

601032 PIO quota exceeded
601033 No PID's available to this job
601034 No PID's available to this process
601035 Receive and message data modes do not match
601036 Argument block too small
601037 Invalid MUTIL JSYS function
601040 No PIO for [SYSTEM] INFO
601041 Invalid process handle
601042 Invalid job number
601043 Invalid software interrupt channel number
601044 [SYSTEM] INFO already exists
601045 Invalid message size
601046 PIO does not belong to this job
601047 PIO does not belong to this process
601050 PIO is not defined
601051 PID not accessible by this process
601052 PIO already being used by another process
601053 Job is not log9ed in
601054 No more files in this specification
601055 Invalid function
601056 Level number too small
601057 Request and lock level numbers do not match
601060 Number of pool and lock resources do not match
601061 Lock already requested
601062 Requested locks are not all locked
601063 No ENQ on this lock
601064 Invalid access change requested
601065 Invalid number of blocks specified
601066 Invalid argument block length
601067 Invalid software interrupt channel number
601070 Invalid number of resources requested
601071 Indirect or indexed byte pointer not allowed
601072 Invalid byte size
601073 ENQ/ DEQ capability required
601074 WHEEL or OPERATOR capability required
601075 Invalid JFN
601076 Quota exceeded
601077 String too long
601100 Locked JFN cannot be closed
601101 Job is not logged in
601102 Invalid page number
601103 Page is not private
601104 Illegal to move shared page into file
601105 Illegal to move file page into process
601106 Illegal to move special page into file
601107 Disk quota exceeded
601110 WHEEL or OPERATOR capability required
601111 Invalid function
601112 .SNPLC function must be first
601113 Only one .SNPLC function allowed
601114 Invalid page number
601115 Invalid number of pages to lock
601116 Illegal to define breakpoints after inserting them
601117 Breakpoint is not set on instruction
601120 No more breakpoints allowed
601121 Breakpoints already inserted
601122 Breakpoints not inserted
601123 Invalid format for program name symbol
601124 No such program name symbol
601125 No such symbol
601126 Not enough free pages for snooping
601127 Multiply defined symbol
601130 Invalid index into system PIO table
601131 Breakpoint already defined

A-6

•

•

•

•

•

•

•

•

•

•

OPNX23
GJFX37
CRLNX2
INLNX2
LNSTX2
ALCXl
ALCX2
ALCX3
ALC X4
ALCX5
SPLXl
SPLX2
SPLX3
SPLX4
SPLX5

CLSX3
CRLNX3
ALCX6

CKAXl
CKAX2
CKAX3
TIMXl
TIMX2
TIMX3
TIMX4
SNOP18
GJFX38
GJFX39
CRDIX8
CRDIX9
CRDil 0

DELDXl
DELDX2
GACTX3
DIAGXl
DIAGX2
DIAGX3
DIAGX4
DIAGX5
DIAGX6
DIAGX7
DIAGX8
DIAGX9
DIAGlO
SYEXl
SYEX2
MTOXl
IOX7
IOX8
MTOX5
DUMPX5
DUMPX6
IOX9
CLSX4
MTOX2
MTOX3
MTOX4
MTOX6
OPNX25
GJFX40
MTOX7

ERROR CODES AND MESSAGE STRINGS

601132 Disk quota exceeded
601133 Input deleted
601134 WHEEL or OPERATOR capability required
601135 Invalid function
601136 Invalid function
601137 Invalid function
601140 WHEEL or OPERATOR capability required
601141 Device is not assignable
601142 Invalid job number
601143 Device already a s signed to another job
601144 Invalid function
601145 Argument block too small
601146 Invalid device designator
601147 WHEEL or OPERATOR capability required
601150 Illegal to specify 0 as generation number for first

file
601151 File still mapped
601152 Invalid function
601153 Device assigned to user job, but will b e gi ven to

allocator when released
601154 Argument block too small
601155 Invalid directory number
601156 Invalid access code
601157 Invalid function
601160 Invalid process handle
601161 Time limit already set
601162 Illegal to clear time limit
601163 Data page is not private or copy-on-write
601164 File not found because output-only dev ice wa s speci fi e d
601165 Logical name loop detected
601166 Invalid directory number
601167 Internal format of directory is incorrect
601170 Maximum directory number exceeded; index table needs

expanding
601171 WHEEL or OPERATOR capability required
601172 Invalid directory number
601173 Internal format of directory is incorrect
601174 Invalid function
601175 Device is not assigned
601176 Argument block too small
601177 Invalid device type
601200 WHEEL, OPERATOR, or MAINTENANCE capability required
601201 Invalid channel command list
601202 Illegal to do I / O across page boundary
601203 No such device
601204 Unit does not exist
601205 Subunit does not exist
601206 Unreasonable SPEAR block size
601207 No buffer space available for SPEAR
601210 Invalid function
601211 Insufficient s y stem resources (Job Storage Block full)
601212 Monitor internal error
601213 Invalid hardware data mode for magneti c tape
601214 No-wait dump mode not supported for this dev ice
601215 Dump mode not supported for this device
601216 Function legal for sequential write only
601217 Device still active
601220 Record size was not set before I / O was done
601221 Function not legal in dump mode
601222 Invalid record size
601223 Invalid magnetic tape density
601224 Device is write locked
601225 Undefined attribute in file specification
601226 WHEEL or OPERATOR capability required

TOPS-20 Version 5 A-7 April 1982

I

I

I

I

I

I

I

I

I

I
I

I

I

I

I

I

I

LOUTX3
LOUTX4
CAPX2
SSAVX3
SSAVX4
TDELXl
TADDXl
TADDX2
TLUKXl
IOXlO
CNDIX2
CNDIX4
CNDIX6
SJBXl
SJBX2
SJBX3
TMONXl
SMONX2
SJBX4
SJBX5
SJBX6
GTJIX4
ILINS4
ILINS5
COMNXl
COMNX2
COMNX3
COMNX4
PRAXl
PRAX2
COMNX5
COMNX6
COMNX7
PRAX3
CKAX4
GACCXl
GACCX2
MTOX8
DBRKXl
SJPRXl
GJFX41
GJFX42
GACCX3
TIMEX2
DELFX2
DELFX3
DELFX4
DELFX5
DELFX6
DELFX7
DELFX8
FRKHX7
DIRXl
DIRX2
DIRX3
UFPGXl
LNGFXl
IPCF34
COMNX8
MTOX9
MTOXlO
MTOXll
MTOX12
MTOX13

