
OpenVMS Record Management
ServicesReferenceManual
Order Number: AA-PV6RD-TK

April 2001

This reference manual contains general information intended for use in
any OpenVMS programming language, as well as specific information
on writing programs that use OpenVMS Record Management Services
(OpenVMS RMS).

Revision/Update Information: This manual supersedes the OpenVMS
Record Management Services Reference
Manual, OpenVMS Alpha Version 7.2
and OpenVMS VAX Version 7.2

Software Version: OpenVMS Alpha Version 7.3
OpenVMS VAX Version 7.3

Compaq Computer Corporation
Houston, Texas

© 2001 Compaq Computer Corporation

Compaq, AlphaServer, VAX, VMS, the Compaq logo Registered in U.S.
Patent and Trademark Office.

Alpha, PATHWORKS, DECnet, DEC, and OpenVMS are trademarks of Compaq Information
Technologies Group, L.P. in the United States and other countries.

UNIX and X/Open are trademarks of The Open Group in the United States and other countries.

All other product names mentioned herein may be the trademarks of their respective companies.

Confidential computer software. Valid license from Compaq required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

Compaq shall not be liable for technical or editorial errors or omissions contained herein. The
information in this document is provided "as is" without warranty of any kind and is subject
to change without notice. The warranties for Compaq products are set forth in the express
limited warranty statements accompanying such products. Nothing herein should be construed as
constituting an additional warranty.

ZK4523

The Compaq OpenVMS documentation set is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface . xv

Part I OpenVMS RMS—General Information

1 Introduction to RMS

1.1 RMS Functions . 1–1
1.2 Passing Arguments to RMS . 1–3
1.2.1 Record Management Services and Control Blocks 1–3
1.2.2 Control Blocks for File Services . 1–4
1.2.3 Control Blocks for Record Services . 1–5
1.2.4 Dual Purpose of Control Blocks . 1–5

2 RMS Program Interface

2.1 RMS Run-Time Environment . 2–1
2.2 Conventions for Naming Fields . 2–2
2.3 RMS Calling Sequence . 2–4
2.4 Service Completion . 2–5
2.4.1 Illformed Calls to RMS . 2–5
2.4.2 Setting Synchronous or Asynchronous Option 2–5
2.4.3 Synchronous Completion . 2–6
2.4.4 Asynchronous Completion . 2–6
2.4.5 Status Code Testing . 2–7
2.4.6 Types of Errors . 2–8
2.5 Allowable Program Execution Modes . 2–9
2.6 Access-Mode Protected Memory . 2–9
2.7 Reserved Event Flags . 2–9
2.8 DEC Multinational Character Set . 2–10

3 Implementing RMS from C Programs

3.1 Creating, Accessing, and Deaccessing a File . 3–1
3.1.1 Example of Copying Records from One File to Another File 3–2
3.2 Program to Illustrate Record Operations . 3–5
3.3 Program to Show Index Root Levels . 3–8
3.4 Program to Illustrate Using NAML Blocks for Extended File

Specifications (Alpha Only) . 3–9
3.5 Program to Illustrate Using the RAB64 Structure 3–12

iii

Part II RMS Control Blocks

4 File Access Block (FAB)

4.1 Summary of Fields . 4–1
4.2 FAB$B_ACMODES Field . 4–3
4.3 FAB$L_ALQ Field . 4–3
4.4 FAB$B_BID Field . 4–3
4.5 FAB$B_BKS Field . 4–3
4.6 FAB$B_BLN Field . 4–4
4.7 FAB$W_BLS Field . 4–5
4.8 FAB$V_CHAN_MODE Subfield . 4–5
4.8.1 Override Value . 4–5
4.8.2 Channel Access Mode Function . 4–6
4.9 FAB$L_CTX Field . 4–6
4.10 FAB$W_DEQ Field . 4–6
4.11 FAB$L_DEV Field . 4–7
4.12 FAB$L_DNA Field . 4–9
4.13 FAB$B_DNS Field . 4–9
4.14 FAB$B_FAC Field . 4–9
4.15 FAB$L_FNA Field . 4–11
4.16 FAB$B_FNS Field . 4–12
4.17 FAB$L_FOP Field . 4–12
4.18 FAB$B_FSZ Field . 4–18
4.19 FAB$W_GBC Field . 4–18
4.20 FAB$W_IFI Field . 4–20
4.21 FAB$B_JOURNAL Field . 4–20
4.22 FAB$V_LNM_MODE Subfield . 4–21
4.23 FAB$L_MRN Field . 4–21
4.24 FAB$W_MRS Field . 4–22
4.25 FAB$L_NAM Field . 4–23
4.26 FAB$B_ORG Field . 4–24
4.27 FAB$B_RAT Field . 4–24
4.28 FAB$B_RFM Field . 4–26
4.29 FAB$B_RTV Field . 4–27
4.30 FAB$L_SDC Field . 4–27
4.31 FAB$B_SHR Field . 4–28
4.32 FAB$L_STS Field . 4–30
4.33 FAB$L_STV Field . 4–30
4.34 FAB$L_XAB Field . 4–30

5 Name Block (NAM)

5.1 Summary of Fields . 5–1
5.2 File Specification Component Descriptors . 5–3
5.3 NAM$B_BID Field . 5–4
5.4 NAM$B_BLN Field . 5–4
5.5 NAM$B_DEV and NAM$L_DEV Fields . 5–4
5.6 NAM$W_DID Field . 5–4
5.7 NAM$B_DIR and NAM$L_DIR Fields . 5–4
5.8 NAM$T_DVI Field . 5–5
5.9 NAM$L_ESA Field . 5–5
5.10 NAM$B_ESL Field . 5–5
5.11 NAM$B_ESS Field . 5–5

iv

5.12 NAM$W_FID Field . 5–5
5.13 NAM$W_FIRST_WILD_DIR Field . 5–5
5.14 NAM$L_FNB Field . 5–6
5.15 NAM$W_LONG_DIR_LEVELS Field . 5–7
5.16 NAM$B_NAME and NAM$L_NAME Fields . 5–7
5.17 NAM$B_NMC . 5–8
5.18 NAM$B_NODE and NAM$L_NODE Fields . 5–8
5.19 NAM$B_NOP Field . 5–8
5.20 NAM$L_RLF Field . 5–9
5.21 NAM$L_RSA Field . 5–10
5.22 NAM$B_RSL Field . 5–10
5.23 NAM$B_RSS Field . 5–10
5.24 NAM$B_TYPE and NAM$L_TYPE Fields . 5–10
5.25 NAM$B_VER and NAM$L_VER Fields . 5–10
5.26 NAM$L_WCC Field . 5–11

6 Long Name Block (NAML)

6.1 Using the NAM and NAML Block . 6–1
6.2 Summary of Fields . 6–2
6.3 Validating the NAML Block . 6–5
6.4 NAML$B_BID Field . 6–5
6.5 NAML$B_BLN Field . 6–5
6.6 NAML$L_FILESYS_NAME Field . 6–5
6.7 NAML$L_FILESYS_NAME_ALLOC Field . 6–5
6.8 NAML$L_FILESYS_NAME_SIZE Field . 6–6
6.9 NAML$L_INPUT_FLAGS Field . 6–6
6.10 NAML$L_LONG_DEFNAME and NAML$L_LONG_DEFNAME_SIZE

Fields . 6–6
6.11 NAML$L_LONG_DEV and NAML$L_LONG_DEV_SIZE Fields 6–6
6.12 NAML$L_LONG_DIR and NAML$L_LONG_DIR_SIZE Fields 6–7
6.13 NAML$L_LONG_EXPAND Field . 6–7
6.14 NAML$L_LONG_EXPAND_ALLOC Field . 6–7
6.15 NAML$L_LONG_EXPAND_SIZE Field . 6–7
6.16 NAML$L_LONG_FILENAME and NAML$L_LONG_FILENAME_SIZE

Fields . 6–7
6.17 NAML$L_LONG_NAME and NAML$L_LONG_NAME_SIZE Fields 6–8
6.18 NAML$L_LONG_NODE and NAML$L_LONG_NODE_SIZE Fields 6–8
6.19 NAML$L_LONG_RESULT Field . 6–8
6.20 NAML$L_LONG_RESULT_ALLOC Field . 6–9
6.21 NAML$L_LONG_RESULT_SIZE Field . 6–9
6.22 NAML$L_LONG_TYPE and NAML$L_LONG_TYPE_SIZE Fields 6–9
6.23 NAML$L_LONG_VER and NAML$L_LONG_VER_SIZE Fields 6–9
6.24 NAML$L_OUTPUT_FLAGS Field . 6–9
6.25 NAML$Q_USER_CONTEXT Field . 6–10

7 Record Access Block (RAB)

7.1 Summary of Fields . 7–1
7.2 RAB$B_BID Field . 7–2
7.3 RAB$L_BKT Field . 7–2
7.4 RAB$B_BLN Field . 7–3
7.5 RAB$L_CTX Field . 7–3
7.6 RAB$L_FAB Field . 7–3

v

7.7 RAB$W_ISI Field . 7–3
7.8 RAB$L_KBF Field . 7–3
7.9 RAB$B_KRF Field . 7–4
7.10 RAB$B_KSZ Field . 7–4
7.11 RAB$B_MBC Field . 7–7
7.12 RAB$B_MBF Field . 7–7
7.13 RAB$L_PBF Field . 7–8
7.14 RAB$B_PSZ Field . 7–8
7.15 RAB$B_RAC Field . 7–8
7.16 RAB$L_RBF Field . 7–9
7.17 RAB$W_RFA Field . 7–10
7.18 RAB$L_RHB Field . 7–10
7.19 RAB$L_ROP Field . 7–10
7.20 RAB$W_ROP_2 Field . 7–21
7.21 RAB$W_RSZ Field . 7–22
7.22 RAB$L_STS Field . 7–22
7.23 RAB$L_STV Field . 7–23
7.24 RAB$B_TMO Field . 7–23
7.25 RAB$L_UBF Field . 7–23
7.26 RAB$W_USZ Field . 7–24
7.27 RAB$L_XAB Field . 7–24

8 64-Bit Record Access Block (RAB64)

8.1 Summary of Fields . 8–1
8.2 RAB64$Q_CTX Field . 8–3
8.3 RAB64$PQ_KBF Field . 8–3
8.4 RAB64$PQ_RBF Field . 8–3
8.5 RAB64$PQ_RHB Field . 8–4
8.6 RAB64$Q_RSZ Field . 8–4
8.7 RAB64$PQ_UBF Field . 8–4
8.8 RAB64$Q_USZ Field . 8–4

9 Allocation Control XAB (XABALL)

9.1 Summary of Fields . 9–1
9.2 XAB$B_AID Fields . 9–2
9.3 XAB$B_ALN Field . 9–2
9.4 XAB$L_ALQ Field . 9–3
9.5 XAB$B_AOP Field . 9–3
9.6 XAB$B_BKZ Field . 9–4
9.7 XAB$B_BLN Field . 9–5
9.8 XAB$B_COD Field . 9–5
9.9 XAB$W_DEQ Field . 9–5
9.10 XAB$L_LOC Field . 9–5
9.11 XAB$L_NXT Field . 9–6
9.12 XAB$W_RFI Field . 9–6
9.13 XAB$W_VOL Field . 9–6

vi

10 Date and Time XAB (XABDAT)

10.1 Summary of Fields . 10–1
10.2 XAB$Q_BDT Field . 10–2
10.3 XAB$B_BLN Field . 10–2
10.4 XAB$Q_CDT Field . 10–2
10.5 XAB$B_COD Field . 10–2
10.6 XAB$Q_EDT Field . 10–2
10.7 XAB$L_NXT Field . 10–2
10.8 XAB$Q_RDT Field . 10–3
10.9 XAB$W_RVN Field . 10–3
10.10 XAB$Q_RCD Field (VAX Only) . 10–3
10.11 XAB$Q_EFF Field (VAX Only) . 10–3

11 File Header Characteristic XAB (XABFHC)

11.1 Summary of Fields . 11–1
11.2 XAB$B_ATR Field . 11–2
11.3 XAB$B_BKZ Field . 11–2
11.4 XAB$B_BLN Field . 11–3
11.5 XAB$B_COD Field . 11–3
11.6 XAB$W_DXQ Field . 11–3
11.7 XAB$L_EBK Field . 11–3
11.8 XAB$W_FFB Field . 11–3
11.9 XAB$W_GBC Field . 11–4
11.10 XAB$L_HBK Field . 11–4
11.11 XAB$B_HSZ Field . 11–4
11.12 XAB$W_LRL Field . 11–4
11.13 XAB$W_MRZ Field . 11–4
11.14 XAB$L_NXT Field . 11–5
11.15 XAB$B_RFO Field . 11–5
11.16 XAB$L_SBN Field . 11–5
11.17 XAB$W_VERLIMIT Field . 11–5

12 Item List XAB (XABITM)

12.1 Summary of Fields . 12–2
12.1.1 XAB$B_BLN Field . 12–2
12.1.2 XAB$B_COD Field . 12–2
12.1.3 XAB$L_ITEMLIST Field . 12–2
12.1.4 XAB$B_MODE Field . 12–2
12.1.5 XAB$L_NXT Field . 12–2
12.2 Network File Access Items (XAB$_NET_... and XAB$_CAP_...) 12–3
12.3 File User Characteristics Items (XAB$_UCHAR_...) 12–9
12.4 RMS Performance Monitoring (XAB$_STAT_ENABLE) 12–10
12.5 Compound Document Support (XAB$_..._SEMANTICS) 12–11
12.6 Specifying the Number of Local Buffers

(XAB$_MULTIBUFFER_COUNT) . 12–12
12.7 Expiration Date and Time Suppression . 12–12
12.7.1 XAB$_NORECORD XABITM . 12–12
12.7.2 Application . 12–13
12.8 File Length Hint (XAB$_FILE_LENGTH_HINT) . 12–13
12.9 Extended File Cache (XAB$_CACHE_OPTIONS) (Alpha Only) 12–14

vii

13 Journaling XAB (XABJNL)

14 Key Definition XAB (XABKEY)

14.1 Summary of Fields . 14–1
14.2 XAB$B_BLN Field . 14–2
14.3 XAB$B_COD Field . 14–2
14.4 XAB$L_COLNAM Field . 14–2
14.5 XAB$L_COLSIZ Field . 14–3
14.6 XAB$L_COLTBL Field . 14–3
14.7 XAB$B_DAN Field . 14–3
14.8 XAB$B_DBS Field . 14–4
14.9 XAB$W_DFL Field . 14–4
14.10 XAB$B_DTP Field . 14–4
14.11 XAB$L_DVB Field . 14–7
14.12 XAB$B_FLG Field . 14–7
14.13 XAB$B_IAN Field . 14–9
14.14 XAB$B_IBS Field . 14–10
14.15 XAB$W_IFL Field . 14–10
14.16 XAB$L_KNM Field . 14–11
14.17 XAB$B_LAN Field . 14–11
14.18 XAB$B_LVL Field . 14–11
14.19 XAB$W_MRL Field . 14–11
14.20 XAB$B_NSG Field . 14–12
14.21 XAB$B_NUL Field . 14–12
14.22 XAB$L_NXT Field . 14–12
14.23 XAB$W_POS0 Through XAB$W_POS7 Field . 14–12
14.24 XAB$B_PROLOG Field . 14–13
14.25 XAB$B_REF Field . 14–13
14.26 XAB$L_RVB Field . 14–14
14.27 XAB$B_SIZ0 Through XAB$B_SIZ7 Field . 14–14
14.28 XAB$B_TKS Field . 14–14

15 Protection XAB (XABPRO)

15.1 Summary of Fields . 15–1
15.2 XAB$L_ACLBUF Field . 15–2
15.3 XAB$L_ACLCTX Field . 15–2
15.4 XAB$W_ACLLEN Field . 15–3
15.5 XAB$W_ACLSIZ Field . 15–3
15.6 XAB$L_ACLSTS Field . 15–3
15.7 XAB$B_BLN Field . 15–4
15.8 XAB$B_COD Field . 15–4
15.9 XAB$W_GRP Field . 15–4
15.10 XAB$W_MBM Field . 15–4
15.11 XAB$B_MTACC Field . 15–4
15.12 XAB$L_NXT Field . 15–5
15.13 XAB$W_PRO Field . 15–5
15.14 XAB$B_PROT_OPT Field . 15–7
15.15 XAB$L_UIC Field . 15–7

viii

16 Revision Date and Time XAB (XABRDT)

16.1 Summary of Fields . 16–1
16.2 XAB$B_BLN Field . 16–2
16.3 XAB$B_COD Field . 16–2
16.4 XAB$L_NXT Field . 16–3
16.5 XAB$Q_RDT Field . 16–3
16.6 XAB$W_RVN Field . 16–3

17 Recovery Unit XAB (XABRU)

18 Summary XAB (XABSUM)

18.1 Summary of Fields . 18–1
18.2 XAB$B_BLN Field . 18–1
18.3 XAB$B_COD Field . 18–1
18.4 XAB$B_NOA Field . 18–2
18.5 XAB$B_NOK Field . 18–2
18.6 XAB$L_NXT Field . 18–2
18.7 XAB$W_PVN Field . 18–2

19 Terminal XAB (XABTRM)

19.1 Summary of Fields . 19–1
19.2 XAB$B_BLN Field . 19–2
19.3 XAB$B_COD Field . 19–2
19.4 XAB$L_ITMLST Field . 19–2
19.5 XAB$W_ITMLST_LEN Field . 19–2
19.6 XAB$L_NXT Field . 19–2

Part III OpenVMS RMS Services

$CLOSE . RMS–3
$CONNECT . RMS–6
$CREATE . RMS–10
$DELETE . RMS–26
$DISCONNECT . RMS–28
$DISPLAY . RMS–30
$ENTER . RMS–35
$ERASE . RMS–39
$EXTEND . RMS–46
$FIND . RMS–49
$FLUSH . RMS–56
$FREE . RMS–59
$GET . RMS–61
$NXTVOL . RMS–72
$OPEN . RMS–75
$PARSE . RMS–88
$PUT . RMS–96
$READ . RMS–103
$RELEASE . RMS–107

ix

$REMOVE . RMS–109
$RENAME . RMS–114
$REWIND . RMS–121
$SEARCH . RMS–123
$SPACE . RMS–130
$TRUNCATE . RMS–132
$UPDATE . RMS–135
$WAIT . RMS–140
$WRITE . RMS–142