ERROR CODES AND MESSAGE STRINGS

601227 WHEEL or OPERATOR capability required
601230 LOG capability required
601231 WHEEL, OPERATOR, or MAINTENANCE capability required
601232 Insufficient system resources (Job Storage Block full)
601233 Directory area of EXE file is more than one page
601234 Table is empty
601235 Table is full
601236 Entry is already in table
601237 Internal format of table is incorrect
601240 Record is longer than user requested
601241 WHEEL or OPERATOR capability required
601242 Invalid job number
601243 Job is not logged in
601244 Invalid function
601245 Invalid magnetic tape density
601246 Invalid magnetic tape data mode
601247 Invalid TMON function
601250 Invalid SMON function
601251 Invalid job number
601252 Job is not logged in
601253 WHEEL or OPERATOR capability required
601254 No such job
601255 UUO simulation is disabled
601256 RMS facility is not available
601257 Invalid COMND function code
601260 Field too long for internal buffer
601261 Command too long for internal buffer
601262 Invalid character in input
601263 Invalid PRARG function code
601264 No room in monitor data base for argument block
601265 Invalid string pointer argument
601266 Problem in indirect file
601267 Error in command
601270 PRARG argument block too large
601271 File is not on disk
601272 Invalid job number
601273 No such job
601274 Argument block too long
601275 No interrupts in progress
601276 Job is not logged in
601277 File name must not exceed 6 characters
601300 File type must not exceed 3 characters
601301 Confidential Information Access capability required
601302 Downtime cannot be more than 7 days in the future
601303 File cannot be expunged because it is currently open
601304 System scratch area depleted; file not deleted
601305 Directory symbol table could not be rebuilt
601306 Directory symbol table needs rebuilding
601307 Internal format of directory is incorrect
601310 FDB formatted incorrectly; file not deleted
601311 FDB not found; file not deleted
601312 Process page cannot exceed 777
601313 Invalid directory number
601314 Insufficient system resources
601315 Internal format of directory is incorrect
601316 File is not open for write
601317 Page table does not exist and file not open for write
601320 Cannot receive into an existing page
601321 Number base out of range 2-10
601322 Output still pending
601323 VFU or RAM file cannot be OPENed
601324 Data too large for buffers
601325 Input error or not all data read
601326 Argument block too small

A-8

•

•

•

•

•

•

•

•

•

•

MTOX14
SAVXl
MTOX15
MTOX16
LPINXl
LPINX2
LPINX3
MTOX17
LGINX6
DESX9
ACESXl
ACESX2
DSKOXl
DSKOX2
MSTRXl
MSTRX2
MSTRX3
MSTRX4
MSTRX5
MSTRX6
MSTRX7
MSTRX8
MSTRX9
MSTXlO
MSTXll
MSTX12
MSTX13
MSTX14
MSTX15
MSTX16
DSKXOl
DSKX02
DSKX03
DSKX04
GFUSXl
GFUSX2
SFUSXl
SFUSX2
SFUSX3
RCDIXl
RCDIX2
RCDIX3
RCDIX4
RCUSXl
TDELX2
TIMX5
LSTRXl
SWJFXl
MTOX18
OPNX26
DELFX9
CRDIX6
COMNX9
STYPXl
PMAPX7
DSKOX3
DESXlO
DSKOX4
MSTX17
MSTX18
MSTX19
MSTX20
MSTX21
MSTX22

ERROR CODES AND MESSAGE STRINGS

601327 Invalid software interrupt channel number
601330 Illegal to save files on this device
601331 Device does not have Direct Access (programmable) VFU
601332 VFU or Translation Ram file must be on disk
601333 Invalid unit number
601334 WHEEL or OPERATOR capability required
601335 Illegal to load RAM or VFU while device is OPEN
601336 Device is not on line
601337 No more job slots available for logging-in
601340 Invalid operation for this device
601341 Argument block too small
601342 Insufficient system resources
601343 Channel number too large
601344 Unit number too large
601345 Invalid function
601346 WHEEL or OPERATOR capability required
601347 Argument block too small
601350 Insufficient system resources
601351 Drive is not on-line
601352 Home blocks are bad
601353 Invalid structure name
601354 Could not get OFN for ROOT-DIRECTORY
601355 Could not MAP ROOT-DIRECTORY
601356 ROOT-DIRECTORY bad
601357 Could not initialize Index Table
601360 Could not OPEN Bit Table File
601361 Backup copy of ROOT-DIRECTORY is bad
601362 Invalid channel number
601363 Invalid unit number
601364 Invalid controller number
601365 Invalid structure number
601366 Bit table is being initialized
601367 Bit table has not been initialized
601370 Bit table being initialized by another job
601371 Invalid function
601372 Insufficient system resources
601373 Invalid function
601374 Insufficient system resources
601375 No such user name
601376 Insufficient system resources
601377 Invalid directory specification
601400 Invalid structure name
601401 Monitor internal error
601402 Insufficient system resources
601403 Invalid table entry location
601404 Invalid software interrupt channel number
601405 Process has not encountered any errors
601406 Illegal to swap same JFN
601407 Invaiid software interrupt channel number
601410 Illegal to open a string pointer
601411 File is not a directory file
601412 Directory file is mapped
601413 End of input file reached
601414 Invalid terminal type
601415 Illegal to map file on dismounted structure
601416 Invalid structure number
601417 Structure is dismounted
601420 Invalid address type specified
601421 All units in a structure must be of the same type
601422 No more units in system
601423 Unit is already part of a mounted structure
601424 Data error reading HOME blocks
601425 Structure is not mounted
601426 Illegal to change specified bits

A-9

I

I

CRDill 601427
MSTX23 601430
ACESX3 601431
ACESX4 601432
ACESX5 601433
STRX05 601434
ACESX6 601435
STRXOl 601436
STRX02 601437
IOXll 601440
IOX12 601441
STRX03 601442
STRX04 601443
PPNXl 601444
PPNX2 601445
PPNX3 601446
PPNX4 601447
SPLX6 601450
CRDI12 601451
GFUSX3 601452
GFUSX4 601453
RNMX13 601454
SJBX8 601455
DEC RSV 601456
FFFFXl 601457
WILDXl 601460
MSTX41 601461
MSTX42 601462
CIMXND 6 01463
CINOND 601464
CIBDOF 601465
CINOFQ 601466
CI NO PG 601467
CINPTH 601470
CIBDCD 601471
CIUNOP 601472
CINOND 601473
CILNER 601474
LCBDBP 601475
LCLNER 601476
LCNOND 601477
SSAVX5 601500
CIBDFQ 601501
ATACX6 601502
ATACX7 601503
DSKOX5 601533
DSKOX6 601534
TIMX6 601535
TIMX7 601536
TIMX8 601537
TIMX9 601540
TIMXlO 601541
SCTXl 601550
SCTX2 601551
SCTX3 601552
SCTX4 601553
PDVXOl 601554
PDVX02 601555

ERROR CODES AND MESSAGE STRINGS

Invalid terminating bracket on directory
Could not write HOME blocks
Password is required
Function not allowed for another job
No function specified for ACCES
No such user name
Directory is not accessed
Structure is not mounted
Insufficient system resources
Quota exceeded
Insufficient system resources (Swapping space full)
No such directory name
Ambiguous directory specification
Invalid PPN
Structure is not mounted
Insufficient system resources
Invalid directory number
No directory to write spooled files into
Structure is not mounted
File expunged
Internal format of directory is incorrect
Insufficient system resources
Illegal to perform this function
DEC reserved bits not zero
No free pages in file
Second JFN cannot be wild
Channel does not exist
Controller does not exist
Maximum memory driver nodes assigned
No LCS node slots available
BAD BOT offset given
No CI free queue entries left
No BOT page slots left
Target CI LCS node is dead, no path to it
Bad CI op code
Undefined op code (in range but not yet defined
Dead LCS node
CI length error
Bad byte pointer passed to LCS
LCS length error
LCS No such node
Number of PDVs grew during save
BAD CI FREE QUEUE
Terminal is already attached to a job
Illegal terminal number
Invalid word count
Invalid buffer address
Time has already passed
No space available for a clock
User clock allocation exceeded
No such clock entry found
No system date and time
Invalid function code
Terminal already in use as controlling terminal
Illegal to redefine the job's controlling terminal
SC%SCT capability required
Address in .POADE must be as large as address in .POADR
Addresses in .PODAT block must be in strict ascending
order

PDVX03 601556 Address in .POADR must be a program data vector address
GETX4 601557 Illegal to relocate (via .GBASE) a multi-section exe

file
GETX5 601560 Exe file directory entry specifies a section-crossing
SFUSX4 601700 File expunged

TOPS-20 Version 5 A-10 April 1982

•

•

•

•

•

•

•

•

•

•

SFUSX5
SFUSX6
GETX3
FILXOl
ARGXOl
CAPX3
CAPX4
CAPX6
CAPX7
ARGX02
ARGX03
ARGX04
ARGX05
ARGX06
ARGX07
ARGX08
ARGX09
ARGXlO
ARGXll
ARGX12
ARGX13
MONXOl
MONX02
MONX03
MONX04
ARGX14
ARGX15
FILX02
FILX03
DEVX4
FILX04
ARGX16
ARGX17
ARGX18
DEVX5
DIRX4
FILX05
STRX06
MSTX24
MSTX25
MSTX26
LOUTX5
GJFX43
MTOX19
MTOX20
MSTX27
MSTX28
MSTX29
DSKX05

DSKX06
DSKX07
DSKX08

COMXlO
MSTX30
LOCKXl
LOCKX2
LOCKX3
ILLXOl
ILLX02
ILLX03
ILLX04
MSTX31

ERROR CODES AND MESSAGE STRINGS

601701 Write or owner access required
601702 No such user name
601703 Illegal to overlay existing pages
601704 File is not open
601705 Invalid password
601706 WHEEL capability required
601707 WHEEL or IPCF capability required
601711 ENQ/ DEQ capability required
601712 Confidential Information Access Capability req uired
601713 Invalid function
601714 Illegal to change specified bits
601715 Argument block too small
601716 Argument block too long
601717 Invalid page number
601720 Invalid job number
601721 No such job
601722 Invalid byte size
601723 Invalid access requested
601724 Invalid directory number
601725 Invalid process handle
601726 Invalid software interrupt channel number
601727 Insufficient system resources
601730 Insufficient system resources (JSB full)
601731 Monitor internal error
601732 Insufficient system resources (Swapping space full)
601733 Invalid account identifier
601734 Job is not logged in
601735 Write or owner access required
601736 List access required
601737 Device is not assignable
601740 File is not on multiple-director y device
601741 Password is required
601742 Invalid argument block length
601743 Invalid structure name
601744 No such device
601745 Invalid directory specificat i on
601746 File expunged
601747 No such user number
601750 Illegal to dismount the System Structure
601751 Invalid number of swapping pages
601752 Invalid number of Front-End-Filesystem pages
601753 Illegal to log out job 0
601754 More than one ;T specification is not allowe d
601755 Invalid terminal page width
601756 Invalid terminal page length
601757 Specified unit is not a disk
601760 Could not initialize bit table for structure
601761 Could not reconstruct ROOT-DIRECTORY
601763 Disk assignments and deassignments are currentl y

prohibited
601764 Invalid disk address
601765 Address cannot be deassigned because it is not assigned
601766 Address cannot be assigned because it is already

assi<:rned
601767 Invalid default string
601770 Incorrect Bit Table counts on structure
601771 Illegal to lock other than a private page
601772 Requested page unavailable
601773 Attempt to lock too much memory
601774 Illegal memory read
601775 Illegal memory write
601776 Memory data parity error
601777 Reference to non-existent page
602000 Structure already mounted