A RMS Control Block Macros

$FAB . A–2
$FAB_STORE . A–4
$NAM . A–5
$NAM_STORE . A–6
$NAML . A–8
$NAML_STORE . A–9
$RAB . A–11
$RAB_STORE . A–12
$RAB64 (Alpha Only) . A–14
$RAB64_STORE (Alpha Only) . A–16
$XABALL . A–18
$XABALL_STORE . A–19
$XABDAT . A–20
$XABDAT_STORE . A–21
$XABFHC . A–22
$XABFHC_STORE . A–23
$XABITM . A–24
$XABKEY . A–25
$XABKEY_STORE . A–27
$XABPRO . A–28
$XABPRO_STORE . A–30
$XABRDT . A–31
$XABRDT_STORE . A–32
$XABSUM . A–33
$XABSUM_STORE . A–34
$XABTRM . A–35
$XABTRM_STORE . A–36

B VAX MACRO Programming Information and Examples

B.1 RMS Macros . B–1
B.1.1 Conventions for Naming RMS Macros . B–2
B.1.2 Applicable VAX MACRO Syntax Rules . B–5
B.2 Using the RMS Macros . B–6
B.2.1 Control Block Initialization Macros . B–6
B.2.2 Control Block Symbol Definition Macros . B–7
B.2.3 Control Block Store Macros . B–7

x

B.2.4 Service Macros . B–9
B.3 VAX MACRO Example Programs . B–12
B.3.1 Creating, Accessing, and Deaccessing a File . B–12
B.3.2 Example of Opening and Creating Files . B–12
B.3.3 Example of Creating a Multiple-Key Indexed File B–16
B.3.4 Processing File Specifications . B–20
B.3.5 Connecting and Disconnecting Record Streams B–23
B.3.6 Other File-Processing Operations . B–25
B.3.7 Retrieving and Inserting Records . B–27
B.3.8 Deleting Records . B–30
B.3.9 Updating Records . B–31
B.3.10 Using Block I/O . B–33
B.3.11 Mixed Block and Record I/O . B–34
B.3.12 Next Block Pointer (NBP) . B–35

Index

Examples

3–1 Use of the Create, Open, and Close Services . 3–2
3–2 Record Operations . 3–5
3–3 Displaying the Index Root for a File . 3–8
3–4 Using NAML Blocks for Extended File Specifications 3–10
3–5 Using the RAB64 Structure . 3–13
12–1 Using XABITM to Enable RMS Statistics . 12–11
B–1 Use of the $XABDAT and $XABDAT_STORE Macros B–9
B–2 Use of the Create, Open, and Close Services . B–13
B–3 Use of the Create Service for an Indexed File B–16
B–4 Wildcard Processing Using Parse and Search Services B–21
B–5 Use of the Connect Service and Multiple Keys B–24
B–6 Use of the Rename Service . B–26
B–7 Use of the Get and Put Services . B–27
B–8 Use of the Delete Service . B–30
B–9 Use of the Update Service . B–31
B–10 Use of Block I/O . B–35

Figures

2–1 Argument List Format . 2–4
12–1 Item Descriptor Data Structure . 12–1
15–1 File Protection Field . 15–6

xi

Tables

1–1 Record Management Services . 1–1
4–1 FAB Fields . 4–1
4–2 Device Characteristics . 4–8
4–3 File Processing Options . 4–12
4–4 Maximum Record Size for File Organizations and Record Formats . . . 4–22
5–1 NAM Block Fields . 5–1
5–2 NAM$L_FNB Status Bits . 5–6
6–1 NAML Fields . 6–2
7–1 RAB Fields . 7–1
7–2 Record Processing Options . 7–11
7–3 Search Option Results . 7–14
7–4 Keyed Search Combinations . 7–15
7–5 ROP_2 Record Processing Options . 7–21
8–1 RAB64 Fields . 8–1
9–1 XABALL Fields . 9–1
10–1 XABDAT Fields . 10–1
11–1 XABFHC Fields . 11–1
12–1 XABITM Fields . 12–2
12–2 XABITM Item List . 12–3
12–3 System Networking Capabilities . 12–8
12–4 File User Characteristics . 12–10
12–5 Tag Support Item Codes . 12–11
12–6 XAB$_CACHING_OPTIONS XABITM . 12–15
14–1 XABKEY Fields . 14–1
15–1 XABPRO Fields . 15–1
16–1 XABRDT Fields . 16–2
18–1 XABSUM Fields . 18–1
19–1 XABTRM Fields . 19–1
RMS–1 Close Service FAB and XAB Input Fields . RMS–4
RMS–2 Close Service FAB and XAB Output Fields . RMS–5
RMS–3 Connect Service RAB Input Fields . RMS–8
RMS–4 Connect Service RAB Output Fields . RMS–8
RMS–5 Create Service FAB and XAB Input Fields . RMS–11
RMS–6 Create Service FAB and XAB Output Fields . RMS–16
RMS–7 Create Service NAM Input Fields . RMS–17
RMS–8 Create Service NAM Output Fields . RMS–19
RMS–9 Create Service NAML Input Fields (Alpha Only) RMS–20
RMS–10 Create Service NAML Output Fields (Alpha Only) RMS–21
RMS–11 Delete Service RAB Input Fields . RMS–27
RMS–12 Delete Service RAB Output Fields . RMS–27
RMS–13 Disconnect Service RAB Input Fields . RMS–29
RMS–14 Disconnect Service RAB Output Fields . RMS–29
RMS–15 Display Service FAB Input Fields . RMS–31
RMS–16 Display Service FAB and XAB Output Fields RMS–31
RMS–17 Display Service NAM Input Fields . RMS–32

xii

RMS–18 Display Service NAM Output Fields . RMS–33
RMS–19 Display Service NAML Input Fields (Alpha Only) RMS–33
RMS–20 Display Service NAML Output Fields (Alpha Only) RMS–33
RMS–21 Enter Service FAB Input Fields . RMS–36
RMS–22 Enter Service FAB Output Fields . RMS–36
RMS–23 Enter Service NAM Input Fields . RMS–37
RMS–24 Enter Service NAM Output Field . RMS–37
RMS–25 Enter Service NAML Input Fields (Alpha Only) RMS–37
RMS–26 Enter Service NAML Output Fields (Alpha Only) RMS–38
RMS–27 Erase Service FAB Input Fields . RMS–40
RMS–28 Erase Service FAB Output Fields . RMS–40
RMS–29 Erase Service NAM Input Fields . RMS–41
RMS–30 Erase Service NAM Output Fields . RMS–41
RMS–31 Erase Service NAML Input Fields (Alpha Only) RMS–42
RMS–32 Erase Service NAML Output Fields (Alpha Only) RMS–44
RMS–33 Extend Service FAB Input Fields . RMS–47
RMS–34 Extend Service FAB Output Fields . RMS–48
RMS–35 Find Service RAB Input Fields . RMS–50
RMS–36 Find Service RAB Output Fields . RMS–52
RMS–37 Find Service RAB64 Input Fields (Alpha Only) RMS–53
RMS–38 Find Service RAB64 Output Fields (Alpha Only) RMS–54
RMS–39 Flush Service RAB Input Fields . RMS–57
RMS–40 Flush Service RAB Output Fields . RMS–57
RMS–41 Free Service RAB Input Fields . RMS–60
RMS–42 Free Service RAB Output Fields . RMS–60
RMS–43 Get Service RAB Input Fields . RMS–64
RMS–44 Get Service RAB Output Fields . RMS–68
RMS–45 Get Service RAB64 Input Fields (Alpha Only) RMS–69
RMS–46 Get Service RAB64 Output Fields (Alpha Only) RMS–70
RMS–47 Next Volume Service RAB Input Fields . RMS–73
RMS–48 Delete Service RAB Output Fields . RMS–74
RMS–49 Open Service FAB and XAB Input Fields . RMS–76
RMS–50 Open Service FAB and XAB Output Fields . RMS–79
RMS–51 Open Service NAM Input Fields . RMS–81
RMS–52 Open Service NAM Output Fields . RMS–81
RMS–53 Open Service NAML Input Fields (Alpha Only) RMS–82
RMS–54 Open Service NAML Output Fields . RMS–84
RMS–55 Parse Service FAB Input Fields . RMS–89
RMS–56 Parse Service FAB Output Fields . RMS–90
RMS–57 Parse Service NAM Input Fields . RMS–90
RMS–58 Parse Service NAM Output Fields . RMS–91
RMS–59 Parse Service NAML Input Fields (Alpha Only) RMS–92
RMS–60 Parse Service NAML Output Fields (Alpha Only) RMS–93
RMS–61 Put Service RAB Input Fields . RMS–99
RMS–62 Put Service RAB Output Fields . RMS–100
RMS–63 Put Service RAB64 Input Fields (Alpha Only) RMS–101
RMS–64 Put Service RAB64 Output Fields (Alpha Only) RMS–102

xiii

RMS–65 Read Service RAB Input Fields . RMS–104
RMS–66 Read Service RAB Output Fields . RMS–105
RMS–67 Read Service RAB64 Input Fields (Alpha Only) RMS–105
RMS–68 Read Service RAB64 Output Fields (Alpha Only) RMS–106
RMS–69 Release Service RAB Input Fields . RMS–108
RMS–70 Release Service RAB Output Fields . RMS–108
RMS–71 Remove Service FAB Input Fields . RMS–111
RMS–72 Remove Service FAB Output Fields . RMS–111
RMS–73 Remove Service NAM Input Fields . RMS–111
RMS–74 Remove Service NAM Output Fields . RMS–112
RMS–75 Remove Service NAML Input Fields (Alpha Only) RMS–112
RMS–76 Remove Service NAML Block Output Fields (Alpha Only) RMS–113
RMS–77 Rename Service FAB Input Fields . RMS–115
RMS–78 Rename Service FAB Output Fields . RMS–116
RMS–79 Rename Service NAM Input Fields . RMS–116
RMS–80 Rename Service NAM Output Fields . RMS–117
RMS–81 Rename Service NAML Input Fields (Alpha Only) RMS–117
RMS–82 Rename Service NAML Output Fields (Alpha Only) RMS–118
RMS–83 Rewind Service RAB Input Fields . RMS–122
RMS–84 Rewind Service RAB Output Fields . RMS–122
RMS–85 Search Service FAB Input Fields . RMS–124
RMS–86 Search Service FAB Block Output Fields . RMS–124
RMS–87 Search Service NAM Input Fields . RMS–125
RMS–88 Search Service NAM Output Fields . RMS–126
RMS–89 Search Service NAML Input Fields (Alpha Only) RMS–126
RMS–90 Search Service NAML Output Fields (Alpha Only) RMS–128
RMS–91 Space Service RAB Input Fields . RMS–131
RMS–92 Space Service RAB Output Fields . RMS–131
RMS–93 Truncate Service RAB Input Fields . RMS–133
RMS–94 Truncate Service RAB Output Fields . RMS–134
RMS–95 Update Service RAB Input Fields . RMS–136
RMS–96 Update Service RAB Output Fields . RMS–137
RMS–97 Update Service RAB64 Input Fields (Alpha Only) RMS–137
RMS–98 Update Service RAB64 Output Fields (Alpha Only) RMS–138
RMS–99 Wait Service FAB Input Fields . RMS–141
RMS–100 Wait Service FAB Output Field . RMS–141
RMS–101 Wait Service RAB Input Fields . RMS–141
RMS–102 Wait Service RAB Output Field . RMS–141
RMS–103 Write Service RAB Input Fields . RMS–143
RMS–104 Write Service RAB Output Fields . RMS–144
RMS–105 Write Service RAB64 Input Fields (Alpha Only) RMS–144
RMS–106 Write Service RAB64 Output Fields (Alpha Only) RMS–145
B–1 User Control Blocks . B–2
B–2 Record Management Services . B–3
B–3 File, Record, and Block I/O Processing Macros B–11

xiv

Preface

Intended Audience
This document describes OpenVMS Record Management Services (RMS) control
blocks and services for programmers.

Document Structure
This document consists of three parts and two appendixes.

• Part I contains general information in three sections:

Chapter 1 introduces the reader to RMS functions and associated control
blocks.

Chapter 2 discusses the RMS program interface that applies to using any
OpenVMS programming language.

Chapter 3 describes to advanced high-level language programmers how to
use RMS macros.

• Part II describes the RMS control blocks and their associated fields,
in Chapter 4 through Chapter 19. This information is intended for a
programmer using any programming language.

• Part III describes the record management services, including the control
block fields accessed by each service. This information is intended for a
programmer using any programming language.

• Appendix A contains the formats and associated usage notes for the
RMS control block initialization and store macros used by VAX MACRO
programmers.

• Appendix B describes the VAX MACRO programming interface, and how
to use RMS macros. This appendix also provides additional descriptions
implementing groups of record management services, together with
appropriate VAX MACRO example programs.

Related Documents
The following documents contain information related to this reference manual:

• OpenVMS Programming Concepts Manual, Volume II contains information
about calling routines on an OpenVMS system.

• The Guide to OpenVMS File Applications contains descriptions of file and
record options available to users in a task-oriented format.

• The OpenVMS Record Management Utilities Reference Manual contains
related information about RMS utilities and the File Definition Language
(FDL).

xv

• The DECnet for OpenVMS Networking Manual discusses the support of RMS
options for remote file access to non OpenVMS systems. For example, when
the remote system is a PDP-11 system running RMS-11, Prolog 3 index files
are not supported and some RMS XABKEY (key definition extended attribute
block) fields, as well as other control block fields, are not fully supported.

For additional information about Compaq OpenVMS products and services, access
the Compaq website at the following location:

http://www.openvms.compaq.com/

Reader’s Comments
Compaq welcomes your comments on this manual. Please send comments to
either of the following addresses:

Internet openvmsdoc@compaq.com

Mail Compaq Computer Corporation
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
Use the following World Wide Web address to order additional documentation:

http://www.openvms.compaq.com/

If you need help deciding which documentation best meets your needs, call
800-282-6672.

Conventions
In this manual, any reference to OpenVMS is synonymous with Compaq
OpenVMS.

VMScluster systems are now referred to as OpenVMS Cluster systems. Unless
otherwise specified, references to OpenVMS Clusters or clusters in this document
are synonymous with VMSclusters.

The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

xvi

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

| In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

bold text This typeface represents the introduction of a new term. It
also represents the name of an argument, an attribute, or a
reason.

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace text Monospace text indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xvii

Part I
OpenVMS RMS—General Information

Part I introduces the reader to general mechanisms and conventions associated
with Record Management Services (RMS). It discusses the following topics:

• Argument passing

• Control blocks

1
Introduction to RMS

This section presents an overview of the general functions available through
RMS. It also briefly describes the record management services and related control
blocks.

1.1 RMS Functions
RMS is a set of generalized services that assist application programs in processing
and managing files and their contents. OpenVMS languages may invoke these
services using appropriate macros stored in system libraries using the OpenVMS
calling standard. Record management services are system services identified by
the entry point prefix SYS$ followed by three or more characters; but the SYS
prefix is omitted in the corresponding VAX MACRO macro name. For example,
the Create service has an entry point of SYS$CREATE and a VAX MACRO macro
name of $CREATE. A complete description of each service is provided in Part III.

Table 1–1 describes the functions of each service, including the service entry point
name and its corresponding VAX MACRO macro name.

Table 1–1 Record Management Services

Service Name Macro Name Description

File Processing and File Naming Macros

SYS$CLOSE $CLOSE Terminates file processing and disconnects
all record streams previously associated
with the file

SYS$CREATE $CREATE Creates and opens a new file

SYS$DISPLAY $DISPLAY Returns the opened file’s attributes to the
application program

SYS$ENTER1 $ENTER Enters a file name into a directory

SYS$ERASE $ERASE Deletes a file and removes its directory
entry

SYS$EXTEND $EXTEND Allocates additional space to a file

SYS$OPEN $OPEN Opens an existing file and initiates file
processing

SYS$PARSE $PARSE Parses a file specification

SYS$REMOVE1 $REMOVE Removes a file name from a directory
but does not actually delete the file data;
compare this with the $ERASE macro

1This service is not supported for network operations involving file access between remote OpenVMS
systems.

(continued on next page)

Introduction to RMS 1–1

Introduction to RMS
1.1 RMS Functions

Table 1–1 (Cont.) Record Management Services

Service Name Macro Name Description

File Processing and File Naming Macros

SYS$RENAME $RENAME Assigns a new name to (renames) a file

SYS$SEARCH $SEARCH Searches a directory, or possibly multiple
directories, for a file name

Record Processing Macros

SYS$CONNECT $CONNECT Establishes a record stream by associating
a RAB with an open file

SYS$DELETE $DELETE Deletes a record from a relative or indexed
file

SYS$DISCONNECT $DISCONNECT Terminates a record stream by
disconnecting a RAB from an open file

SYS$FIND $FIND Locates the specified record, establishes
it as the current record and returns the
record’s RFA to the application program

SYS$FLUSH $FLUSH Writes (flushes) modified I/O buffers and
file attributes to the disk before closing a
file

SYS$FREE $FREE Unlocks all records previously locked by the
record stream

SYS$GET $GET Retrieves a record from a file

SYS$NXTVOL1 $NXTVOL Causes processing of a magnetic tape file to
continue to the next volume of a volume set

SYS$PUT $PUT Writes a new record to a file

SYS$RELEASE $RELEASE Unlocks a record pointed to by the contents
of the RAB$W_RFA field

SYS$REWIND $REWIND Establishes the first file record as the
current record

SYS$TRUNCATE $TRUNCATE Truncates a sequential file

SYS$UPDATE $UPDATE Deletes and rewrites (updates) an existing
file record

SYS$WAIT $WAIT Awaits the completion of an asynchronous
record operation

Block I/O Processing Macros

SYS$READ $READ Retrieves a specified number of bytes from
a file, beginning on block boundaries

SYS$SPACE $SPACE Positions forward or backward in a file to a
block boundary

SYS$WRITE $WRITE Writes a specified number of bytes to a file,
beginning on block boundaries

1This service is not supported for network operations involving file access between remote OpenVMS
systems.

Although RMS supports unit-record devices, such as terminals and printers, it
primarily provides a comprehensive software interface to mass storage devices,
such as disk and magnetic tape drives.