TOPS-20 Version 5 A-11 April 1982

MSTX32
MSTX33
STDIXl
CNDIX7
PMCLXl
PMCLX2
PMCLX3
DLFXlO
DLFXll
GJFX44
UTSTXl
UTSTX2
UTSTX3
BOTXOl
BOTX02
DCNXl
DCNX5
DCNX3
DCNX4
DCNX9
DCNXB
DCNXll
DCNX12
TTYXOl
BOTX03
MONX05
ARGX19
COMXll
COMX12
COMX13
COMX14
COMX15
COMX16
COMX17
NPXAMB
NPXNSW
NPXNOM
NPXNUL
NPXINW
NPXNC
NPXICN
NPXIDT
NPXNQS
NPXNMT
NPXNMD
NPXCMA
GJFX45

GJFX46
GJFX47
MSTX34
GJFX48
GJFX49
SJBX7
DELFlO
CRDI13
CRDil 4
CRDil 5
CRDI16
ENACXl
ENACX2
ENACX3
ENACX4
VACCXO

ERROR CODES AND MESSAGE STRINGS

602001 Structure was not mounted
602002 Structure is unavailable for mounting
602003 The STDIR JSYS has been replaced by RCDIR and RCUSR
602004 The CNDIR JSYS has been replaced by ACCES
602005 Illegal page state or state transition
602006 Requested physical page is unavailable
602007 Requested physical page contains errors
602010 Cannot delete directory; file still mapped
602011 Cannot delete directory file in this manner
602012 Account string does not match
602013 Invalid function code
602014 Area of code too large to test
602015 UTEST facility in use by another process
602016 Invalid DTE-20 number
602017 Invalid byte size
602020 Invalid network file name
602021 No more logical links available
602022 Invalid object
602023 Invalid task name
602024 Object is already defined
602025 Invalid network operation
602026 Link aborted
602027 String exceeds 16 bytes
602030 Line is not active
602031 Invalid protocol version number
602032 Insufficient system resources (no resident free space)
602033 Invalid unit number
602035 Invalid CMRTY pointer
602036 Invalid CMBFP pointer
602037 Invalid CMPTR pointer
602040 Invalid CMABP pointer
602041 Invalid default string pointer
602042 Invalid help message pointer
602043 Invalid byte pointer in function block
602044 Ambiguous
602045 Not a switch - does not begin with slash
602046 Does not match switch or keyword
602047 Null switch or keyword given
602050 Invalid guide word
602051 Not confirmed
602052 Invalid character in number
602053 Invalid device terminator
602054 Not a quoted string - quote missi ng at beginning or end
602055 Does not match token
602056 Does not match directory or user name
602057 Comma not given
602060 Illegal to request multiple specifications for the same

attribute
602061 Attribute value is required
602062 Attribute does not take a value
602063 Unit is write-locked
602064 GTJFN input buffer is empty
602065 Invalid attribute for this device
602077 Remark exceeds 39 characters
602100 Directory still contains subdirectory
602101 Request exceeds superior directory working quota
602102 Request exceeds superior directory permanent quota
602103 Request exceeds superior directory subdirectory quota
602104 Invalid user group
602105 Account validation data base file not completely closed
602106 Cannot get a JFN for <SYSTEM>ACCOUNTS-TABLE.BIN
602107 Account validation data base file too long
602110 Cannot get an OFN for <SYSTEM >ACCOUNTS-TABLE.BIN
602111 Invalid account

A-12

•

•

•

•

•

•

•

•

•

•

VACCXl
USGXOl
BOTX04
NODXOl
USGX02
CRDil 7

ENQX23
ENQX22
DCNX2
ABRKXl
USGX03
IPCF35
VACCX2
CRDI18
CRDI19
BOTX05
CRDI20
COMX18
COMX19
CRDI21
ACESX7
CRDI22

CRDI23
STRX07
STRX08
CRDI24
ATSXOl
ATSX02
ATSX03
ATSX04
ATSX05
ATSX06
ATSX07
ATSX08
ATSX09
ATSXlO

ATSXll
ATSX12
ATSX13
ATSX14
ATSX15
PMCLX4
ATSX16
ATSX17
FRKHX8
ARGX20
ARGX21
ARGX22
ATSX18
ATSX19
A'I'SX20
ARGX23
ARGX24
MSTX35
DCNX13
DCNX14
DCNX15
GJFX50
KDPXOl
NODX02
NODX03

ERROR CODES AND MESSAGE STRINGS

602112 Account string e x ceeds 39 characters
602113 Invalid USAGE entry type code
602114 Byte count is not positive
602115 Node name exceeds 6 characters
602116 Item not found in argument list
602117 Illegal to create non-files-only subdirectory under

files-only directory
602120 Mismatched mask block lengths
602121 Invalid mask block length
602122 Interrupt message must be read first
602123 Address break not available on this system
602124 Default item not allowed
602125 Invalid IPCF quota
602126 Account has expired
602127 Illegal to delete logged-in directory
602130 Illegal to delete connected directory
602132 Protocol initialization failed
602133 WHEEL, OPERATOR, or requested capability req u ired
602134 Invalid character in node name
602135 Too many characters in node name
602136 Working space insufficient for current allocation
602137 Directory is "files-only" and cannot be accessed
602140 Subdirectory quota insufficient for existing

subdirectories
602141 Superior directory does not exist
602142 Invalid user number
602143 Invalid user name
602144 Invalid subdirectory quota
602146 Invalid mode
602147 Illegal to declare mode twice
602150 Illegal to declare mode after acquiring terminal
602151 Invalid event code
602152 Invalid function code for channel assignment
602153 JFN is not an ATS JFN
602154 Table length too small
602155 Table lengths must be the same
602156 Table length too large
602157 Maximum applications terminals for system already

assigned
602160 Byte count is too large
602161 Terminal not assigned to this JFN
602162 Terminal is XOFF'd
602163 Terminal has been released
602164 Terminal identifier is not assig ned
602165 No more error information
602166 Invalid Host Terminal Number
602167 Output failed -- monitor internal error
602170 Illegal to manipulate an execute-only process
602171 Invalid arithmetic trap argument
602172 Invalid LUUO trap argument
602173 Invalid flags
602174 ATS input message too long f or i nternal b uf fers
602175 Monitor internal error - ATS input messag e tr uncated
602176 Illegal to close JFN with terminal assigned
602177 Invalid section number
602200 Invalid count
602201 Too many units in structure
602202 Node not accessible
602203 Previous interrupt message outstanding
602204 No interrupt message available
602205 Invalid argument for attribute
602206 KMCll not running
602207 Line not turned off
602210 Another line already looped

A-13

GJFX51
COMX20
ATSX21
ATSX22
ATSX23
ATSX24
ATSX25
GOKERl
GOKER2
STRX09
MSTX36
MSTX37
MSTX40
ATSX26
IOX13
IOX14
IOX15
IOX16
IOX17
IOX20
IOX21
IOX22
IOX23
IOX24
IOX25
SWJFX2
IOX26
IOX27
IOX30
ARGX25
SKDXl
MREQXl
MREQX2
MREQX3
MREQX4
MREQX5
MREQX6
MREQX7
MREQX8
MREQX9
MREQlO
MREQll
MREQ12
MREQ13
MREQ14
MREQ15
MREQ16
MREQ17
MREQ18
MREQ19
MREQ20
MREQ21
DEVX6
ATSX27
ATSX28
A'I'SX29
ATSX30
ATSX31
ATSX32
ATSX33
ATSX34
ATSX35
ATSX36
DATEX7

ERROR CODES AND MESSAGE STRINGS

602211 Byte count too small
602212 Invalid node name
602213 Maximum applications terminals for job already assigned
602214 Failed to acquire applications terminal
602215 Invalid device name
602216 Invalid server name
602217 Terminal is already released
602220 Illegal function
602221 Request denied by Access Control Facility
602222 Prior structure mount required
602223 Illegal while JFNs assigned
602224 Illegal while connected to structure
602225 Invalid PSI channel number given
602226 Invalid host name
602227 Invalid segment type
602230 Invalid segment size
602231 Illegal tape format for dump mode
602232 Density specified does not match tape density
602233 Invalid tape label
602234 Illegal tape record size
602235 Tape HDRl missing
602236 Invalid tape HDRl sequence number
602237 Tape label read error
602240 Logical end of tape encountered
602241 Invalid tape format
602242 Illegal to swap ATS JFN
602243 Tape write date has not expired
602244 Tape is domestic and HDR2 is missing
602245 Tape has invalid access character
602246 Invalid class
602247 Cannot change class
602250 Request canceled by user
602251 Labeled tapes not permitted on 7-track drives
602252 Unknown density specified
602253 Unknown drive type specified
602254 Unknown label type specified
602255 Set name illegal or not specified
602256 Illegal starting-volume specification
602257 Attempt to switch to volume outside set
602260 Illegal volume identifier specified
602261 Density mismatch between request and volume
602262 Drive type mismatch between request and volume
602263 Label type mismatch between request and volume
602264 Structural error in mount message
602265 Setname mismatch between request and volume
602266 Mount refused by operator -
602267 Volume identifiers not supplied by operator
602270 Volume-identifier list missing
602271 End of volume-identifier list reached while reading
602272 Requested tape drive type not available to system
602273 Structural error in mount entry
602274 Mount requested for unknown device type
602275 Job has open JFN on device
602276 Terminal is not open
602277 Unknown error received
602300 Receive error threshold exceeded
602301 Reply threshold exceeded
602302 NAK threshold exceeded
60230~ Terminal protocol error
602304 Intervention required at terminal
602305 Powerfail
602306 Data pipe was disconnected
602307 Dialup term i nal was attached
602310 Julian day is out of range

A-14

I

•

•

•

•

•

•

•

•

•

MREQ22
ARCFX2
ARCFX3

ARCFX4
ARCFX5
ARCFX6
ARCFX7
ARCFX8
ARCFX9
ARCXlO
ARCXll
ARCX12
ARCX13
OPNX30
OPNX31
DELXll
DELX12
ARCX14
ARCX15
ARCX16
ARCX17
ARCX18

ARCX19
ARGX26
ARGX27
DIRX5
IOX31
MREQ23
MREQ24
MREQ25
LTLBLX
LTLBXl
MREQ26
METRXl
NSPXOO
NSPXOl
NSPX02
NSPX03
NSPX04
NSPX05
NSPX06
NSPX07
NSPX08
NSPX09
NSPXlO
NSPXll
NSPX12
NSPX13
NSPX14
NSPX15
NSPX16
NSPX17
NSPX18
NSPX19
NSPX20
NSPX21
NSPX22
MREQ27
MREQ28
MREQ29
MREQ30
DIAGll

ERROR CODES AND MESSAGE STRINGS

602311 Structure name not specified
602312 File already has archive status
602313 Cannot perform ARCF functions on non-multiple directory

devices
602314 File is not on-line
602315 Files not on the same device or structure
602316 File does not have archive status
602317 Invalid parameter
602320 Archive not complete
602321 File not off-line
602322 Archive prohibited
602323 Archive requested, modification prohibited
602324 Archive requested, delete prohibited
602325 Archive system request not completed
602326 File has archive status, modification is prohibited
602327 File is off-line
602330 File has archive status, delete is not permitted
602331 File has no pointer to offline storage
602332 File restore failed
602333 Migration prohibited
602334 Cannot exempt offline tile
602335 FOB incorrect format for ARCF JSYS
602336 Retrieval request cannot be fulfilled for waiting

process
602337 Migration already pending
602340 File is offline
602341 Offline expiration time cannot exceed system ma ximum
602342 Directory too large
602343 Invalid record descriptor in labeled tape
602344 Dismount refused by operator
602345 Illegal to dismount connected structure
602346 Structure not found
602347 Too many user labels
602350 Undefined record format on non-TOPS20 tape
602351 Tape mounting function disabled by installation
602352 METER% not supported on this processor
602353 Connection not accepted
602354 Resource allocation failure
602355 Destination node does not exist
602356 Node shutting down
602357 Destination process does not exist
602360 Invalid process name
602361 Destination process queue overflow
602362 Unspecified error
602363 Connection aborted by third party
602364 Link aborted by process
602365 NSP Failure - Flow control violation
602366 Too many connections to node
602367 Too many connections to destination process
602370 Access denied due to unacceptable user name or password
602371 NSP failure - invalid SERVICES field
602372 Invalid account
602373 NSP failure - invalid SEGSIZ field
602374 Process aborted, timed out, or cancelled request
602375 No path to destination node
602376 NSP failure - flow control failure
602377 NSP failure - invalid DSTADDR
602400 Disconnect confirmation
602401 NSP failure - image data field too long
602402 Structure is set IGNORED
602403 Cannot overwrite volume - first file is not expired
602404 Cannot overwrite volume - write access required
602405 Tape label format error
602406 Unit already online