1–2 Introduction to RMS

Introduction to RMS
1.1 RMS Functions

RMS provides a variety of disk file organizations, record formats, and record
access modes from which you can select the appropriate processing techniques
for your application. RMS supports sequential, relative, and indexed file
organizations, and fixed-length and variable-length record formats are supported
for each file organization. (Relative and sequential files also support other record
formats.) The RMS record access modes permit you to access records sequentially,
directly by key value, directly by relative record number, or directly by record file
address (RFA). RMS also provides a means of performing block I/O operations
for users with certain performance-critical applications (such applications may
require user-defined file organizations or record formats, or both).

RMS ensures safe and efficient file sharing by providing:

• Multiple file access modes to match file sharing with file operations

• Automatic record locking in applicable file access modes that ensures data
integrity during record updates

• Optional buffer sharing to minimize I/O operations when multiple processes
access the same file

RMS also enforces the security requirements of a multiuser system with potential
multinode access by restricting file access to one or more user types and a list of
user names.

For systems that support network capabilities, RMS provides a subset of file and
record management services through the data access protocol (DAP) to remote
network nodes. Network DAP remote file operations are generally transparent to
application programs.

1.2 Passing Arguments to RMS
RMS flexibility requires application programs to pass a multitude of arguments
to RMS services for doing common operations such as file creation and file access.
To minimize the problems associated with passing numerous arguments for each
service call, the application program places the arguments in one or more data
control blocks before it invokes a record management service. The only argument
required for most services is the symbolic address of the appropriate data control
block.

1.2.1 Record Management Services and Control Blocks
Because RMS operates on files and records, its services generally belong to one of
two groups:

• File services that create and access a new file, access (open) an existing file,
extend the disk space allocated to a file, close a file, obtain file characteristics,
and perform other functions related to files

• Record services that get, find (locate), put (insert), update, and delete records,
and perform other operations not directly related to record I/O, such as
associating one or more record streams (methods of accessing records) with an
open file

To support service operations, RMS provides two types of control blocks:

• Control blocks that provide file-related arguments to file services

• Control blocks that provide record-related arguments to record services

Introduction to RMS 1–3

Introduction to RMS
1.2 Passing Arguments to RMS

1.2.2 Control Blocks for File Services
File services use a control block called the file access block (FAB). When creating a
file, the user must store arguments in the FAB that define the file characteristics,
the file specification, and certain run-time access options. When your process
opens an existing file, the FAB specifies only the file specification and the
run-time access options.

There are three categories of FAB arguments; the following list briefly introduces
each category.

• File specification arguments identify primary and default file specifications
used at run time to locate the file.

• File characteristics arguments specify the file organization, record type,
space allocation information, and other information.

• Run-time access options specify the operations that can be done by the
initiating process and the operations that can be done by sharing processes,
a variety of file-processing options, and the address (or addresses) of one or
more control blocks whose fields supplement or supersede the information in
the FAB.

The two types of optional control blocks that can supplement or supersede the
information in the FAB are the extended attribute block (XAB, pronounced ‘‘zab’’)
and the NAM or NAML block.

A XAB usually supersedes and supplements the file characteristics specified in
the associated FAB, and multiple XABs may support a single file. There are
several types of XABs, each of which is used for a different purpose. Each type of
XAB has a 6-letter mnemonic name consisting of the prefix ‘‘XAB’’ followed by a
3-letter mnemonic that relates to the XAB function. For instance, the XAB that
supplements and supersedes the file allocation information in the FAB is called
an allocation control XAB, or XABALL.

The XABs used for file operations are briefly described in the following list:

• Allocation control XAB (XABALL)—allows greater control over disk file
allocation and positioning during file allocation.

• Date and time XAB (XABDAT)—specifies date and time values for when the
files were backed up, created, and expired. It also provides the time and date
for file revisions and the revision number.

• File header characteristic XAB (XABFHC)—receives the file characteristics
information contained in the file header block.

• Item list XAB (XABITM)—provides a convenient means for using item lists to
pass information between RMS and the application program.

• Journaling XAB (XABJNL)—on VAX systems, supports file journaling
operations.

• Key definition XAB (XABKEY)—defines the key characteristics to be
associated with an indexed file.

• File protection XAB (XABPRO)—defines file protection characteristics that
specify what class of users or list of users can have certain specified access
rights. For ANSI magnetic tape files using HDR1 labels, this XAB specifies
the accessibility field character.

1–4 Introduction to RMS

Introduction to RMS
1.2 Passing Arguments to RMS

• Revision date and time XAB (XABRDT)—specifies the revision date and time
value and the revision number associated with closing a file.

• Recovery unit XAB (XABRU)—on VAX systems, supports the use of recovery
units to assure data file integrity.

• Summary XAB (XABSUM)—stores additional file characteristics associated
with an indexed file.

1.2.3 Control Blocks for Record Services
Record services use a control block known as the record access block, or RAB.
Some of the arguments the user must store in the RAB include the address of
the related FAB, the address of input and output record buffers, the type and
size of general I/O buffers, whether a file’s records will be accessed directly or
sequentially, certain tuning options, and other information.

An extended attribute block (XAB) can both supersede and supplement the
record characteristics specified in the RAB. As with a XAB that supersedes
and supplements a FAB, a XAB that supersedes and supplements a RAB has a
6-letter mnemonic name consisting of the prefix ‘‘XAB’’ followed by three letters.
Note that there are only two XAB types used for record operations, the terminal
XAB (XABTRM) and, on VAX systems only, the recovery unit XAB (XABRU).

The XABTRM defines the symbolic address and length of a user-supplied
argument list that defines the terminal operation and provides more flexibility
than using RAB fields.

See the RMS Journaling for OpenVMS Manual for details relating to the use of
the XABRU on VAX systems.

1.2.4 Dual Purpose of Control Blocks
Control blocks provide input to and output from record management services,
including the following run-time information:

• Detailed file characteristics, including file organization, record format, and
record size

• Device characteristics

• File, directory, and device identifiers

• The address (location) and length of a requested record

• Returned condition values

For this reason, certain programs specifically allocate a NAM or NAML block or
one or more XABs dedicated to receiving information returned by RMS. Typically,
such information can be examined to determine how the file should be processed.

In most cases, however, control blocks are used both to transmit and to receive
information between the application program and RMS, and should not be located
in a read-only program section.

Be sure that control block fields not currently used by a particular service have
valid default values, because future versions of RMS may use them. This applies
also to control block fields that are currently described as ‘‘ignored for DECnet for
OpenVMS operations’’ because future versions of RMS or DECnet for OpenVMS
may support those fields.

Introduction to RMS 1–5

Introduction to RMS
1.2 Passing Arguments to RMS

A name (NAM) block supplements the file specification information stored in the
related FAB. It is especially useful for locating and opening files when the file
specification is entered by an interactive user or when a file specification includes
a wildcard character or a search list logical name representing multiple files.

On Alpha systems, a long name block (NAML) can optionally take the place
of a NAM block. The NAML allows OpenVMS Alpha users to locate and use
file specifications that are longer than 255 bytes. For an extra level of file
specification defaults, RMS may apply defaults using additional NAM or NAML
blocks that contain the file specifications of related files.

1–6 Introduction to RMS

2
RMS Program Interface

This section introduces the application program interface with RMS that is
applicable to all OpenVMS languages in terms of the following:

• The run-time processing environment

• RMS symbol-naming conventions

• The calling sequence for record management services

• Allowable program execution modes

• Condition values returned by record management services

2.1 RMS Run-Time Environment
The RMS run-time processing environment consists of a set of blocks and the
run-time services. The control block fields accessed by each service specify the
appropriate file and record operations. Depending on the operation, RMS uses
one or more control blocks by referring to one or more fields as input to, or output
from, the operation.

To use RMS, you must do the following:

1. Allocate the appropriate control block, usually at assembly time or
compilation time. Control blocks must not reside in read-only storage
and should be aligned on a longword boundary to maximize efficiency.

2. Insert the appropriate values into the control block fields before you invoke
the related service.

3. Invoke the appropriate service. As part of this step, a condition value should
always be examined.

To perform advanced RMS functions, you may need to set various control block
field values at run time between the time the file is opened and when the
appropriate service is invoked.

Note that OpenVMS languages perform some of these steps transparently when a
particular language statement or macro is present in a source program.

Two fields in each control block—the block length (BLN) field and the block
identifier (BID) (or block code [COD] field in a XAB)—define the length of the
control block (in bytes) and identify the control block type, respectively. These
internal fields are always used as input arguments by the service that accesses
the control block, and must be set before the control block can be used. After the
block length and block identifier fields are established, you must treat them as
read-only fields until the control block is no longer needed.

Part II describes each control block field in detail, including its length and its
symbolic name.

RMS Program Interface 2–1

RMS Program Interface
2.1 RMS Run-Time Environment

Part III lists the calling format for each service together with the input control
block fields and the output control block fields for each service.

2.2 Conventions for Naming Fields
RMS uses mnemonics to identify control block fields. For example, the mnemonic
name for the FAB allocation quantity field is ALQ.

The mnemonic name (usually consisting of three characters) serves as a suffix
to a symbolic name that identifies the location of each control block field. You
should use the symbolic names to be sure you place values in the correct control
block fields. RMS defines each symbolic name as a constant value equal to the
offset, in bytes, from the beginning of the control block to the beginning of the
field. These field names are thus called symbolic offsets.

Symbolic offset names are defined when the appropriate VAX MACRO control
block initialization macro is used, when the appropriate VAX MACRO control
block symbol definition macro is used, and when some languages invoke RMS.
Alternatively, all control block symbolic offset names are available when you use
the VAX MACRO $FABDEF, $RABDEF, $NAMDEF, and $XAB...DEF macros in a
VAX MACRO program or procedure.

The format of the symbolic offsets consists of a 3-letter control block identifier
(FAB, NAM, XAB, or RAB), a dollar sign ($), a 1-letter indicator of the length of
the field (B, W, L, Q, or T), an underscore (_), and the field mnemonic, which is
usually three letters.

The general format of the symbolic offset is shown in the following example:

ccc$x_fff

The components of the symbolic offset format are summarized in the following
table.

Component Length Description

ccc 3 letters Identifies the type of control block: FAB, NAM,
XAB (for all XABs), or RAB.

$ 1 character Separates the control block identifier from the
field length identifier; a dollar sign ($).

x 1 letter Identifies the length of the field: B for byte, W
for word, L for longword, Q for quadword, T
for text buffer address. Symbolic length fields
are identified by the letter S in this position.
For example, the value field XAB$S_CACHE_
TMO specifies the number of bytes allocated for
defining the value of the cache timeout. See text
for exceptions.

_ 1 character Separates the field length identifier from the
field name; always an underscore (_).

fff 3 or more
letters

Identifies the mnemonic name of the field, which
is used in the VAX MACRO control block macro.
Some mnemonics contain more than three
letters; for example, symbolic offset XAB$B_
PROLOG (from XABKEY).

2–2 RMS Program Interface

RMS Program Interface
2.2 Conventions for Naming Fields

For example, the FAB field whose mnemonic is ALQ has a length of one longword
and is identified by the symbolic offset FAB$L_ALQ. The field NAM$L_RLF is a
NAM longword field whose mnemonic RLF reflects its name, the related file field.

Exceptions to the length designation are NAMW_DID, NAMW_FID, XAB$W_
RFI, and RAB$W_RFA, each of which is three words in length rather than one
word.

The length of a T field is specified by the corresponding S field; for example, the
length of the NAM$T_DVI field is specified by the symbolic value field named
NAM$S_DVI.

When a control block field contains options identified by bits, each valid bit
location has a symbolic offset name. Certain control block fields are binary
options fields consisting of bit values. For these bits in a binary options field, the
format of symbolic names resembles the format of the field names, except for the
length indicator. Instead of identifying the field length, which is always one bit,
the length field indicates whether a mask value (M) or bit offset (V) is defined
by the symbolic name, as described in the following table.

Format Description

xxx$M_fff Indicates a mask value in a binary options field, typically where
multiple bit options can be chosen. Used to set or clear bit values.

xxx$V_fff Indicates the symbolic bit offset (number of bits from the beginning of
the binary options field). Used to test bit values or to set bit values.

The xxx identifies the control block (FAB, NAM, XAB, or RAB); the $ and _ are
separator characters, and the fff defines the mnemonic for the bit option. For
example, the option CTG in the FAB file-processing options (FOP) field has a
symbolic bit offset of FAB$V_CTG and a mask value of FAB$M_CTG.

Constant (or keyword) fields can contain only a limited set of values, thus there
are no mask values or symbolic bit offsets. In some instances, the letter K is used
to denote a constant (keyword) value field in place of the letter C; otherwise, the
naming convention is the same.

Unlike a binary options field, each possible value is identified by a symbolic
constant value, in the following form:

xxx$C_fff

Note that the letter C replaces the letter M, denoting that this field is a constant
(keyword) value field, not a mask value field. For example, the file organization
(ORG) field of the FAB (FAB$B_ORG) can contain only the values FAB$C_IDX
(indexed), FAB$C_REL (relative), or FAB$C_SEQ (sequential).

When specifying control block field locations, avoid using actual byte displacement
values to identify control block field locations; instead, use the supplied symbolic
offsets. RMS control block field locations may not always be the same from
release to release; however, the symbolic offset names that identify the field
locations always identify the same fields.

RMS Program Interface 2–3

RMS Program Interface
2.3 RMS Calling Sequence

2.3 RMS Calling Sequence
RMS uses the appropriate OpenVMS standard calling sequence and conventions,
and preserves all general registers across a call, except for register 0 (R0) and
register 1 (R1). When the service completes execution, it returns control to
the calling program, passing a condition value in R0. You should analyze the
completion value to determine the success or failure of the service and to alter
the flow of execution of your program, if necessary. Where applicable, you should
use the STS field and the STV field of the appropriate control block for signaling
errors, instead of R0. For additional information about RMS completion values,
see Section 2.4.

When calling a service, you must provide an argument list to specify the
associated control block (FAB or RAB) and, optionally, any completion routines.

Note

When a service invokes an AST-level completion routine, it passes
the address of the associated control block (FAB or RAB) as the AST
argument value in the AST argument list.

The argument list sent to the service is from two to four longwords in length, as
shown in Figure 2–1. (The Rename service, however, uses a 5-longword argument
list.)

Figure 2–1 Argument List Format

Argument Count

Control Block Address

Success Completion Routine Address

Optional

ZK−0875−GE

31 8 7 0

Error Completion Routine Address

Reserved

RMS interprets the fields in the argument list as follows:

• The argument count field contains a binary value, from 1 through 3,
representing the number of arguments in the argument list. For the Rename
service only, set this value to 4.

• The control block address field contains the address of either the FAB (for file
operations) or the RAB (for record operations).

• The error completion routine address field optionally contains the address
of the entry mask of a user-written completion routine to be called if the
requested operation fails. If used, the completion routine executes as an
asynchronous system trap (AST).

2–4 RMS Program Interface

RMS Program Interface
2.3 RMS Calling Sequence

• The success completion routine address field optionally contains the address
of the entry mask of a user-written completion routine to be called if the
requested operation completes successfully. If used, the completion routine
executes as an asynchronous system trap (AST).

• The new FAB address field (not shown in Figure 2–1) contains the address of
the FAB that contains the new file name for the Rename service. This field
applies only to the Rename service.

2.4 Service Completion
This section describes various service completion scenarios. The events associated
with completing an RMS service call depend to some extent on how the user calls
the service. The user may specify either the synchronous or asynchronous option
in the control block (FAB or RAB) passed to the service, and the user may or may
not specify an AST.

2.4.1 Illformed Calls to RMS
Every RMS service call requires an interface data structure (FAB or RAB) which
is writable in caller’s mode and not currently in use for another operation. If
these requirements are not met, the call is illformed, and one of the following
errors is returned in R0:

Error Meaning

RMS$_BLN Invalid block length field (either FAB or RAB)

RMS$_BUSY User structure (FAB/RAB) still in use

RMS$_FAB FAB not writable or invalid block ID field

RMS$_RAB RAB not writable or invalid block ID field

RMS$_STR User structure (FAB/RAB) became invalid during operation

Since the FAB or RAB data structure is invalid or inaccessible, RMS will not
attempt to store the error code in the status (FAB/RAB$L_STS) field. The error
will only be returned in R0, and if an error completion AST was specified, it will
not be delivered.

Also, if the application deletes, overmaps, or alters the contents of the memory
containing the interface data structure while the service is active, the results are
unpredictable.

These illformed calls are not considered in the remaining discussion in this
section on service completion.

2.4.2 Setting Synchronous or Asynchronous Option
The ASY option in the FOP field of the FAB or the ROP field of the RAB must be
set to specify asynchronous completion. If this option is clear (the default), the
service completes synchronously.

RMS Program Interface 2–5

RMS Program Interface
2.4 Service Completion

2.4.3 Synchronous Completion
If the user chooses synchronous completion, RMS does not return control to the
application program until the I/O operation terminates. The service returns
the completion status value in R0 as well as in the status field (FAB/RAB$L_
STS). The status RMS$_SYNCH or RMS$_PENDING is never returned in the
synchronous case.

If the user specifies an AST routine to the service, the AST routine executes prior
to returning control from the service call, unless it is called from AST level or
AST delivery is disabled.1

2.4.4 Asynchronous Completion
Asynchronous completion allows the application to continue execution while
RMS completes the requested service, if the completion requires an I/O or
synchronization stall. Asynchronous completion is enabled by setting the ASY
option (FAB$V_ASY or RAB$V_ASY, as appropriate).

The called service clears the completion status field (FAB/RAB$L_STS). When the
service completes, the (nonzero) completion status is returned.

The status returned (in R0) from an asynchronous RMS service may depend
on whether the SYNCSTS option is set. The SYNCSTS option (FAB/RAB$V_
SYNCSTS) allows the application to avoid the overhead of processing a
completion AST, if the RMS service is completed before returning from the
service call.

Applications must not make assumptions about completion timing for specific
services.

The possible statuses returned in R0 and the implication each has on AST
delivery are as follows:

Status Returned Meaning

RMS$_SYNCH The operation is complete. This status is returned only if the user
specified the SYNCSTS option. The actual completion status is
stored in FAB/RAB$L_STS. No completion AST (success or failure)
is delivered.

RMS$_PENDING The operation had not completed when the RMS service call
returned.

When the requested operation completes, the actual completion
status is stored in FAB/RAB$L_STS and any requested success or
error AST will be delivered.1

Any other status The operation is complete. Any requested success or error AST has
been delivered (or is queued for delivery).1 The completion status is
stored in FAB/RAB$L_STS, which is also the service return value in
R0.