A-15

DIAG12
DESXll
NSPX23
ARGX28
NPX2CL
ARGX29
ARGX30
ARGX31
DEVX7
GJFX52
GOKER3
IOX32
IOX33
XSIRXl
SIRX2
RIRXl
XSIRX2
MREQ31
SMAPXl
TTMSXl
MONX06
BOTX06
BOTX07
BOTX08
BOTX09
BOTXlO
BOTXll
BOTX12
BOTX13
BOTX14
BOTX15
BOTX16
BOTX17

BOTX18
NTMXl
COMX21
DELX13
ANTXOl
TTYX02
NSPX24
NSPX25
NSPX26
GJFX53
IOX34
IOX35
PMAPX8
SMAPX2
GJFX54

ERROR CODES AND MESSAGE STRINGS

602407 Unit not online
602410 Invalid operation for this label type
602411 Invalid NSP reason code
602412 not available on this system
602413 Two colons required on node name
602414 Invalid class share
602415 Invalid KNOB value
602416 Class Scheduler already enabled
602417 Null device name given
602420 End of tape encountered while searching for file
602421 JSYS not executed within ACJ fork
602422 Tape position is indeterminate
602423 TTY input buffer full
602424 Channel table crosses section boundary
602425 SIR JSYS invoked from non-zero section
602426 RIR JSYS incompatible with previous XSIR
602427 Level table crosses section boundary
602430 Insufficient MOUNTR resources
602431 Attempt to delete a section still shared
602432 Could not send message within timeout interval
602433 Insufficient system resources (No swappable free space)
602434 GTJFN failed for dump file
602435 OPENF failed for dump file
602436 Dump failed
602437 To -10 error on dump
602440 To -11 error on dump
602441 Failed to assign page on dump
602442 Reload failed
602443 -11 didn't power down
602444 -11 didn't power up
602445 ROM did not ACK the -10
602446 -11 boot program did not make it to -11
602447 -11 took more than 1 minute to reload. Will cause

retry
602450 Unknown BOOT error
602451 Network Management unable to complete request
602452 Node name doesn't contain an alphabetic character
602453 File is marked "Never Delete"
602454 No more network terminals available
602455 Illegal character specified
602456 Node name not assigned to a network node
602457 Illeoal DECnet node number
602460 Table of topology watchers is full
602461 Tape label filename specification exceeds 17 characters
602462 Disk structure completely full
602463 Disk structure damaged, cannot allocate space
602464 Indirect page map loop detected
602465 Indirect section map loop detected
602466 Node name not first field

TOPS-20 Version 5 A-16 April 1982

•

•

•

•

•

•

•

•

•

•

Access,
File, 3-2, 3-16
File append, 3-16
File frozen, 3-16
File read, 3-16
File restricted, 3-16
File thawed, 3-16
File unrestricted, 3-16
File write, 3-16
Page, 5-6

Access bits,
OPENF%, 3-18
PMAP%, 3-24

Accumulators, 1-3
Address,

Global, 8-6
Section-relative, 8-5

Address space, 1-5, 8-2
Address space,

Process, 1-5
Addressing,

Extended, 8-1
AIC% JSYS, 4-9, 5-4
Argument block,

GTJFN%, 3-12
Arguments,

CFORK%, 5-8
DIC%, 5-1
Get%, 5-10
JFNS%, 3-30
OPENF%, 3-16
PMAP%, 3-24, 3-25, 5-10
ROTTY%, 2-8
SIN%, 3-21
SMAP%, 3-26
SOUT%, 3-21
XRIR%, 4-14
XSIR% I 4-8

ASCII strings, 2-2, 3-20
ASCIZ pseudo-op, 2-4
ASCIZ strings, 2-2, 3-20
AT!% JSYS I 4-11

BIN% JSYS, 1-4, 3-20
BOUT% JSYS, 3-20
Byte pointer,

Standard, 2-3

Calling sequence,
Monitor calls, 1-3

CFORK% arguments, 5-8
CFORK% JSYS, 5-4, 5-6, 5-11

INDEX

Index-1

Channel,
Panic, 4-9

Channel assignments,
Interrupt, 4-4

Channel table, 4-6
Channels,

Interrupt, 4-3
Panic, 4-14

CHNTAB I 4-6
CIS% JSYS, 4-14, 5-1
Close file monitor call,

3-27
CLOSF% flag bits, 3-27
CLOSF% JSYS, 3-27
Closing a file, 3-27
Communication,

Process, 1-5
Communication facility,

Inter-process, 7-1
Control bits,

ROTTY% I 3-1
Control process, 1-5
Counter,

Program, 8-2
Creating sections, 8-10

Deadly embrace, 6-15
DEBRK% JSYS, 4-10
DEQ% functions, 6-11
DEQ% JSYS, 5-6, 6-5, 6-10
Descriptor block,

Packet, 7-5
Designator,

Destination, 3-19
Primary input, 2-3
Primary output, 2-3
Source, 3-19

Destination designator,
3-19

DIC% arguments, 5-1
DIC% JSYS, 4-14
DIR% JSYS I 4-14
Disabling interrupt system,

4-14
DTI% JSYS I 5-1

EFIW I 8-5
EIR% JSYS, 4-8, 5-4
ENQ quota, 6-3
ENQ% functions, 6-10
ENQ% JSYS, 5-6, 6-5
ENQ/ DEQ I 5-4

ENQC% flag bits, 6-13
ENQC% JSYS, 5-6, 6-5, 6-12
ERCAL, 1-4
ERJMP, 1-4
Error codes, A-1
Error returns,

Monitor calls, 1-3
ERSTR% JSYS, 1-4
Extended addressing, 8-1
Extended format indirect

word, 8-5
Extended instruction format,

8-3

FFORK % JSYS, 8-15
File,

Closing a, 3-27
Opening a, 3-15

File access, 3-2, 3-16
File append access, 3-16
File frozen access, 3-16
File indentifier, 3-3
File page mapping, 3-24
File pointer, 3-18
File read access, 3-16
File restricted access,

3-16
File section mapping, 3-26
File specification, 3-3
File specifications,

Standard, 3-4
File thawed access, 3-16
File unrestricted access,

3-16
File write access, 3-16
Files, 3-1
Flag bits,

CLOSF %, 3-27
ENQC %, 6-13
GNJFN%, 3-32
GTJFN %, 3-8, 3-12
GTSTS %, 3-28
MRECV%, 7-9
MSEND %, 7-8

Flags,
SMAP %, 3-26

Format,
Extended instruction, 8-3
Packet, 7-5

Format options,
JFNS %, 3-30
NOUT %, 2-5

Functions,
DEQ %, 6-11
ENQ %, 6-10
MUTIL %, 7-14
ROTTY %, 2-8

INDEX (CONT.)

Get % arguments, 5-10
GET % JSYS, 5-9, 5-10
GETER% JSYS, 1-4
Global address, 8-6
GNJFN % flag bits, 3-32
GNJFN % JSYS, 3-8, 3-31
GTJFN %,

Long form, 3-4, 3-11
Short form, 3-4, 3-8

GTJFN % argument block, 3-12
GTJFN % bits returned, 3-9
GTJFN % flag bits, 3-8, 3-12
GTJFN % JSYS, 3-3, 3-4
GTSTS % flag bits, 3-28
GTSTS % JSYS, 3-27

Index-2

HALTF % JSYS, 2-6, 2-7
Handle,

Section, 8-16
Handle section, 8-16

IFIW, 8-4
IIC% JSYS, 4-9, 5-4
Illegal instruction trap,

1-4
Indentifier,

File, 3-3
Inferior process, 1-5
Info,

<SYSTEM > , 7-5, 7-6
Input,

Terminal, 2-1
Input designator,

Primary, 2-3
Instruction format,

Extended, 8-3
Instruction format indirect

word, 8-4
Inter-process communication

facility, 7-1
Interrupt, 4-2
Interrupt channel

assignments, 4-4
Interrupt channels, 4-3
Interrupt conditions, 4-2
Interrupt deferred mode,

Terminal, 4-12
Interrupt dismissing, 4-10
Interrupt immediate mode,

Terminal, 4-12
Interrupt priority levels,

4-4
Interrupt processing, 4-9
Interrupt service routines,

4-5

•

•

•

•

•

•

•

•

•

•

Interrupt system,
Disabling, 4-14

Interrupts,
Terminal, 4-10

IPCF, 5-4

JFN, 3-2, 3-3
JFNS% arguments, 3-30
JFNS% format options, 3-30
JFNS% JSYS, 3-28
Job, 1-5
Job file number, 3-2, 3-3
JSYS, 1-2, 1-3
JSYS,

AIC%, 4-9, 5-4
ATI%, 4-11
BIN%, 1-4, 3-20
BOUT%, 3-20
CFORK%, 5-4, 5-6, 5-11
CIS%, 4-14, 5-1
CLOSF%, 3-27
DEBRK%, 4-10
DEQ%, 5-6, 6-5, 6-10
DIC%, 4-14
DIR%, 4-14
DTI%, 5-1
EIR%, 4-8, 5-4
ENQ%, 5-6, 6-5
ENQC%, 5-6, 6-5, 6-12
ERSTR%, 1-4
FFORK%, 8-15
GET%, 5-9, 5-10
GETER%, 1-4
GNJFN%, 3-8, 3-31
GTJFN%, 3-3, 3-4
GTSTS%, 3-27
HALTF%, 2-6, 2-7
IIC%, 4-9, 5-4
JFNS%, 3-28
KFORK%, 5-4, 5-14
MRECV%, 5-4, 7-7, 7-8
MSEND%, 5-4, 7-6, 7-7
MUTIL%, 5-4, 7-13
NIN%, 2-4
NOUT%, 2-5
OPENF%, 3-2, 3-16
PBIN%, 2-7
PBOUT%, 2-8
PMAP%, 3-19, 3-23, 3-26,

5-6, 5-10, 8-8
PSOUT%, 2-3, 2-4
ROTTY%, 2-4, 2-8
RESET%, 2-6, 2-7, 6-2
RFORK%, 8-15
RFSTS%, 5-4, 5-12
RIN%, 3-22
RIR%, 4-13

INDEX (CONT.)

Index-3

JSYS (Cont.)
ROUT%, 3-22
RSMAP %, 8-15
SAVE %, 5-10
SEVEC %, 8-15
SFORK %, 5-4, 5-12, 8-14
SIN%, 3-20
SIR%, 4-7, 5-4
SKPIR%, 4-13
SMAP %, 3-26, 8-9
SOUT%, 3-20
SSAVE %, 5-10
STIW%, 4-12
WFORK %, 5-4, 5-12
XGTPW%, 8-17
XGTRP%, 8-17
XGVEC %, 8-16
XRIR%, 4-13
XRMAP%, 8-15
XSFORK %, 8-15
XSIR%, 4-7, 4-14
XSVEC %, 8-15

KFORK% JSYS, 5-4, 5-14

LEVTAB, 4-7
Literals, 2-2
Long for m GTJFN %, 3-4

Mapping,
File page, 3-24
File section, 3-26
Page, 5-10
Process, 3-25
Proce ss section, 8-9
Section, 8-9

Monitor call,
Close file, 3-27
Section mapping, 3-26

Monitor calls, 1-3
Monitor calls calling

s eque nc e , 1-3
Monitor calls erro r r etu rns,

1-3
Monitor calls operation

code, 1-3
Monitor calls returns, 1-3
MONSYM, 1-3, 2-3
MRECV% flag bits, 7-9
MRECV% JSYS, 5-4, 7-7, 7-8
MSEND% flag bits, 7-8
MSEND% JSYS, 5-4, 7-6, 7-7
MUTIL% functions, 7-14