1When operating in a Compaq POSIX Threads Library environment, consult your POSIX Threads
Library documentation.

When using asynchronous completion, the application can determine that the
operation is complete by:

• Checking periodically for a nonzero status in FAB/RAB$L_STS

1 When operating in a Compaq POSIX Threads Library environment, consult your POSIX
Threads Library documentation.

2–6 RMS Program Interface

RMS Program Interface
2.4 Service Completion

• Specifying success and error AST routines

• Calling SYS$WAIT when the application has completed other work, and now
wishes to wait for the service to complete

2.4.5 Status Code Testing
In general, you may receive one of many error or success codes from an operation.
The discussion of each service in Part III includes a list of the possible condition
values that you can receive when you invoke the service.

Note

$RMSDEF gives you the names of the condition values returned by RMS.
See the OpenVMS system messages documentation for a list of all RMS
status codes.

You should test for success by checking only the low-order bit of the status code
for a true condition (bit set). The three low-order bits returned in the status code
indicate the severity of the code. The severity codes are as follows:

Severity Code Meaning

001 (1) Success (low-order bit set).

011 (3) Information (low-order bit set).

000 (0) Warning; indicates a nonstandard condition. The operation may have
performed some, but not all, of the requested function.

010 (2) Error; you must recognize that a problem exists and provide a
contingency plan in your program for such a condition.

100 (4) Severe error; normally caused by program logic errors or other
unrecoverable conditions.

The usual method of testing the completion status is to examine register 0 for
success, failure, or specific completion values. For certain completion values,
RMS returns additional information in the status value field (STV) of the control
block. The description of the codes presented in the OpenVMS system messages
documentation indicates the instances when the STV contains such information.

The STS and STV fields should be used to signal RMS errors to ensure that
the error message includes all relevant information. For the file processing
and file naming services, use the STS and STV fields of the specified FAB
(use the old FAB for the Rename service). For record processing and block I/O
processing services, use the STS and STV fields of the corresponding RAB.
(Consult Table 1–1 if you are not sure of the group to which a particular service
belongs.)

The recommended way to signal RMS errors is to provide both the STS and STV
fields of the RAB or FAB as arguments to the run-time library (RTL) routine
LIB$SIGNAL (or LIB$STOP). Certain languages provide a built-in means of
signaling errors, such as by providing a system-defined function. For a more
detailed explanation of condition signaling and invoking RTL routines, see the
OpenVMS RTL Library (LIB$) Manual.

RMS Program Interface 2–7

RMS Program Interface
2.4 Service Completion

2.4.6 Types of Errors
RMS completion status error codes generally fall into one of four groups:

• Programming errors

• Program design errors

• System environment errors

• Operator/user errors

Programming Errors
These errors are caused by incorrect programming and are usually detected
during the early stages of developing and debugging a program that uses RMS.
Typical examples are missing values for required fields, referring to a RAB
instead of a FAB, invalid address for a buffer, and so forth. This type of error
is generally self-explanatory and usually requires only a minor change to the
program.

Program Design Errors
These errors are caused by more subtle errors that may rarely occur, particularly
if asynchronous record I/O, multistreamed sharing, or shared files are involved.
These errors may occur long after a program has been in use and could require
either a major program revision or the addition of substantial error recovery code
to handle the error conditions. Record-lock errors, resource-exhaustion errors,
and record-stream-currently-active errors are typical program design errors.

System Environment Errors
These errors include hardware errors and RMS or other system software errors
that are not caused by your program. You may need to add substantial defensive
error-handling code or you may be able to run the program again without error.

Operator/User Errors
These errors include errors by the user of the program, such as not mounting
a device before running the program, or typing an invalid file specification. As
with system environment errors, you may need to add substantial defensive
error-handling code or simply reprompt the user for the correct information or
user action.

There are conditions in which completion status codes may not be returned as
expected:

• The completion status codes that apply to the Close service do not include
errors introduced by the FAB$V_SCF option and the FAB$V_SPL option.
If the request is serviced successfully, then a success completion code is
returned, even if the request is found to be in error by the job controller
process.

• The Wait service has unique errors. This service can return any status code
of the awaited operation.

• Errors associated with output operations may not necessarily be reported
as the status of a particular operation because modified I/O buffers are not
always written out immediately. Such errors are reported as the status of a
subsequent operation, which may be an input, output, or control operation.

When you submit a problem report, you should also provide a magnetic tape copy
of the file causing the error.

2–8 RMS Program Interface

RMS Program Interface
2.4 Service Completion

When using the debugger, use the debug command EXAMINE/CONDITION to
view the message corresponding to the value in R0 or the STS field or the STV
field. For example, you can view the error codes in the STS and STV fields of the
FAB at symbolic address (label) MYFAB when debugging a VAX MACRO program
by entering the following commands:

DBG> EXAMINE/CONDITION MYFAB+FAB$L_STS
DBG> EXAMINE/CONDITION MYFAB+FAB$L_STV

For additional information about the debugger, see the OpenVMS Debugger
Manual.

2.5 Allowable Program Execution Modes
Generally, RMS executes in either executive mode or executive AST mode. When
an operation is initiated, processing begins in executive mode. If device I/O
is necessary to process the request, the $QIO system service is called. RMS
specifies an executive-mode AST to signal completion. At this point, RMS exits
from executive mode. If the operation is being performed asynchronously, control
is returned to the caller; if the operation is synchronous, RMS waits for an
event flag in the access mode of the caller. When the I/O is complete, RMS
continues processing in executive AST mode. Thus, user-mode ASTs can be
serviced while a synchronous operation called from user mode is awaiting I/O
completion. However, processing in user mode during an asynchronous operation
is interrupted by RMS processing in executive AST mode when I/O completes.

RMS should not be called from kernel mode, from executive AST mode, or from
executive mode when executive-mode ASTs are disabled.

2.6 Access-Mode Protected Memory
RMS protects the following data structures and their associated I/O buffers at
EW (execute read/write):

• RMS-controlled data structures

• Process-permanent data structures

• Image-activated data structures

Previously, the data structures were protected at UREW (user read, executive
write).

The following memory protection exceptions apply to USER-mode accessors of
RMS and are protected at UREW:

• Internal RMS I/O buffers to facilitate RAB$V_LOC mode

• RMS buffers containing collated tables used for indexed files

2.7 Reserved Event Flags
RMS uses system-reserved event flags to synchronize its internal operations.
RMS reserves event flags 27, 28, 29, and 30 for possible use; in addition, event
flag 31 is used to specify a ‘‘do not care’’ event flag for asynchronous processing.

RMS Program Interface 2–9

RMS Program Interface
2.8 DEC Multinational Character Set

2.8 DEC Multinational Character Set
You can use any character in the DEC Multinational character set in RMS
records, including the key value of an indexed file. Keys are collated according to
their corresponding character code value.

For a list of characters in the DEC Multinational character set, see the OpenVMS
User’s Manual.

2–10 RMS Program Interface

3
Implementing RMS from C Programs

This section includes C programming examples illustrating the implementation
of RMS from a high-level programming interface. Each of the sample programs
illustrates the implementation of a particular programming task in the OpenVMS
environment.

From a high-level language program, you can create new files, process existing
files, extend and delete files, and read, write, update, and delete records within
files in an RMS environment.

To create and process RMS files, your program must contain calls to appropriate
record management services from your language interface with RMS. Generally,
you make these calls by using the service macros for run-time processing. When
encountered at run time, the expanded code of these macros generates a call
to the corresponding service. Each call represents a program request for a file
service, a record service, or a block I/O transfer operation.

3.1 Creating, Accessing, and Deaccessing a File
You can create, access, and deaccess a file using either the Create service or
the Open service. The Create service constructs a new file structured to the
attributes you specify in the FAB for the file, whereas the Open service makes
an existing file available for processing by your program. Both of these services
allocate the system resources needed to establish an access path to a file.
You must open or create a file to perform most file operations and any record
operations on that file. Where applicable, you must declare the type of shared
access when you create or open a file. You do this through your program interface
with RMS by selecting file access control options.

RMS provides several file-processing options for the Create service. The create-if
option requests that the file be created only if it does not exist in the specified
directory. If the file does exist in the specified directory, the existing file is opened.
The Open and Create services both establish access to the desired file, but the
Create service also allocates disk space and performs the functions related to
allocation.

When you are finished processing a file, you invoke the Close service to close the
file, disconnect all record streams associated with the file, and free all resources
allocated to the file. If you do not explicitly invoke the Close service when the
program image exits, RMS attempts an implicit close. All resources associated
with open files are returned when the files are deaccessed at image rundown
time. However, process permanent files are not implicitly closed when an image
exits.

Implementing RMS from C Programs 3–1

Implementing RMS from C Programs
3.1 Creating, Accessing, and Deaccessing a File

3.1.1 Example of Copying Records from One File to Another File
Example 3–1 illustrates the use of various services to access and copy records
from one file to another.

Example 3–1 Use of the Create, Open, and Close Services

/*
** COPYFILE.C This program copies the input file to the output file.
** It is made to resemble the MACRO example in the RMS Reference Manual.
*/
#define REC_SIZE 132
#define INPUT_NAME "INFILE"
#define OUTPUT_NAME "OUTFILE"
#define DEFAULT_NAME ".DAT"

#include <rms> /* defines for rabs and fabs */
#include <stdio> /* defins printf... */
#include <starlet> /* defines sys$open et al */

COPYFILE ()
{
struct FAB infab, outfab, *fab; /* Allocate fabs and a pointer to fab */
struct RAB inrab, outrab, *rab; /* Allocate fabs and a pointer to fab */
int lib$signal();
int stat;
char rec_buff[REC_SIZE]; /* maximum record size */

infab = cc$rms_fab; /* Make this a real FAB (bid and bln) */
infab.fab$l_fna = (char *) &INPUT_NAME; /* Primary file name: (logical) name..*/
infab.fab$b_fns = sizeof INPUT_NAME -1; /* .. and its size */
infab.fab$l_dna = (char *) &DEFAULT_NAME; /* Default name: here file type.. */
infab.fab$b_dns = sizeof DEFAULT_NAME -1; /* .. and its size */

inrab = cc$rms_rab; /* Make this a real RAB (bid and bln) */
inrab.rab$l_fab = &infab; /* Point to FAB for $CONNECT */
inrab.rab$v_rah = 1; /* Set bitVield to request read-ahead */
inrab.rab$l_ubf = rec_buff; /* Point to buffer area.. */
inrab.rab$w_usz = REC_SIZE; /* and indicate its size */

outfab = cc$rms_fab; /* Make this a real FAB (bid and bln) */
outfab.fab$v_ctg = 1; /* Allocate contigeously */
outfab.fab$v_put = 1; /* Write access (default on create) */
outfab.fab$v_nil = 1; /* No sharing (default on create) */
outfab.fab$b_rat = FAB$M_CR; /* Set option using bitMask */
outfab.fab$w_mrs = REC_SIZE;
outfab.fab$l_fna = (char *) &OUTPUT_NAME;
outfab.fab$b_fns = sizeof OUTPUT_NAME -1;
outfab.fab$l_dna = (char *) &DEFAULT_NAME;
outfab.fab$b_dns = sizeof DEFAULT_NAME -1;

outrab = cc$rms_rab;
outrab.rab$l_fab = &outfab;
outrab.rab$v_wbh = 1; /* Write Ahead */
outrab.rab$l_rbf = rec_buff; /* Same buffer address as before */

fab = &infab; /* for error handling */
stat = sys$open (fab); /* Actual open (could use &infab) */
if (stat & 1) /* $OPEN Success ? */
{

outfab.fab$l_alq = infab.fab$l_alq; /* Set proper size for output */
fab = &outfab; /* for error handling */
stat = sys$create (fab); /* Try to create the file */

}

(continued on next page)

3–2 Implementing RMS from C Programs

Implementing RMS from C Programs
3.1 Creating, Accessing, and Deaccessing a File

Example 3–1 (Cont.) Use of the Create, Open, and Close Services

if (stat & 1) /* Both open & create success ? */
{

rab = &outrab; /* for error handling */
stat = sys$connect (rab); /* get some rms internal buffers */
if (stat & 1) /* output $CONNECT Success ? */
{

rab = &inrab; /* for error handling */
stat = sys$connect (rab); /* input $CONNECT Success ? */

}
if (stat & 1) /* CONNECTs succes? then prime loop */

stat = sys$get (rab); /* setting stat for while */

while (stat & 1) /* success on record operation ? */
{

/*
** Main Code. Opened and connected files and buffer
** First $GET done and inrab is current. Copy records.
*/
outrab.rab$w_rsz = inrab.rab$w_rsz; /* set correct size */
rab = &outrab; /* error handler */
stat = sys$put (rab); /* Actual copy */
if (stat & 1) /* $PUT success? */
{

rab = &inrab; /* for error handling */
stat = sys$get (rab); /* $GET next , set stat */

}
} /* while */

/*
** Fallen through while. stat must be EOF if copy was succesful.
** if not, signal error from connect, get or put. Using stat instead
** of rab->rab$l_sts to handle (programming) error providing RAB.
*/

if (stat != RMS$_EOF)
stat = lib$signal(stat, rab->rab$l_stv);

stat = sys$close (&infab);
stat = sys$close (&outfab);
}

else
{

/* Failed to open input or output file */
stat = lib$signal(stat, fab->fab$l_stv);

}

return stat; /* Using output close stat to return */
}

This example illustrates how you can use the sequential file organization to
create a new file by copying records from an existing file. The newly created file
and the source file have variable-length records.

This example assumes that an external program has identified the input file as a
search list logical name using the equivalent of the following DCL command:

$ ASSIGN [INV]30JUN93,[INV.OLD]30JUN93 INFILE

This command directs RMS to look for the input file in directory [INV] first, and,
if it does not find the file, to look in directory [INV.OLD].

Implementing RMS from C Programs 3–3

Implementing RMS from C Programs
3.1 Creating, Accessing, and Deaccessing a File

The program also specifies the default file type .INV for the input file using this
statement:

infab.fab$l_dna = &DEFAULT_NAME; /* Default name: here file type.. */
infab.fab$b_dns = sizeof DEFAULT_NAME; /* .. and its size */

Next the program configures the RAB used for the input file. The first argument
links the RAB to the associated FAB. This is the only required argument to a
RAB. The rest of the arguments specify the read-ahead option (described in later
text) and the record buffer for the input file. The Get service uses the user record
buffer address (UBF) field and the user record buffer size (USZ) field as inputs to
specify the record buffer and the record size, respectively.

Note

When you invoke the GET service, RMS takes control of the record buffer
and may modify it. RMS returns the record size and only guarantees the
contents from where it accessed the record to the completion of the record.

The program then configures the FAB for the output file. The first argument
equates the file name to the externally defined logical name. After the program
specifies the default file type for the output file, it specifies three additional FAB
fields.

First, it specifies that RMS should allocate contiguous space for the output file by
setting the CTG bit in the FAB$L_FOP field of the FAB.

Next, the program uses a program-defined variable to store the value 132 in the
MRS field:

#define REC_SIZE 132
outfab.fab$w_mrs = REC_SIZE;

The program then specifies that each record is to be preceded by a line feed and
followed by a carriage return whenever the record is output to a line printer or
terminal:

outfab.fab$b_rat = FAB$M_CR; /* Set option using bitMask */

Because the program alternately reads and then writes each record, the input file
and the output file may share the same buffer. However, because the Put service
does not have access to the UBF and UBZ fields, the output RAB defines the
buffer using the RBF and the RSZ fields.

Note that the UBF, USZ, and RBF values are set prior to run time, but that the
RSZ value is set at run time, just prior to invocation of the Put service. This is
done because the input file contains variable-length records and the Put service
relies on the Get service to supply each record’s size by way of the RSZ field, an
INRAB output field.

The following statement from the sample program illustrates this feature:

outrab.rab$w_rsz = inrab.rab$w_rsz; /* set correct size */

The run-time processing macros for the input file consist of a $OPEN, a
$CONNECT, a $GET, and a $CLOSE macro. Because the input file already
exists, the program accesses it with a $OPEN macro. The sole argument to this
macro identifies the FAB to the Open service:

stat = SYS$OPEN (fab); /* Actual open (could use &infab) */

3–4 Implementing RMS from C Programs

Implementing RMS from C Programs
3.1 Creating, Accessing, and Deaccessing a File

Next, the program connects a record stream to the input file by calling the
Connect service and specifying INRAB as the appropriate RAB:

stat = SYS$CONNECT (rab); /* get some rms internal buffers */

Note that upon completion of each service call, the program tests the condition
value in STAT returned by the service before proceeding to the next call. If the
call fails, the program exits with the appropriate control block address in rab or
fab.

After creating the output file and establishing its record stream, the program
begins a processing loop in which the Get service reads a record from the input
file and the Put service writes the record to the output file. When all file records
are copied, as indicated by the detection of the end of the file, the main while loop
terminates.

The Close service disconnects the record stream for all RABs connected to
the specified FAB. In a multistream environment (more than one RAB can be
connected to a single FAB), a program may disconnect individual record streams
using the Disconnect service.

3.2 Program to Illustrate Record Operations
The record-processing services provide the following record operations:

• Get

• Find

• Put

• Update

• Delete

This section illustrates the use of RMS record operations from a C program as
shown in Example 3–2.

Example 3–2 Record Operations

/*
RECORD OPERATIONS

This program looks up records by key and then

* copies the record to an output file,
* deletes the record, or
* updates the record

*/

#include <rms> /* defines for rabs and fabs */
#include <stdio> /* defins printf... */
#include <string> /* defines strlen */
#include <stdlib> /* defines exit */
#include <starlet> /* defines sys$open et al */

#define INPUT_NAME "INFILE:"
#define OUTPUT_NAME "OUTFILE:"
#define RECORD_SIZE 132
#define TYPING_SIZE 100

struct FAB infab, outfab;
struct RAB inrab, outrab;

(continued on next page)

Implementing RMS from C Programs 3–5

Implementing RMS from C Programs
3.2 Program to Illustrate Record Operations

Example 3–2 (Cont.) Record Operations

error_exit (code, value)
long code;
long value;
{

void lib$signal();
lib$signal (code, value);
exit (0);

}
main ()
{

char record [RECORD_SIZE]; /* record buffer */
char key [RECORD_SIZE]; /* key buffer */
char choice [TYPING_SIZE]; /* typing buffer */
long status;

/* set up input fab */
infab = cc$rms_fab;
infab.fab$b_fac = FAB$M_GET | FAB$M_PUT | FAB$M_UPD | FAB$M_DEL;
infab.fab$b_shr = FAB$M_SHRGET | FAB$M_SHRPUT | FAB$M_SHRUPD

| FAB$M_SHRDEL; /* read/write sharing */
infab.fab$l_fna = (char *) &INPUT_NAME; /* logical name INFILE */
infab.fab$b_fns = sizeof INPUT_NAME - 1;

/* set up output fab */
outfab = cc$rms_fab;
outfab.fab$b_fac = FAB$M_PUT;
outfab.fab$l_fna = (char *) &OUTPUT_NAME; /* logical name OUTFILE */
outfab.fab$b_fns = sizeof OUTPUT_NAME - 1;
outfab.fab$w_mrs = RECORD_SIZE; /* record size */
outfab.fab$b_org = FAB$C_REL; /* relative file */
outfab.fab$b_rat = FAB$M_CR; /* implied carriage return */

/* set up input rab */
inrab = cc$rms_rab;
inrab.rab$l_fab = &infab;
inrab.rab$b_rac = RAB$C_KEY; /* key access */
inrab.rab$b_krf = 0; /* access by primary key */
inrab.rab$l_kbf = key; /* key buffer */
inrab.rab$l_ubf = record; /* record buffer */
inrab.rab$w_usz = RECORD_SIZE; /* maximum record size */

/* set up output rab */
outrab = cc$rms_rab;
outrab.rab$l_fab = &outfab;
outrab.rab$l_rbf = record; /* record buffer */

/* open files and connect streams */
status = sys$open (&infab);
if (! (status & 1))

error_exit (status, infab.fab$l_stv);
status = sys$connect (&inrab);
if (! (status & 1))

error_exit (status, inrab.rab$l_stv);
status = sys$create (&outfab);
if (! (status & 1))

error_exit (status, outfab.fab$l_stv);
status = sys$connect (&outrab);
if (! (status & 1))

error_exit (status, outrab.rab$l_stv);

(continued on next page)

3–6 Implementing RMS from C Programs

Implementing RMS from C Programs
3.2 Program to Illustrate Record Operations

Example 3–2 (Cont.) Record Operations

while (1)
{

/* get a key and a record */
printf ("Please input key value: ");
gets (key); /* get key from user */
if (feof (stdin)) /* stop on ctrl-Z */

break;
inrab.rab$b_ksz = strlen (key); /* set key length */
status = sys$get (&inrab);
if (! (status & 1))

error_exit (status, inrab.rab$l_stv);

/* display the record */
record[inrab.rab$w_rsz] = ’\0’;
printf ("Record: {%s}\n", record);

/* choose what to do */
printf ("Please choose C(opy), D(elete), or U(pdate):");
gets (choice); /* get choice from user */
if (feof (stdin)) /* stop on ctrl-Z */

break;
switch (choice[0])
{

case ’c’:
case ’C’:

/* copy the record */
outrab.rab$w_rsz = inrab.rab$w_rsz;

/* out length = in length */
status = sys$put (&outrab);
if (! (status & 1))

error_exit (status, outrab.rab$l_stv);
break;

case ’d’:
case ’D’:

/* delete */
status = sys$delete (&inrab);
if (! (status & 1))

error_exit (status, inrab.rab$l_stv);
break;

case ’u’:
case ’U’:

/* get a new record */
printf ("Please input record value: ");
gets (record); /* get record from user */
inrab.rab$w_rsz = strlen (record);

/* set record length */
status = sys$update (&inrab);
if (! (status & 1))

error_exit (status, inrab.rab$l_stv);
break;

default:
/* do nothing */
break;

}
}

(continued on next page)

Implementing RMS from C Programs 3–7

Implementing RMS from C Programs
3.2 Program to Illustrate Record Operations

Example 3–2 (Cont.) Record Operations

/* close files */
status = sys$close (&infab);
if (! (status & 1))

error_exit (status, infab.fab$l_stv);
status = sys$close (&outfab);
if (! (status & 1))

error_exit (status, outfab.fab$l_stv);
}

The program requires access to RMS.H and STDIO.H in SYS$LIBRARY to
provide RMS structure definitions and standard C input/output. The program
sets up four FABs: a FAB and a RAB for the input file and a FAB and a RAB for
the output file. The program then opens and connects the input file and creates
and connects the output file.

The main loop prompts the user for a key and then retrieves the record with that
key. It then prompts the user for a decision of what to do with the record:

• Copy the record to the output file

• Delete the record

• Update the record using new user data

The program handles all errors by signaling the error and then exiting.

3.3 Program to Show Index Root Levels
Example 3–3 shows the index root level(s) for a specified file. You can modify the
program to display more parameters, add LIB$FIND_FILE, and so forth.

To use the program, define an external DCL command and pass the filespec to
the program as a parameter.

Example 3–3 Displaying the Index Root for a File

** Show_roots.c
**
*/

#include <rms>
#include <stdio>
#define MAXKEY 10
main (int argc, char *argv[])
{
struct FAB fab;
struct XABSUM sum;
struct XABKEY xab[MAXKEY];
int i, stat, lvl, keys;

(continued on next page)

3–8 Implementing RMS from C Programs

Implementing RMS from C Programs
3.3 Program to Show Index Root Levels

Example 3–3 (Cont.) Displaying the Index Root for a File

fab = cc$rms_fab;
sum = cc$rms_xabsum;
fab.fab$b_shr = FAB$M_SHRPUT;
fab.fab$b_fac = FAB$M_GET;
fab.fab$l_fna = argv[1];
fab.fab$b_fns = STRLEN(argv[1]);
fab.fab$l_xab = ∑
stat = SYS$OPEN (&fab);
if (!(stat&1)) return stat;
if (fab.fab$b_org!=FAB$C_IDX) return RMS$_ORG;
keys = sum.xab$b_nok;
fab.fab$l_xab = &xab[0];
for (i=0; i<keys; i++)

{
/*
** Init Xab Key for each defined key
** Point previous to current except first.
*/
xab[i] = cc$rms_xabkey;
xab[i].xab$b_ref = i;
if (i) xab[i-1].xab$l_nxt = &xab[i];
}

/*
** Ask RMS to fill in the XABs hooked off the FAB.
*/
stat = SYS$DISPLAY (&fab);
if (!(stat&1)) return stat;
printf ("File %s, Root levels: %d", argv[1], xab[0].xab$b_lvl);
for (i=1; i<keys; i++) printf (", %d", xab[i].xab$b_lvl);
printf (".\n");
return stat;
}

3.4 Program to Illustrate Using NAML Blocks for Extended File
Specifications (Alpha Only)

Example 3–4 contains a sample program which uses the new NAML blocks
available beginning with OpenVMS V7.2. The NAML block is similar to the NAM
block, except that it contains long fields to allow for the extended file names and
deep directory structures supported on ODS-5 disks.

NAML blocks are only supported on Alpha platforms, and are only supported
for V7.2 and later. If you attempt to compile this sample program on the VAX
platform, you will get compiler errors indicating that the NAML symbols,
structures and offsets are not defined, similar to the following:

%CC-E-UNDECLARED, In the declaration of "primarySpec", "NAML$C_MAXRSS"
is not declared.

Although the program compiles correctly on an OpenVMS Alpha system prior to
V7.2, when you run the program you get the error:

%RMS-F-NAM, invalid NAM block or NAM block not accessible

The sample program does the following:

• Creates string buffers for resultant and expanded filenames.

• Prompts the user for a primary file specification.

Implementing RMS from C Programs 3–9

Implementing RMS from C Programs
3.4 Program to Illustrate Using NAML Blocks for Extended File Specifications (Alpha Only)

• Uses the long input buffer field of the NAML for the primary specification.

• Uses the short input buffer field of the FAB for the default specification
(providing a default of "*.*;*").

• Does a $PARSE and displays the expanded file specifications (short and long).

• Does repeated $SEARCHes (until no-more-files or failure) and displays the
resultant file specifications (short and long) each time.

The program prompts for the file specification to process, and then displays the
results.

In order for the full capabilities of the NAML block to be seen, you can set up
an ODS-5 file system, which allows files with long file names, filenames with the
extended character set, and deep directory structures (greater than 8 levels) to be
created.

Example 3–4 Using NAML Blocks for Extended File Specifications

/*--
*
* NAML_EXAMPLE.C
*
* This sample program uses NAML blocks (short and long
* buffers) with RMS $PARSE and $SEARCH functions to
* demonstrate extended file specification capabilities.
*
* NAML blocks are supported only on Alpha platforms.
*
* Notes:
* The no-short-upcase NAML bit is set, so the short expanded
* specification will not be upcased.
*
---/

#include <string> // for strlen, etc.
#include <ssdef> // for SS$_NORMAL
#include <stdio> // for printf, etc.
#include <starlet> // sys$parse, sys$search

// function prototypes
#include <rms> // NAML and FAB structure definitions

int main()
{

int vms_status;
int primarySpecLength = 0;
char primarySpec[NAML$C_MAXRSS+2]; // (Include room for LF and \0.)
char defaultSpec[] = "*.*;*";

/*
* Create the string buffers for the resultant and expanded strings
*/

char Naml_Shrt_Esa[NAM$C_MAXRSS],
Naml_Long_Esa[NAML$C_MAXRSS],
Naml_Shrt_Rsa[NAM$C_MAXRSS],
Naml_Long_Rsa[NAML$C_MAXRSS];

/*
* Declare the FAB and NAML structures
*/

(continued on next page)

3–10 Implementing RMS from C Programs

Implementing RMS from C Programs
3.4 Program to Illustrate Using NAML Blocks for Extended File Specifications (Alpha Only)

Example 3–4 (Cont.) Using NAML Blocks for Extended File Specifications

struct FAB fab;
struct namldef naml;

/*
* Initialize the FAB and NAML using the default structures,
* then set them up for our use.
*/

fab = cc$rms_fab;
naml = cc$rms_naml;

/*
* To indicate that the NAML fields should be used rather
* than the FAB fields for the filename, we put a -1 in
* the FNA field, and a zero in the FNS field.
*/

fab.fab$l_fna = (char *)-1;
fab.fab$b_fns = 0;

fab.fab$l_dna = defaultSpec;
fab.fab$b_dns = strlen(defaultSpec);

fab.fab$l_naml = &naml; // tie the NAML to the FAB

naml.naml$l_long_filename = primarySpec;
naml.naml$l_esa = Naml_Shrt_Esa;
naml.naml$b_ess = sizeof (Naml_Shrt_Esa);
naml.naml$l_rsa = Naml_Shrt_Rsa;
naml.naml$b_rss = sizeof (Naml_Shrt_Rsa);

naml.naml$l_long_expand = Naml_Long_Esa;
naml.naml$l_long_expand_alloc = sizeof (Naml_Long_Esa);
naml.naml$l_long_result = Naml_Long_Rsa;
naml.naml$l_long_result_alloc = sizeof (Naml_Long_Rsa);

/*
* Set NAML options flags
*/

naml.naml$v_synchk = 0; // Have $PARSE do directory
// existence check

naml.naml$v_no_short_upcase = 1; // Don’t upcase short expanded spec.

/*
* Prompt for the input file specification. A blank
* response will use the default filespec of *.*;*
*/

printf("File specification to be scanned: ");
gets(primarySpec);

naml.naml$l_long_filename_size = strlen(primarySpec);

/*
* Parse the given file specification. This sets up for
* the $SEARCH loop. On success, print out the expanded
* file specifications.
*/

printf ("\n\nParsing: %s\n", primarySpec);
vms_status = sys$parse (&fab);
if (!(vms_status & 1)) // return any error
{

return vms_status;
}

(continued on next page)

Implementing RMS from C Programs 3–11

Implementing RMS from C Programs
3.4 Program to Illustrate Using NAML Blocks for Extended File Specifications (Alpha Only)

Example 3–4 (Cont.) Using NAML Blocks for Extended File Specifications

naml.naml$l_esa[naml.naml$b_esl] = ’\0’; // terminate the string
printf (" (Short) Expanded Specification: ’%s’\n",

naml.naml$l_esa);

naml.naml$l_long_expand[naml.naml$l_long_expand_size] = ’\0’;
printf (" (Long) Expanded Specification: ’%s’\n",

naml.naml$l_long_expand);

/*
* Go into the $SEARCH loop. We loop until the
* $SEARCH fails or returns No More Files (NMF)
* For each successful $SEARCH, print out the
* resultant file names from the NAML block.
*/

printf ("\n\nSearching for files matching: %s\n", primarySpec);
while (1)
{

vms_status = sys$search (&fab);
if (!(vms_status & 1)) // handle any error
{

if (vms_status == RMS$_NMF)
return SS$_NORMAL;

else
return vms_status;

}

printf (" (Short) Resultant Specification: ’%-*.*s’\n",
naml.naml$b_rsl,
naml.naml$b_rsl,
naml.naml$l_rsa);

printf (" (Long) Resultant Specification: ’%-*.*s’\n",
naml.naml$l_long_result_size,
naml.naml$l_long_result_size,
naml.naml$l_long_result);

} // end of while loop

} // end of function main()

3.5 Program to Illustrate Using the RAB64 Structure
This section contains an example program, written in C, which demonstrates the
use of the RAB64 structure. The RAB64 structure has the same fields as the
RAB structure, but contains additional quadword fields to allow addressing of
the 64-bit Alpha address space. The RAB64 structure is only supported on Alpha
platforms beginning with OpenVMS V7.0. This program does the following:

• Declares RMS structures

• Declares 64-bit pointers and values for allocating Alpha P2 space.

• Opens a given file

• Allocates Alpha P2 space for a record buffer.

• Sets up the RAB64 structure to use the returned Alpha P2 address space.

• Connects a record stream using the RAB64

• Reads the first record from the file for illustration purposes

3–12 Implementing RMS from C Programs

Implementing RMS from C Programs
3.5 Program to Illustrate Using the RAB64 Structure

• Closes the file and deallocates the P2 memory.

Prior to OpenVMS V7.2, the cc$rms_rab64 initializer was not available. The
example program sets up the RAB64 structure explicitly by zeroing the structure
and setting the block-id and block length fields. As of OpenVMS V7.2, this
explicit set up can be replaced with the assignment:

x_rab = cc$rms_rab64;

Example 3–5 Using the RAB64 Structure

/*
* RAB64_EXAMPLE.C
*
* Description:
* This sample program uses the 64-bit pointers in the new RAB64
* structure to allow addressing of the full 64-bit Alpha
* address space.
*
* NOTE:
* Prior to V7.2, the cc$rms_rab64 initializer was not available
* and the RAB64 structure had to be initialized manually. See
* the comment in the code for details.
*
*/

#define __NEW_STARLET

#include <far_pointers.h> // basic set of 64-bit pointer types
#include <rms.h> // both RAB and RAB64 structures
#include <lib$routines.h> // for lib$signal
#include <starlet.h> // for RMS function prototypes
#include <stdio.h> // for printf, gets, etc.
#include <string.h> // for strlen
#include <ssdef.h> // for status codes

#include <stdlib.h> // for memset

/*
* Start of code
*/

int main()
{

int status;

/*
* Define the structures for RMS
*/

struct FAB fab;
struct RAB64 x_rab;

char file_name[NAM$C_MAXRSS];

/*
* Set up variables for allocating a record buffer
* from 64-bit P2 address space.
*/

VOID_PQ p2_va;
CHAR_PQ record_buffer;

(continued on next page)

Implementing RMS from C Programs 3–13

Implementing RMS from C Programs
3.5 Program to Illustrate Using the RAB64 Structure

Example 3–5 (Cont.) Using the RAB64 Structure

__int64 num_bytes = 1024;
__int64 num_pagelets = (num_bytes / 512);

/*
* Get the filename
*/

printf("Enter filename to read: ");
gets(file_name);

/*
* Set up the FAB using the default structures, then
* set it up for our use.
*/

fab = cc$rms_fab;

fab.fab$l_fna = file_name;
fab.fab$b_fns = strlen(file_name);
fab.fab$b_org = FAB$C_SEQ;
fab.fab$b_fac = FAB$M_GET;
fab.fab$b_shr = FAB$M_NIL;

/*
* Open the file
*/

status = sys$open(&fab);
if (!(status & 1))
{

return status;
}
printf("File %s was opened.\n", file_name);

/*
* Dynamically allocate record buffer in 64-bit P2 space
*/

status = LIB$GET_VM_PAGE_64 (&num_pagelets, &p2_va);
if (!(status & 1))
{

return status;
}
printf("Allocated %Ld pagelets of P2 space starting at %LX\n",num_pagelets,p2_va);

record_buffer = p2_va;

/*
* Initialize rab64
*
* NOTE: Prior to OpenVMS V7.2, the cc$rms_rab64 initializer
* was not available. As of V7.2, the following memset, block-id
* and length assignments may be replaced with the assignment:
*
* x_rab = cc$rms_rab64;
*
*/

memset(&x_rab,0,RAB$C_BLN64); // requires stdlib.h
x_rab.rab64$b_bid = RAB$C_BID; // block id
x_rab.rab64$b_bln = RAB$C_BLN64; // block length

(continued on next page)

3–14 Implementing RMS from C Programs

Implementing RMS from C Programs
3.5 Program to Illustrate Using the RAB64 Structure

Example 3–5 (Cont.) Using the RAB64 Structure

x_rab.rab64$l_fab = &fab; // tie the FAB to the RAB
x_rab.rab64$b_rac = RAB$C_SEQ;
x_rab.rab64$l_ubf = (char *) -1; // -1 says use the PQ field
x_rab.rab64$pq_ubf = record_buffer;
x_rab.rab64$w_usz = 0; // 0 says use the Q field
x_rab.rab64$q_usz = num_bytes;

/*
* Connect our record stream
*/

status = sys$connect((struct _rabdef *) &x_rab);
if (!(status & 1))
{

return status;
}
printf("Record stream was connected.\n");

/*
* Retrieve first record in file for illustration purposes
*/

status = sys$get ((struct _rabdef *) &x_rab);
if (!(status & 1))
{

/*
* Signal the error rather than just returning
* it so we can include the STV field from
* the RAB
*/

lib$signal (status, x_rab.rab64$l_stv);
}

/*
* Add null byte to terminate record in record buffer
*/

record_buffer[x_rab.rab64$q_rsz] = 0;
printf ("Record = %s\n",record_buffer);

/*
* Close the file, doing an implicit disconnect of
* the record stream.
*/

status = sys$close (&fab);
if (!(status & 1))
{

return status;
}
printf("File was closed.\n");

/*
* Deallocate record buffer in 64-bit P2 space
*/

status = LIB$FREE_VM_PAGE_64 (&num_pagelets, &p2_va);
if (!(status & 1))
{

return status;
}
printf("Deallocated %Ld pagelets of P2 space starting at %LX\n",num_pagelets,p2_va);

(continued on next page)

Implementing RMS from C Programs 3–15

Implementing RMS from C Programs
3.5 Program to Illustrate Using the RAB64 Structure

Example 3–5 (Cont.) Using the RAB64 Structure

return SS$_NORMAL;
}

3–16 Implementing RMS from C Programs

Part II
RMS Control Blocks

Part II describes each RMS control block, including a complete listing and
description of each field.