MUTIL% JSYS, 5-4, 7-13

NIN% JSYS, 2-4
NOUT% format options, 2-5
NOUT% JSYS, 2-5

OPENF% access bits, 3-18
OPENF% arguments, 3-16
OPENF% JSYS, 3-2, 3-16
Opening a file, 3-15
Operation code,

Monitor calls, 1-3
Output,

Terminal, 2-1
Output designator,

Primary, 2-3

Packet, 7-5
Packet data block, 7-5
Packet descriptor block,

7-5
Packet format, 7-5
Page access, 5-6
Page mapping, 5-10

File, 3-24
Page sharing, 5-6
Panic channel, 4-9
Panic channels, 4-14
PBIN% JSYS, 2-7
PBOUT % JSYS, 2-8
PC, 8-2
PID, 7-5
PMAP% access bits, 3-24
PMAP% arguments, 3-24, 3-25,

5-10
PMAP % JSYS, 3-19, 3-23,

3-26, 5-6, 5-10, 8-8
POINT pseudo-op, 2-2
Pointer,

File, 3-18
Standard byte, 2-3

. PRIIN I 2-3 I 2-8
Primary input designator,

2-3
Primary output designator,

2-3
Priority l eve l table, 4-7
Priority leve ls,

Interrupt, 4-4
.PRIOU, 2-3
Process, 1-5, 5-1
Process,

Control, 1-5

INDEX (CONT.)

Index-4

Process (Cont.)
Inferior, 1-5
Starting inferior, 5-11

Process address space, 1-5,
5-6

Process capabilities, 5-8
Process communication, 1-5,

5-3 I 5-13
Process control, 5-4
Process handle, 5-6
Process identifier, 5-6
Process mapping, 3-25
Process relationships, 5-3
Process scheduling, 5-3
Process section, 3-26
Process section mapping,

8-9
Process section unmapping,

8-11
Process status word, 5-13
Process structure, 1-5
Process unmapping, 3-25
Program counter, 8-2
Pseudo-op,

ASCIZ, 2-4
POINT I 2-2

PSOUT% JSYS, 2-3, 2-4

Quota,
Receive, 7-5
Send, 7-5

ROTTY% arguments, 2-8
ROTTY% control bits, 3-1
ROTTY% functions, 2-8
ROTTY% JSYS, 2-4, 2-8
Receive quota, 7-5
RESET% JSYS, 2-6, 2-7, 6-2
Resource lock, 6-4
Resource ownership, 6-2
Returns,

Monitor calls, 1-3
RFORK% JSYS, 8-15
RFSTS% JSYS, 5-4, 5-12
RIN% JSYS, 3-22
RIR% JSYS I 4-13
ROUT% JSYS, 3-22
RSMAP% JSYS, 8-15

SAVE% JSYS, 5-10
Section,

Handle, 8-16
Section handle, 8-16

•

•

•

•

•

•

•

•

•

Section mapping, 8-9
File, 3-26
Process, 8-9

Section mapping monitor
call, 3-26

Section unmapping,
Process, 8-11

Section-relative address,
8-5

Sections,
Creating, 8-10

Send quota, 7-5
SEVEC% JSYS, 8-15
SFORK% JSYS, 5-4, 5-12,

8-14
Sharer group, 6-14
Short form GTJFN%, 3- 4, 3-8
SIN% arguments, 3-21
SIN% JSYS, 3-20
SIR% JSYS, 4-7, 5-4
SKPIR% JSYS, 4-13
SMAP% arguments, 3-26
SMAP% flags, 3-26
SMAP% JSYS, 3-26, 8-9
Software interrupt system,

1-4, 4-1
Source designator, 3-19
SOUT% arguments, 3-21
SOUT% JSYS, 3-20
SSAVE% JSYS, 5-10
Sta ndard file

specifications, 3-4
STI W% JSYS, 4-12
Strings,

ASCII, 2-2, 3-20
ASCIZ, 2-2, 3-20

Structure,
Process , 1-5

INDEX (CONT.)

Index- 5

<SYSTEM> info, 7-5, 7-6

Table,
Channel, 4-6
Priority l e v e l, 4- 7

Terminal input, 2-1
Terminal interrupt deferred

mode, 4-12
Terminal interrupt

immediate mode, 4-12
Terminal interrupts, 4-10
Terminal output, 2-1

Unmapping,
Process, 3-25
Process section, 8-11

WFORK % JSYS, 5-4, 5-12

XGTPW% JSYS, 8-17
XGTRP % JSYS, 8-17
XGVEC % JSYS, 8-16
XHLLI, 8-7
XMOVEI, 8-6
XRIR% arguments, 4-14
XRIR% JSYS, 4-13
XRMAP % JSYS, 8-15
XSFORK% JSYS, 8-15
XSIR% arguments, 4-8
XSIR% JSYS, 4-7, 4-14
XSVEC % JSYS, 8-15

•

•

•

•

•

•

•

•

•

•

READER'S COMMENTS

TOPS-20
Monitor Calls User's Guide

AA-D859B-TM

NOTE: This form is for document comments only. DIGITAL will use comments submitted on
this form at the company's discretion. If you require a written reply and are eligible to
receive one under Software Performance Report (SPR) service, submit your com­
ments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make sugges­
tions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of reader that you most nearly represent.

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other (please specify)----------------------

Name __________________ Date __________ ~

Organization--------------- Telephone---------
Street ______________________________ _

City------------------ State ____ Zip Code ___ _
or Country

I
I
I
I
I
I
I
I

--- - -- --- -Do Not Tea< - >'old Hm and Tape----------- - - -- -- -- -- -- - - - - --- --- - -- ------- ·

"l'DD•D 111111 ;,:;;::~~:h. i ~ ~ w United States I

BUSINESS REPL V MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SOFTWARE PUBLICATIONS ---·
200 FOREST STREET MR1-2/L 12

MARLBOROUGH, MASSACHUSETTS 01752

I
I
I
I
I
I
I
I
I
I

• I
I
I

- - - - - - - - - Do Not Tear - Fold Here and Tape -'
I
I
I
I
I
I
I

•

...
:I u

•