4
File Access Block (FAB)

The file access block (FAB) defines file characteristics, file access, and certain
run-time options. It also indicates whether other control blocks are associated
with the file.

4.1 Summary of Fields
Many FAB fields are directly equivalent to certain File Definition Language
(FDL) attributes. For information about FDL, refer to the OpenVMS Record
Management Utilities Reference Manual.

The symbolic offset, the size, the FDL equivalent, and a brief description of each
FAB field are presented in Table 4–1.

Table 4–1 FAB Fields

Field Offset
Size
(Bytes) FDL Equivalent Description

FAB$B_ACMODES 1 None File access modes

FAB$L_ALQ 4 FILE ALLOCATION Allocation quantity
(blocks)

FAB$B_BID1 1 None Block identifier

FAB$B_BKS 1 FILE BUCKET_SIZE Bucket size

FAB$B_BLN1 1 None Block length

FAB$W_BLS 2 FILE MT_BLOCK_SIZE Magnetic tape block size

FAB$V_CHAN_MODE2 – None Channel access mode
protection

FAB$L_CTX 4 FILE CONTEXT Context

FAB$W_DEQ 2 FILE EXTENSION Default file extension
quantity

FAB$L_DEV3 4 None Device characteristics

FAB$L_DNA 4 FILE DEFAULT_NAME Default file specification
string address

FAB$B_DNS 1 FILE DEFAULT_NAME Default file specification
string size

FAB$B_FAC 1 ACCESS3 File access

FAB$L_FNA 4 FILE NAME File specification string
address

1This field is statically initialized by the $FAB macro to identify this control block as a FAB.
2This is a 2-bit subfield.
3This field contains options; corresponding FDL equivalents are listed in the description of the field.

(continued on next page)

File Access Block (FAB) 4–1

File Access Block (FAB)
4.1 Summary of Fields

Table 4–1 (Cont.) FAB Fields

Field Offset
Size
(Bytes) FDL Equivalent Description

FAB$B_FNS 1 FILE NAME File specification string
size

FAB$L_FOP 4 FILE3 File-processing options

FAB$B_FSZ 1 RECORD CONTROL_FIELD_SIZE Fixed-length control
area size

FAB$W_GBC 2 FILE GLOBAL_BUFFER_COUNT Global buffer count

FAB$W_IFI4 2 None Internal file identifier

FAB$B_JOURNAL 1 None Journal flags status

FAB$V_LNM_MODE -2 None Logical name translation
access mode

FAB$L_MRN 4 FILE MAX_RECORD_NUMBER Maximum record
number

FAB$W_MRS 2 RECORD SIZE Maximum record size

FAB$L_NAM5 4 None Name (NAM) or long
name (NAML) block
address

FAB$B_ORG 1 FILE ORGANIZATION File organization

FAB$B_RAT 1 RECORD3 Record attributes

FAB$B_RFM 1 RECORD FORMAT Record format

FAB$B_RTV 1 FILE WINDOW_SIZE Retrieval window size

FAB$L_SDC4 4 None Secondary device
characteristics

FAB$B_SHR 1 SHARING3 File sharing

FAB$L_STS4 4 None Completion status code

FAB$L_STV4 4 None Status values

FAB$L_XAB 4 None Extended attribute block
address

2This is a 2-bit subfield.
3This field contains options; corresponding FDL equivalents are listed in the description of the field.
4This field cannot be initialized by the $FAB macro.
5FAB$L_NAML is available as an alternative definition for C programmers to allow for appropriate type checking of a
NAML block.

Each FAB field is described in this section. Unless indicated otherwise, each
field is supported for DECnet for OpenVMS operations on files at the remote
OpenVMS systems. For information about the support of RMS options for remote
file access to other systems, see the DECnet for OpenVMS Networking Manual.

To use a FAB, you must allocate process storage and specify the character string
for the primary file specification and, optionally, the default file specification. The
FAB$L_FNA and FAB$B_FNS fields define the primary file specification to RMS;
the FAB$L_DNA and FAB$B_DNS fields define the default file specification to
RMS.

4–2 File Access Block (FAB)

File Access Block (FAB)
4.2 FAB$B_ACMODES Field

4.2 FAB$B_ACMODES Field
This field comprises four 2-bit subfields, two of which are unsupported. The
supported subfields are the FAB$V_CHAN_MODE subfield and the FAB$V_
LNM_MODE subfield (see Section 4.22).

4.3 FAB$L_ALQ Field
The allocation quantity (ALQ) field defines the number of blocks to be initially
allocated to a disk file when it is created (using the Create service) or to be added
to the file when it is explicitly extended (using the Extend service). This field
corresponds to the FDL attribute FILE ALLOCATION.

The field takes numeric values in the range of 0 through 4,294,967,295, although
the maximum value depends on the number of blocks available on the disk.
There are several rules concerning the use of the value 0:

• If you specify 0 blocks when you create a sequential file, RMS allocates no
initial space for the file.

• If you specify 0 blocks for relative or indexed files, RMS allocates the
minimum number of blocks needed to support the file organization. For
example, if you specify 0 blocks when you create an indexed file, RMS
allocates the number of blocks necessary to contain specified key and area
definitions as the initial extent.

• A value of 0 blocks is meaningless when you intend to extend a file.

When RMS opens an existing file, it puts the highest virtual block number
currently allocated to the file in the FAB$L_ALQ field.

For the Extend service, this field specifies the number of blocks to be added to
the file. Note that RMS uses this as the extension value when a process extends
a file using the Extend service, unless the process changes the value before it
invokes the Extend service.

When you use the Create and Extend services, the allocation quantity value is
rounded up to the next disk cluster boundary; the number of blocks actually
allocated is returned in the FAB$L_ALQ field.

Note that the function of the FAB$L_ALQ field changes if allocation control
XABs are used when you create or extend a file. The description of the XABALL
control block (see Chapter 9) discusses how allocation control XABs affect the
FAB$L_ALQ field.

4.4 FAB$B_BID Field
The block identifier (BID) field is a static field that identifies a control block as
a FAB. Once set, this field should not be altered unless the control block is no
longer needed. This field must be initialized to the symbolic value FAB$C_BID
(this is done by the $FAB macro).

4.5 FAB$B_BKS Field
The bucket size (BKS) field is used only for relative or indexed files to specify the
number of blocks in each bucket of the file.

File Access Block (FAB) 4–3

File Access Block (FAB)
4.5 FAB$B_BKS Field

This field contains a numeric value in the range of 0 to 63. If you do not specify
a value or specify a value of 0, RMS uses a default of the minimum number of
blocks needed to contain a single record, or a minimum of two records for indexed
files. If the file will be processed by RMS-11, the bucket size must be less than or
equal to 32 blocks.

When calculating the bucket size, you must consider the control information
(overhead) associated with each bucket. Also, certain record types contain control
bytes; thus, the number of records per bucket multiplied by the number of control
bytes per record equals the number of record overhead bytes per bucket. See the
Guide to OpenVMS File Applications for more information.

Before specifying a bucket size, you must be aware of the relationship between
bucket size and record size. You must also consider any record control bytes
(overhead) required for the type of record chosen. Because RMS does not allow
records to cross bucket boundaries, you must ensure that the number of blocks
per bucket conforms to formulas designed to handle one of the following:

• Relative files with fixed-length records

• Relative files with variable-length records

• Relative files with VFC (variable with fixed control) records

• Indexed files with fixed-length records

• Indexed files with variable-length records

You can use the Edit/FDL utility to determine the optimum bucket size. Note
that if an allocation control XAB is specified, the value specified in the XAB$B_
BKZ field supersedes the value specified in the FAB$B_BKS field. When multiple
allocation control XABs are specified, the largest value in any XAB$B_BKZ
field supersedes the value in the FAB$B_BKS field. Refer to Section 9.6 for
information about the XAB$B_BKZ field.

When you open an existing relative or indexed file, RMS sets the FAB$B_BKS
field to the defined size of the largest bucket size in the file. However, when you
create a new relative or indexed file, set the FAB$B_BKS field before you invoke
the Create service rather than use the default.

With indexed files, note that if the FAB$B_BKS field is not specified and a
maximum record size (FAB$W_MRS field) is specified, then RMS selects a bucket
size that allows at least one maximum size record to fit. Generally, performance
for record insertion and sequential retrieval on the primary key improves if at
least six or seven data records fit into a primary data bucket. If either the bucket
size or the disk cluster size is other than one block, use a default extension
quantity (FAB$W_DEQ) that is the least common multiple of the bucket size and
cluster size to avoid allocated but unused blocks within the file.

This field corresponds to the FDL attribute FILE BUCKET_SIZE.

4.6 FAB$B_BLN Field
The block length (BLN) field is a static field that defines the length of the FAB.
Once set, this field should not be altered unless the control block is no longer
needed. This field must be initialized to the symbolic value FAB$C_BLN (this is
done by the $FAB macro).

4–4 File Access Block (FAB)

File Access Block (FAB)
4.7 FAB$W_BLS Field

4.7 FAB$W_BLS Field
RMS uses the block size (BLS) field as input for nondisk files. The BLS field
usually defines the size, in bytes, of the blocks on a magnetic tape. Note that for
some devices, this value must be an even number. This field corresponds to the
FDL attribute FILE MT_BLOCK_SIZE.

The FAB$W_BLS field contains a numeric value in the range of 20 through
65,535 for ANSI-formatted tapes and 14 through 65,532 for foreign tapes.
(Foreign tapes are those that are not in the standard ANSI format used by
OpenVMS operating systems, and must be mounted using the DCL command
MOUNT/FOREIGN.) If no value or a value of 0 is specified, the default selected
when the volume was mounted is used.

When you create a magnetic tape file, you can set the FAB$W_BLS field before
you invoke the Create service. In all other cases, RMS ignores this field. When
you open an existing sequential file with an Open service, RMS returns the device
buffer size. For terminals, this field defines the WIDTH setting; for mailboxes,
this field defines the maximum message size.

For compatibility with RMS-11, RMS rounds off the block size for an ANSI-
formatted tape to the next highest multiple of 4. For example, if you set the block
length to 38, RMS sets it to 40. The block size of a foreign tape is not rounded off
by RMS.

To create a magnetic tape for interchange with Compaq operating systems other
than OpenVMS systems, consult the documentation for the recipient system to
identify possible limitations on block size. ANSI standards require that the block
size be less than or equal to 2048 bytes.

4.8 FAB$V_CHAN_MODE Subfield
The channel access mode protection (FAB$V_CHAN_MODE) subfield is part of
the FAB$B_ACMODES field. The 2-bit FAB$V_CHAN_MODE subfield provides
one of two functions:

• For standard processing, where neither the FAB$V_NFS nor FAB$V_UFO
option is selected in the FAB$L_FOP field, the user program can use the
FAB$V_CHAN_MODE subfield to override the access-mode protected files
function.

• When the user program specifies a nonstandard processing option by selecting
either non-file-structured operations (FAB$V_NFS) or a user-file-open
operation (FAB$V_UFO), RMS uses the FAB$V_CHAN_MODE subfield to
assign the calling program’s access mode to the I/O channel.

4.8.1 Override Value
The access-mode protected files function ensures that accessors who are operating
in an outer access mode cannot access files opened or created by inner-mode
accessors. Access-mode protection includes memory and data structures that are
interrelated to access-mode protected files.

When the user program seeks to override access-mode protection, it must specify
the value PSL$C_USER in the FAB$V_FAB$V_CHAN_MODE subfield.

File Access Block (FAB) 4–5

File Access Block (FAB)
4.8 FAB$V_CHAN_MODE Subfield

4.8.2 Channel Access Mode Function
When used to specify the channel access mode, the FAB$V_CHAN_MODE
subfield can contain one of the following values, with the related constant value
for each shown in parentheses:

0 None

1 Executive mode (PSL$C_EXEC)

2 Supervisor mode (PSL$C_SUPER)

3 User mode (PSL$C_USER)

The default value is 0 (none), which is interpreted by RMS as executive mode.

If the access mode requested is more privileged than the access mode of the
calling process, RMS uses the access mode of the caller and does not return an
error.

There is no corresponding FDL equivalent for this field. The FAB$V_
CHAN_MODE subfield is used locally for channel to DECnet for OpenVMS
communications but is ignored on the remote system.

To set this field from MACRO level, you include the appropriate expression as an
argument to the $FAB macro. For example, to specify supervisor channel access
mode, you might include a statement in this format:

$FAB ...,CHAN_MODE = PSL$C_SUPER,...

If you are using a high-level language, refer to your documentation as to how (and
whether) you can directly access RMS fields and then incorporate the appropriate
channel access mode expression into the appropriate language statement.

4.9 FAB$L_CTX Field
The user context (CTX) field allows you to convey user information to a
completion routine in your program. This field contains a user-specified value,
up to four bytes long, and is intended solely for your use. RMS never uses it for
record management activities.

This field corresponds to the FDL attribute FILE CONTEXT.

4.10 FAB$W_DEQ Field
The default file extension quantity (DEQ) field specifies the number of blocks to
be added when RMS automatically extends the file. Automatic extension only
applies to files that reside on disk devices and occurs whenever your process
invokes a Put or Write service and the currently allocated file space is exhausted.
When you invoke a Put service, automatic file extension occurs when needed,
regardless of the file organization. When you invoke the Write service, automatic
extension occurs only for sequential files (indexed and relative files require the
Extend service to extend file allocation).

This field corresponds to the FDL attribute FILE EXTENSION.

This field contains a numeric value in the range 0 through 65,535, which is
rounded up to the next cluster boundary. A large value results in fewer file
extensions over the life of a file; a small value results in numerous file extensions
over the life of a file. When a file has numerous file extensions that may be
noncontiguous, this slows record access.

4–6 File Access Block (FAB)

File Access Block (FAB)
4.10 FAB$W_DEQ Field

If you do not specify a value or specify the value 0 when you create a file, RMS
uses the default specified by the DCL command SET RMS_DEFAULT/EXTEND_
QUANTITY. If this value is 0, RMS uses the system default extension quantity
specified by the system parameter RMS_EXTEND_SIZE. If this value is 0, RMS
computes the default value.

If the value in the FAB$W_DEQ field, the value set by the SET RMS_
DEFAULT/EXTEND_QUANTITY command, and the value of the system
parameter RMS_EXTEND_SIZE are all 0, RMS may provide an overly large
value to minimize the number of extend operations that it must perform. At
times, this value can exceed the available disk quota even though there is
actually enough space for the file if only the required amount is used. You can
use the DCL command SET RMS_DEFAULT/EXTEND_QUANTITY to limit
(explicitly specify) the extension size to the recommended number of blocks. An
appropriate size is the number of blocks specified as the cluster size for the device
(set by the DCL command INITIALIZE/CLUSTER_SIZE). For large files on a
volume where there is sufficient disk space, consider using a multiple of the
cluster size to improve subsequent performance.

When creating a new file, you can specify the extension quantity for the file by
setting the desired value in the FAB$W_DEQ field before or after invoking the
Create service. This value becomes a permanent attribute for the file.

When processing an existing file, you can temporarily override the default
extension quantity specified when the file was created. To do this, set the desired
value before or after invoking the Open service. When you subsequently close
the file, the default extension quantity reverts to the value set when the file was
created.

See the discussion under FAB$B_BKS for indexed files.

Note that the use of an allocation control XAB overrides the value in this field.
See Chapter 9 for a detailed description of allocation control XABs.

4.11 FAB$L_DEV Field
The device characteristics (DEV) field allows your program to obtain the generic
characteristics of the device containing the file. You can locate and test the
various bits in the field using symbolic offsets. RMS returns a value in this
binary options field when you invoke an Open, Create, or Display Service. RMS
also returns a value in this field for the Parse service unless you take the syntax
check option (NAM$V_SYNCHK in the NAM$B_NOP field is clear).

Table 4–2 describes the bits in the device characteristics field. Each bit
has its own symbolic bit offset and mask value. These definitions are
made available to your program by referring to the $DEVDEF macro in
SYS$LIBRARY:STARLET.MLB. The symbolic bit offset is formed by prefixing the
characteristic name with DEV$V_. The mask value is formed by prefixing the
characteristic name with DEV$M_. For example, the DEV$V_REC bit has a mask
value of DEV$M_REC.

File Access Block (FAB) 4–7

File Access Block (FAB)
4.11 FAB$L_DEV Field

Table 4–2 Device Characteristics

Bit Offset Description

DEV$V_ALL Device is allocated.

DEV$V_AVL Device is available for use.

DEV$V_CCL Carriage control device.

DEV$V_CDP Device has dual access paths, one of which is a remote node using an
MSCP server.

DEV$V_CLU Device is available on an OpenVMS Cluster.

DEV$V_DET Terminal device is detached.

DEV$V_DIR Directory-structured device.

DEV$V_DMT Device is marked for dismount.

DEV$V_DUA Device has dual access paths, both of which use a disk class driver.

DEV$V_ELG Device is error log enabled.

DEV$V_FOD File-oriented device (disk and magnetic tape).

DEV$V_FOR Device is mounted foreign (non-file-structured).

DEV$V_GEN Device is a generic device.

DEV$V_IDV Device can provide input.

DEV$V_MBX Device is a mailbox.

DEV$V_MNT Device is currently mounted.

DEV$V_NET Network device.

DEV$V_ODV Device can accept output.

DEV$V_OPR Device has been enabled as an operator console terminal.

DEV$V_RCK Device has read-check enabled.

DEV$V_RCT Device includes a Replacement and Caching Table. See the OpenVMS
I/O User’s Reference Manual for more information about RCTs.

DEV$V_REC Record-oriented device (terminal, mailbox, line printer, for example).
If field is 0, device is assumed to be block-oriented (disk device or
magnetic tape device). All record-oriented devices are considered
sequential in nature.

DEV$V_RND Device is random access in nature (disk).

DEV$V_RTM Device is real-time in nature; not suitable for use by RMS.

DEV$V_RTT Terminal device is a remote terminal (DCL command SET HOST).

DEV$V_SDI Single directory device (master file directory only).

DEV$V_SHR Shareable device.

DEV$V_SPL Device is being spooled.

DEV$V_SQD Sequential block-oriented device (magnetic tape).

DEV$V_SWL Device is currently software write-locked.

DEV$V_TRM Terminal device.

DEV$V_WCK Device has write-check enabled.

For DECnet for OpenVMS operations, this field represents the actual
characteristics of the target device when a Create, Open, or Display service
is invoked. It is not filled in when a Parse service is invoked using a file
specification that contains a node name.

4–8 File Access Block (FAB)

File Access Block (FAB)
4.12 FAB$L_DNA Field

4.12 FAB$L_DNA Field
The default file specification string address (DNA) field provides the address of a
file specification string RMS uses to apply defaults for any missing components
of the file specification. This field works with the FAB$B_DNS field, which
initializes the default file specification string size, to provide a default file
specification string. Defaults are applied after RMS examines the primary file
specification string to which the FAB$L_FNA field (described in Section 4.15)
points.

This field and the FAB$B_DNS field correspond to the FDL attribute FILE
DEFAULT_NAME.

The FAB$L_DNA field contains the symbolic address of a default file specification
string, which is an ASCII string containing one or more components of a file
specification. The components in the string must be in the order in which they
would occur in a complete file specification.

The FAB$L_DNA (input only) field is equivalent to the NAML$L_LONG_
DEFNAME field of the long name (NAML) block. See Chapter 6 for more
information.

The default file specification string is used primarily when a process accepts file
specifications interactively; normally, file specifications known to a user program
are specified completely in the FAB$L_FNA and FAB$B_FNS fields. You can
specify defaults for one or more of the following file specification components:

• Node

• Device

• Directory

• File name

• File type

• File version number

The default file specification string is used only if components are missing from
the string whose address is stored in the FAB$L_FNA field and those components
are present in the default file specification string.

4.13 FAB$B_DNS Field
The default file specification string size (DNS) field indicates the size, in bytes,
of the string whose address is contained in the FAB$L_DNA field. This field
contains a numeric value in the range 0 to 255.

This field and the FAB$L_DNA field correspond to the FDL attribute FILE
DEFAULT_NAME.

4.14 FAB$B_FAC Field
The file access (FAC) field specifies the operations and services a process is
seeking to use in accessing a file. RMS uses this field, together with the share
field (SHR) in each potential accessor’s FAB, to determine whether to permit a
process to access a file. The FAC field corresponds to the FDL primary attribute
ACCESS.

File Access Block (FAB) 4–9

File Access Block (FAB)
4.14 FAB$B_FAC Field

Within the FAC field, each bit position corresponds to an operation or service
option that the process intends to use when accessing the file. In this manner, a
process may specify several options, assuming they are compatible, by setting the
appropriate bits. Each option has its own symbolic bit offset and mask value. For
example, the GET service option has a symbolic bit offset of FAB$V_GET and a
mask value of FAB$M_GET.

When RMS attempts to open a file for a process, it examines the process’s
FAB$B_FAC field to determine what operations or services the process is seeking
to use in conjunction with the file access.

RMS determines whether or not the process seeking access to the file intends
to use operations and services that are compatible with the sharing options
permitted by processes currently accessing the file. It checks the FAC field of the
requesting process to determine whether it requires read or write access to the
file. It then checks the SHR field of the requesting process to determine whether
it will share read or write access with other processes that are accessing the file.
A read (GET) implies read access. Delete (DEL), write (PUT), truncate (TRN),
and update (UPD) all imply write access.

For example, assume that Process A opens the file for GET access (FAC=GET)
and is willing to share the file with processes that are doing GET and PUT
accesses (SHR=GET,PUT). Since this is the only process accessing the file, RMS
permits it to read access the file.

Assume that a second process, Process B, wants to access the same file doing PUT
accesses (FAC=PUT) and is willing to share the file with processes doing GET
accesses and PUT accesses (SHR=GET,PUT). Because Process B is compatible
with Process A (they both agree to share the file with any process that is doing
either GET accesses or PUT accesses), RMS permits the second process to access
the file.

Now assume that a third process, Process C, wants GET access (FAC=GET)
to the same file but will share the file only with processes doing GET accesses
(SHR=GET). Although Process C is compatible with Process A (FAC=GET), it is
not compatible with Process B (FAC=PUT), so RMS denies Process C access to
the file. Conversely, if C tries to access the file before B, C gets access and B is
denied access.

RMS always grants file access to the first process accessing a file, assuming no
security access restrictions exist. When a process acquires access to a file, RMS
rejects any attempt to use a service not included in the initial access request.

Options
FAB$V_BIO
Requests file access for doing block I/O operations that use Read (FAB$V_GET),
Write (FAB$V_PUT), or the Space services. Specifying block I/O prohibits the
use of record I/O operations (such as the Get, Put, Update, Delete, or Truncate
services).

This option corresponds to the FDL attribute ACCESS BLOCK_IO.

FAB$V_BRO
Requests file access for doing either block I/O or record I/O as determined by the
state of the RAB$V_BIO bit in the RAB at connect time. Mixed block and record
I/O operations are restricted to sequential files. For additional information, see
Section 7.19 and Section B.3.10.

This option corresponds to the FDL attribute ACCESS RECORD_IO.

4–10 File Access Block (FAB)

File Access Block (FAB)
4.14 FAB$B_FAC Field

FAB$V_DEL
Requests file access for invoking the Delete service (or the equivalent language
statement that deletes a record). This option applies only to relative and indexed
files.

This option corresponds to the FDL attribute ACCESS DELETE.

FAB$V_GET
Requests file access for invoking either the Get or Find service (or equivalent
language statement that reads a record). This is the default if a process requests
access to a file without including FAB$B_FAC field information. If the process
takes the FAB$V_GET option together with either the FAB$V_BIO option or the
FAB$V_BRO option, it can invoke the Read service.

This option corresponds to the FDL attribute ACCESS GET.

FAB$V_PUT
Requests file access for invoking either the Put or Extend service (or the
equivalent language statement that writes a record or extends a file). This is
the default when a process creates a file. If the process takes the FAB$V_PUT
option together with either the FAB$V_BIO option or the FAB$V_BRO option, it
can invoke the Write service.

This option corresponds to the FDL attribute ACCESS PUT.

FAB$V_TRN
Requests file access for invoking the Truncate service (or the equivalent language
statement that truncates a file). Also allows use of the RAB$L_ROP truncate-on-
put (RAB$V_TPT) option with the Put and Write service. This option applies only
to sequential files.

This option corresponds to the FDL attribute ACCESS TRUNCATE.

FAB$V_UPD
Requests file access for invoking either an Update or Extend service (or the
equivalent language statement that rewrites a record or extends a file). Also
allows use of the RAB$L_ROP update-if (RAB$V_UIF) option for the Put service.

This option corresponds to the FDL attribute ACCESS UPDATE.

4.15 FAB$L_FNA Field
The file specification string address (FNA) field works with the FAB$B_FNS
field to specify the primary file specification of the file to be processed. If this
string does not contain all the components of a full file specification, RMS uses
the defaults supplied in the default file specification string (see FAB$L_DNA and
FAB$B_DNS). If no default string is present, or if the file specification is still
incomplete, RMS provides additional defaults.

This field contains the symbolic address of a file specification string, which is an
ASCII string containing one or more components of a file specification. This field
is used as input by many file-processing services. To obtain the file specification
returned by RMS after it translates any logical names and applies defaults, a
NAM or NAML block must be present (see FAB$L_NAM).

This field and the FAB$B_FNS field correspond to the FDL attribute FILE
NAME.

File Access Block (FAB) 4–11

File Access Block (FAB)
4.15 FAB$L_FNA Field

The FAB$L_FNA field is equivalent to the NAML$L_LONG_FILENAME field of
the long name block (NAML). See Chapter 6 for more information.

4.16 FAB$B_FNS Field
The file specification string size (FNS) field specifies the size, in bytes, of the
ASCII file specification string, whose address is contained in the FAB$L_FNA
field. This field contains a numeric value in the range of 0 through 255.

This field and the FAB$L_FNA field correspond to the FDL attribute FILE
NAME.

4.17 FAB$L_FOP Field
FAB$L_FOP is the symbolic offset value for the FAB’s file-processing options
(FOP) field. This field specifies which of the various optional file operations are to
be implemented for the process.

The FOP is a 32-bit field in which each file-processing option has a corresponding
bit assignment to let you specify multiple options (multiple bits can be set), when
applicable. Each option has a unique symbolic offset value and mask value,
but you need only specify the appropriate 3-letter mnemonic when coding a
function. For example, the spool-file-on-close option has a symbolic offset value of
FAB$V_SPL, but to specify the option, you use the following MACRO statement:

FOP=SPL

As detailed in the appropriate descriptions, the only file-processing option bits
that may be affected by record management services are the FAB$V_CBT,
FABV_CTG, FABV_RCK, and FAB$V_WCK bits.

This section presents the seven types of file-processing options alphabetically by
functional category:

• Allocation and extension options

• File name parsing modifiers

• File disposition options

• Magnetic tape processing options

• Nonstandard processing options

• Performance options

• Reliability options

Table 4–3 lists each of the options alphabetically by category.

Table 4–3 File Processing Options

Option Symbolic Offset

Allocation and Extension Options

Contiguous best try FAB$V_CBT

Contiguous allocation FAB$V_CTG

Truncate at end of file FAB$V_TEF

(continued on next page)

4–12 File Access Block (FAB)

File Access Block (FAB)
4.17 FAB$L_FOP Field

Table 4–3 (Cont.) File Processing Options

Option Symbolic Offset

File Name Parsing Modifier Options

Create-if FAB$V_CIF

Maximum version number FAB$V_MXV

Use NAM or NAML block inputs FAB$V_NAM

Output file parse FAB$V_OFP

Supersede existing file FAB$V_SUP

File Disposition Options

Delete on close FAB$V_DLT

Submit command file on close FAB$V_SCF

Spool file on close FAB$V_SPL

Temporary marked for delete FAB$V_TMD

Temporary file FAB$V_TMP

Magnetic Tape Processing Options

Do not set to EOF FAB$V_NEF

Current position FAB$V_POS

Rewind file on close FAB$V_RWC

Rewind file on open FAB$V_RWO

Nonstandard Processing Options

Non-file-structured FAB$V_NFS

User file open FAB$V_UFO

Performance Options

Asynchronous operation FAB$V_ASY

Deferred write FAB$V_DFW

Sequential only FAB$V_SQO

Synchronous status FAB$V_SYNCSTS

Reliability Options

Read-check FAB$V_RCK

Write-check FAB$V_WCK

This field corresponds to the FDL primary attribute FILE.

Allocation and Extension Options
FAB$V_CBT
Contiguous best try; indicates that the file is to be allocated contiguously on a
‘‘best effort’’ basis. It is input to the Create service and output from the Open
service to indicate the file status. The FAB$V_CBT option overrides the FAB$V_

File Access Block (FAB) 4–13

File Access Block (FAB)
4.17 FAB$L_FOP Field

CTG option. Note that this option is ignored if multiple areas are defined for an
indexed file.

This option corresponds to the FDL attribute FILE BEST_TRY_CONTIGUOUS.

FAB$V_CTG
Contiguous; indicates that the space for the file is to be allocated contiguously. If
this cannot be done, the operation fails. It is input to the Create service and is
output by the Open service to indicate the status of the file. Note that this option
is ignored if multiple areas are defined for an indexed file. The FAB$V_CBT
option overrides the FAB$V_CTG option.

This option corresponds to the FDL attribute FILE CONTIGUOUS.

FAB$V_TEF
Truncate at end of file; indicates that unused space allocated to a file is to be
deallocated on a Close service. This option is tested only at $CLOSE time. When
a writer requests this option at close, if other readers are still accessing the
file, the file systems defers the actual file truncation until the last reader closes
the file. The system still returns a success status. The last truncation request
made by a writer before the last close has precedence over any previous deferred
truncation. Once the file system starts the truncate operation, the file is locked
from other writers until the truncate operation is done.

The FAB$V_TEF option applies only to sequential files.

This option corresponds to the FDL attribute FILE TRUNCATE_ON_CLOSE.

File Name Parsing Modifiers
FAB$V_CIF
Create if nonexistent; creates and opens a file and returns the alternate success
status RMS$_CREATED, assuming the file does not exist. If you specify an
existing file, RMS opens it. Note that if you specify the CIF option for an indexed
file, you need to provide a key XAB. If you do not provide a key XAB, RMS
returns an RMS$_NPK error.

The FAB$V_CIF option is input only to the Create service and overrides the
FAB$V_SUP option. When the create-if option is used with a search list logical
name and the file is not found in any of the file specifications supplied using the
search list, the file is created using the file specification from the first element of
the search list.

This option corresponds to the FDL attribute FILE CREATE_IF.

FAB$V_MXV
Maximize version number; indicates that the version number of the file should be
the maximum of the explicit version number given in the file specification, or one
greater than the highest version number for an existing file in the same directory
with the same file name and file type. This option enables you to create a file
with a specific version number (if the requested version number is greater than
that of the existing file) or a file with a version number that is one higher than
the existing file’s version number.

This option is used as input to the Create service only and it corresponds to the
FDL attribute FILE MAXIMIZE_VERSION (default is ‘‘YES’’).

4–14 File Access Block (FAB)

File Access Block (FAB)
4.17 FAB$L_FOP Field

FAB$V_NAM
Use NAM or NAML block inputs; indicates that the NAM or NAML block whose
address is contained in the FAB$L_NAM (name block address) field provides the
device, file, and/or the directory identification when a file is being opened, closed,
or erased (deleted). If a file is being created, the field specifies the device and
directory identification.

This option has no corresponding FDL attribute and it is not supported for
DECnet for OpenVMS operations.

FAB$V_OFP
Output file parse; specifies that related file resultant file specification strings,
if used, are to provide directory, file name, and file type defaults only (requires
NAM or NAML block).

This option corresponds to the FDL attribute FILE OUTPUT_FILE_PARSE.

FAB$V_SUP
Supersede existing file; allows an existing file to be superseded on a Create
service by a new file of the same name, type, and version. The FAB$V_CIF and
the FAB$V_MXV option take precedence over the FAB$V_SUP option.

This option corresponds to the FDL attribute FILE SUPERSEDE.

File Disposition Options
FAB$V_DLT
Delete file on Close; indicates that the file is to be deleted when closed. This
option may be specified for the Create, Open, or Close services. However, if you
set the bit when you create or open a file, RMS deletes the file when you close
it, regardless of the state of the bit when you invoke the Close service. You can
specify the FAB$V_DLT option with the FAB$V_SCF or FAB$V_SPL option.

This option corresponds to the FDL attribute FILE DELETE_ON_CLOSE.

FAB$V_SCF
Submit command file on Close; indicates that the file is to be submitted as a
batch-command file to the process-default batch queue (SYS$BATCH) when
the file is closed. This option can be specified for the Create, Open, and Close
services. However, if you set the bit when you create or open a file, RMS submits
the file to SYS$BATCH when you close it, regardless of the state of the bit when
you invoke the Close service.

The FAB$V_SCF option applies to sequential files only and it corresponds to the
FDL attribute FILE SUBMIT_ON_CLOSE.

FAB$V_SPL
Spool file on Close; indicates that the file is to be spooled to the process-default
print queue (SYS$PRINT) when the file is closed. This option can be specified for
the Create, Open, or Close services. However, if you set the bit when you create
or open a file, RMS spools the file to SYS$PRINT when you close it, regardless of
the state of the bit when you invoke the Close service.

The FAB$V_SPL option applies to sequential files only and it corresponds to the
FDL attribute FILE PRINT_ON_CLOSE.

FAB$V_TMD
Temporary file marked for delete; indicates that a temporary file is to be created
but is to be deleted when the file is closed. This option is input only to the Create
service. The FAB$V_TMD option takes precedence over the FAB$V_TMP option.

File Access Block (FAB) 4–15

File Access Block (FAB)
4.17 FAB$L_FOP Field

This option corresponds to the FDL attribute FILE TEMPORARY.

FAB$V_TMP
Temporary file; indicates that a temporary file is to be created and retained, but
that no directory entry is to be made for it. This option is used solely as input
to the Create service. If you have a NAM or NAML block, you are given the file
identification (FID) of the file, which you can use to reopen the file. If you do
not have a NAM or NAML block or if you do not save the FID, the file becomes
inaccessible once it is closed. The FAB$V_TMD option overrides the FAB$V_TMP
option.

This option corresponds to the FDL attribute FILE DIRECTORY_ENTRY (‘‘NO’’
means this bit is set).

Magnetic Tape Processing Options
FAB$V_NEF
Do not position to end of file; inhibits positioning to the end of a file when a tape
file is opened and the FAB$B_FAC (file access) field indicates a Put service.

This option corresponds to the FDL attribute FILE MT_NOT_EOF.

FAB$V_POS
Current position; directs RMS to position the magnetic tape volume set
immediately after the most recently closed file (the current position) when it
opens the next file. If you use this option when you invoke the Create service,
RMS begins overwriting data beginning with the current tape position.

The FAB$V_POS option corresponds to the FDL attribute FILE MT_CURRENT_
POSITION and is superseded by the FAB$V_RWO option, where applicable.

FAB$V_RWC
Rewind file on Close; specifies that the magnetic tape volume is to be rewound
when the file is closed. This option can be specified for the Close, Create, or Open
services.

This option corresponds to the FDL FILE attribute MT_CLOSE_REWIND.

FAB$V_RWO
Rewind on Open; specifies that the magnetic tape volume is to be rewound before
the file is opened or created. If you use this option when you invoke the Create
service, RMS overwrites the tape beginning with the first file. The FAB$V_RWO
option takes precedence over the FAB$V_POS option.

This option corresponds to the FDL FILE attribute MT_OPEN_REWIND and
takes precedence over the FAB$V_POS option, where applicable.

Nonstandard Processing Options
FAB$V_NFS
Non-file-structured; indicates (on an Open or Create service) that the volume is
to be processed in a non-file-structured manner. This option allows the use of
volumes created on non Compaq systems.

The FAB$V_NFS option corresponds to the FDL attribute FILE NON_FILE_
STRUCTURED and it is not supported for DECnet for OpenVMS operations.

FAB$V_UFO
User file open; indicates that RMS operations for this file are limited to opening
it or creating it. To perform additional processing of the file, invoke the $QIO
system service using the channel number returned by RMS in the status value

4–16 File Access Block (FAB)

File Access Block (FAB)
4.17 FAB$L_FOP Field

field (FAB$L_STV). This channel is assigned the access mode of the caller unless
otherwise specified by the FAB$V_CHAN_MODE bits.

If you specify this option, you must set the FAB$B_SHR field FAB$V_UPI bit
option unless the file is not shared (FAB$B_SHR field FAB$V_NIL option is set).
For the Create service, the end-of-file mark is set to the end of the block specified
in the FAB$L_ALQ field on input. For either the Open or Create services, the
FAB$W_IFI field is set to 0 on return to indicate that RMS cannot perform
any more operations (including the Close service) on the file. If you set the
FAB$V_UFO option with the Open or Create service, the channel needs only to
be deassigned when you finish with the file.

This option corresponds to the FDL attribute FILE USER_FILE_OPEN and it is
not supported for DECnet for OpenVMS operations.

Performance Options
FAB$V_ASY
Asynchronous; indicates that the specified task is to be done asynchronously.
The FAB$V_ASY option is relevant only to file tasks that involve I/O operations.
The asynchronous I/O option is typically used with success/error ASTs, or in
conjunction with the $WAIT service, to synchronize the program with task
completion. When you specify FAB$V_ASY, you pass the address of the FAB
as an argument to the AST routine and RMS returns control to your program
immediately.

This option corresponds to the FDL attribute FILE ASYNCHRONOUS.

FAB$V_DFW
Deferred write; indicates that writing back to the file of modified I/O buffers is to
be deferred until the buffer must be used for other purposes. This option applies
to relative files, indexed files, and sequential files opened for shared access.

This option corresponds to the FDL attribute FILE DEFERRED_WRITE and is
not supported for DECnet for OpenVMS operations.

FAB$V_SQO
Sequential only; indicates that the file can be processed only in a sequential
manner, permitting certain processing optimizations. Any attempt to perform
random access results in an error. The FAB$V_SQO option is input to the Create
and Open services.

This option corresponds to the FDL attribute FILE SEQUENTIAL_ONLY.

Note

For DECnet for OpenVMS operations, this option enables file transfer
mode for Get, Put, Read, and Write services. File transfer mode is a
Data Access Protocol (DAP) feature that allows several records to be
transferred in a single-network I/O operation to maximize throughput for
single-direction, sequential access file transfer.

FAB$V_SYNCSTS
Synchronous status; returns the success status RMS$_SYNCH if the requested
service completes its task immediately. The most common reason for not
completing a task immediately is that the task involves I/O operations. If the
service completes synchronously (that is, it has not returned to caller’s execution

File Access Block (FAB) 4–17

File Access Block (FAB)
4.17 FAB$L_FOP Field

mode prior to completion), RMS returns RMS$_SYNCH as the completion status
in R0, stores the true completion status (success or failure) in FAB$L_STS, and
does not deliver an AST.

The FAB$V_SYNCSTS option is best used in conjunction with the FAB$V_ASY
option.

The system returns RMS$_SYNCH status in R0. Refer to the FAB$L_STS field
for the actual success status or failure status of the task.

Reliability Options
FAB$V_RCK
Read-check; specifies that transfers from disk volumes are to be checked by a
read-compare operation, which effectively doubles the amount of disk I/O at some
increase in reliability. This option is an input to the Open and Create services.
If FAB$V_RCK is set, then checking is performed for the duration of the access.
The FAB$V_RCK option is also an output of the Open service, which indicates the
default for the file. This option is not available for RX01 and RX02 devices, or for
any device that has been mounted using the DCL command MOUNT/FOREIGN.

This option corresponds to the FDL attribute FILE READ_CHECK.

FAB$V_WCK
Write-check; indicates that transfers to disk volumes are to be checked by a
read-compare operation. The FAB$V_WCK option is similar to the FAB$V_RCK
option. This option is not available for RX01 and RX02 devices, or for any device
that has been mounted using the DCL command MOUNT/FOREIGN.

This option corresponds to the FDL attribute FILE WRITE_CHECK.

4.18 FAB$B_FSZ Field
The fixed-length control area size (FSZ) field is used only for variable with fixed-
length control (VFC) records. When you create a file with this record type, you
must set the value for the fixed-control area before you issue the Create service.
When you open an existing file that contains variable with fixed control records,
RMS sets this field equal to the value specified when the file was created. The
FAB$B_FSZ field is not applicable to indexed files.

This field corresponds to the FDL attribute RECORD CONTROL_FIELD_SIZE.

This field contains a numeric value in the range of 1 to 255 that indicates, in
bytes, the size of the fixed control area; the default size is 2 bytes. If you do not
specify a value or specify 0, then the default size is used.

4.19 FAB$W_GBC Field
The global buffer count (GBC) field indicates the requested number of global
buffers for a file. This field contains a numeric value in the range of 0 to 32,767;
the default is 0.

Global buffers support sharing of I/O buffers by more than one process. The use
of global buffers can minimize I/O operations for a shared file, thus reducing
record access time at the cost of using additional system resources. RMS is able
to locate requested records (or blocks) in the global buffers associated with this
file, which it can read directly from memory, eliminating much I/O. However,
since global buffers use global sections, the value contained in FAB$W_GBC
is limited by systemwide restrictions on resources determined by the system
parameters GBLSECTIONS (number of global sections), GBLPAGES (number of

4–18 File Access Block (FAB)

File Access Block (FAB)
4.19 FAB$W_GBC Field

global page table entries), and GBLPAGFIL (number of systemwide pages allowed
for global page-file sections, or scratch global sections). For a complete description
of these parameters, see the OpenVMS System Management Utilities Reference
Manual.

If global buffers are specified for a file, global buffers are used instead of local
(process) buffers, with the exception of deferred write operations (FAB$L_FOP
field FAB$V_DFW option).

The value that is specified when the file is created is returned in the FAB$W_
GBC field as output from the Open service. This value is then used as input to
the Connect service.

If you want to override the default value specified when the file was created,
you can set a different value in the FAB$W_GBC field after opening the file but
before invoking the Connect service. If you do not want to use global buffers, you
can clear the field before issuing the Connect service if the default value is not 0.

If you modify the value in the FAB$W_GBC field that is returned from the Open
service prior to the Connect service, this action determines whether or not global
buffers are assigned to your process.

If you want to permanently change the default global buffer count value for the
file, use the following command syntax:

SET FILE file-spec /GLOBAL_BUFFERS=buffer-count

If you want to permanently clear the default global buffer count for a file, use the
following command syntax:

SET FILE file-spec /GLOBAL_BUFFERS=0

You can also vary the number of global buffers used each time you process the
file. If you choose this method, you change (or clear) the FAB$W_GBC field
after you open the file, but before you invoke the Connect service. In this case,
the specified value is assigned to the FAB$W_GBC field, or the FAB$W_GBC
field remains clear only for the current processing of the file; that is, you do not
permanently alter the FAB$W_GBC field in the FAB. If no value is specified in
the FAB$W_GBC field when the file is created, the default value is 0.

The number of global buffers for a file is determined by the first record stream to
connect to the file (systemwide). If the file is already open and connected, then
the number of global buffers is already set and modifications made before the
Connect service are useful only to request that this process use (or not use) global
buffers.

To specify a read-only global buffer cache, the initial accessor must set the
FAB$B_SHR field FAB$V_SHRGET and FAB$V_MSE bits on. Selecting the
FAB$V_MSE option turns on locking to coordinate access to the global buffer
cache.

You can use global buffers for all file organizations opened for shared record
access. If the global buffer count is nonzero for the first process that connects
to the file, then a temporary global section that is large enough to contain the
specified number of buffers (as well as internal RMS data structures) is created
and mapped. This section is mapped by processes that subsequently connect to
the file, thus allowing multiple processes to reference a single set of one or more
buffers without performing additional I/O operations. Thus, the first user to open
the file requesting global buffers determines the number of the global buffers.

File Access Block (FAB) 4–19

File Access Block (FAB)
4.19 FAB$W_GBC Field

For shared sequential file operations, the value stored in the RAB$B_MBC field
establishes the global buffer size. See Section 7.11 for more information.

The FAB$W_GBC field corresponds to the FDL attribute FILE GLOBAL_
BUFFER_COUNT and it is not supported for DECnet for OpenVMS operations.

4.20 FAB$W_IFI Field
The internal file identifier (IFI) field associates the FAB with the corresponding
internal file access block. RMS sets this field on successful Create or Open
services. It is then an input for subsequent Close, Connect, Display, and Extend
services. The Close service deallocates the internal control structures and clears
the FAB$W_IFI field. When the user file open (FAB$V_UFO) option in the
FAB$L_FOP field is specified, no internal structures are allocated on Create or
Open services. Therefore, the FAB$W_IFI field remains cleared.

There is no FDL equivalent for this field.

4.21 FAB$B_JOURNAL Field
The journal field provides flags to identify whether a file is marked for journaling
and to identify, where applicable, the type of journaling:

• After-image (AI) journaling

• Before-image (BI) journaling

• Recovery unit (RU) journaling

These flags are used for output only, from either the Open service or the Display
service. Although they are included as inputs to the Create service, the input
value must be 0. If the input value is nonzero, RMS returns an RMS$_JNS error.
You can only store the associated attributes in the file header through the DCL
interface using the SET FILE command with an appropriate qualifier. (See the
OpenVMS DCL Dictionary for information about using the SET FILE command
to store these attributes in a file header.)

You can obtain additional information about a file marked for journaling using
the journaling XAB. For example, you can obtain the name of the after-image
journal file, and so forth.

Here is a code example showing how you might use the Open service to determine
if a file is marked for RU journaling. In the example, the program opens a file
and branches to a label FILE_MARKED_FOR_RU if the file is marked for RU
journaling:

$OPEN FAB = MY_FAB
BLBC R0,ERROR
BBS #FABV_RU,FABB_JOURNAL+MY_FAB,-

FILE_MARKED_FOR_RU

Each journaling flag in the field has a unique symbolic bit offset and mask
value. For example, the after-image journaling flag has the symbolic bit offset
FAB$V_AI and the constant value FAB$M_AI. If a flag is set, the logical value is
1; if it is reset, the logical value is 0.

There are no corresponding FDL attributes for the journaling flags because they
cannot be set through the FDL interface.

A listing of symbolic offsets for each of the journaling flags follows:

4–20 File Access Block (FAB)

File Access Block (FAB)
4.21 FAB$B_JOURNAL Field

Flags
FAB$V_AI
The file is marked for after-image journaling.

FAB$V_BI
The file is marked for before-image journaling.

FAB$V_RU
The file is marked for recovery unit journaling.

4.22 FAB$V_LNM_MODE Subfield
The logical name translation access mode (LNM_MODE) subfield is the part of
the FAB$B_ACMODES field that specifies the RMS access mode used to translate
logical names during parsing.

The FAB$V_LNM_MODE subfield may contain one of these four values, with the
related constant value for each shown in parentheses:

0 None

1 Executive mode (PSL$C_EXEC)

2 Supervisor mode (PSL$C_SUPER)

3 User mode (PSL$C_USER)

The default value is 0 (none), which RMS interprets as user mode.

The FAB$V_LNM_MODE field is not supported for DECnet for OpenVMS
operations, and it is ignored during remote file access.

There is no corresponding FDL equivalent for this field. For more information
about logical name concepts, see the OpenVMS Programming Concepts Manual,
Volume II.

4.23 FAB$L_MRN Field
The maximum record number (MRN) field applies only to relative files and
indicates the highest record number that can be written to a file.

This field contains a numeric value of the highest numbered record allowed in the
file, in the range of 0 to 2,147,483,647, although the maximum value depends on
the number of blocks on the device to be used. The default for this field is 0.

If you attempt to write (put) or retrieve (get) a record with a relative record
number higher than the specified limit, an error occurs and RMS returns a
message indicating an invalid record number. Checking is suppressed if you
specify 0 for the FAB$L_MRN field.

Note that RMS does not maintain the relative record number of the highest
existing record in the file.

This field corresponds to the FDL attribute FILE MAX_RECORD_NUMBER.

File Access Block (FAB) 4–21

File Access Block (FAB)
4.24 FAB$W_MRS Field

4.24 FAB$W_MRS Field
The maximum record size (MRS) field defines the size of all records in a file with
fixed-length records, the maximum size of variable-length records, the maximum
size of the data area for variable with fixed-length control records, and the cell
size (minus overhead) for relative files.

This field contains a numeric value in the range applicable to the file type and
record format (see Table 4–4) that indicates the size of the records in the file, in
bytes. This value specifies the number of bytes of data and does not include any
control bytes associated with each record.

For fixed-length records, the value represents the actual size of each record in the
file. You must specify a size when you create a file with fixed-length records.

For variable-length records, the value represents the size of the largest record
that can be written into the file. If the file is not a relative file, a value of 0 is
used to suppress record size checking, thus indicating that there is no user limit
on record size, except for the limitations listed in Table 4–4 and certain physical
limitations. For magnetic tape files, a value of 0 sets an effective maximum
record size that is equal to the block size minus 4.

The size of variable-length records must conform to physical limitations. With
indexed and relative files, for example, records may not cross bucket boundaries.
If both the FAB$B_BKS and FAB$W_MRS fields are 0 (not specified) for an
indexed file, RMS attempts to calculate a reasonable bucket size, usually 2. Thus,
if any record requires more than two buckets, you must explicitly specify the
required value for the FAB$B_BKS or the FAB$W_MRS field. If the FAB$B_BKS
field is specified, the value should specify a bucket size large enough to exceed the
longest possible record.

For variable with fixed-length control records, the value includes only the data
portion; it does not include the size of the fixed control area.

For all relative files, the size is used in conjunction with the FAB$B_BKS field
to determine the size of the record cell. You must specify the FAB$W_MRS field
when you create a relative file.

You specify a value when you invoke a Create service. RMS returns the maximum
record size when you invoke an Open service.

Table 4–4 summarizes the maximum record size allowed for the various file and
record formats.

Table 4–4 Maximum Record Size for File Organizations and Record Formats

File Organization Record Format
Maximum
Record Size

Sequential Fixed length 32,767

Sequential (disk) Variable length 32,767

Sequential (disk) VFC 32,767-FSZ1

1The FSZ represents the size, in bytes, of the fixed control area in a record having VFC record format.
On a disk device, the length of the largest record in a sequential file using variable or VFC format is
also maintained by RMS and is available through the longest record length field (XAB$W_LRL) in the
file header characteristics XAB (XABFHC). See Chapter 11.

(continued on next page)

4–22 File Access Block (FAB)

File Access Block (FAB)
4.24 FAB$W_MRS Field

Table 4–4 (Cont.) Maximum Record Size for File Organizations and Record
Formats

File Organization Record Format
Maximum
Record Size

Sequential (disk) Stream 32,767

Sequential (disk) Stream-CR 32,767

Sequential (disk) Stream-LF 32,767

Sequential (ANSI tape) Variable length 9,995

Sequential (ANSI tape) VFC 9,995-FSZ1

Relative Fixed length 32,255

Relative Variable length 32,253

Relative VFC 32,253-FSZ1

Indexed, Prolog 1 or 2 Fixed length 32,234

Indexed, Prolog 1 or 2 Variable length 32,232

Indexed, Prolog 3 Fixed length 32,224

Indexed, Prolog 3 Variable length 32,224

1The FSZ represents the size, in bytes, of the fixed control area in a record having VFC record format.
On a disk device, the length of the largest record in a sequential file using variable or VFC format is
also maintained by RMS and is available through the longest record length field (XAB$W_LRL) in the
file header characteristics XAB (XABFHC). See Chapter 11.

For DECnet for OpenVMS remote file access, the maximum record size may be
set by the /NETWORK_BLOCK_COUNT=n qualifier to the SET RMS_DEFAULT
command or by a $XABITM parameter. DECnet for OpenVMS remote file access
can support record sizes as large as the record sizes that RMS supports. The
default number of blocks is equal to the system parameter RMS_DFNBC, the
default for which is 8 blocks (4096 bytes). For more information about the SET
RMS_DEFAULT command, see the OpenVMS DCL Dictionary. The system
parameters are detailed in the OpenVMS System Management Utilities Reference
Manual.

This field corresponds to the FDL attribute RECORD SIZE.

4.25 FAB$L_NAM Field
The name block field specifies the address of either the name (NAM) block (see
Chapter 5) or the long name (NAML) block (see Chapter 6) used to invoke a file
service, such as an Open or Create. On Alpha systems, the NAML block can
optionally take the place of a NAM block. The NAML allows OpenVMS Alpha
users to locate and use file specifications that are longer than 255 bytes.

The NAM or NAML block is required only in conjunction with the file specification
processing services. Both can also be used with other services, typically to obtain
a file specification string after all logical name translation is completed and all
defaults applied.

To allow for appropriate type checking of a NAML block, FAB$L_NAML is
available as an alternative definition for C programmers who are using a NAML
block.

For further information, see Section 4.17 and Chapter 6.

File Access Block (FAB) 4–23

File Access Block (FAB)
4.26 FAB$B_ORG Field

4.26 FAB$B_ORG Field
The file organization (ORG) field assigns the organization of the file.

The FAB$B_ORG field is a keyword value field in which each file organization has
a symbolic value. Options are identified using 3-letter mnemonics. Each option
in the FAB$B_ORG field has its own symbolic constant value. For example, the
relative (REL) file organization has a constant value of FAB$C_REL.

You must set this field before you invoke a Create service. RMS returns the
contents of this field when you invoke an Open service. The options are described
in the following list:

• FAB$C_IDX — Indexed file organization

• FAB$C_REL — Relative file organization

• FAB$C_SEQ — Sequential file organization (default)

This field corresponds to the FDL attribute FILE ORGANIZATION.

4.27 FAB$B_RAT Field
The record attributes (RAT) field specifies control information associated with
each record in a file, including carriage control information, block boundary
control, and count byte formatting for variable-length records. Within the
FAB$B_RAT field, each control bit has a unique symbolic offset and constant
value. For example, the CR (carriage return) control bit has a symbolic offset of
FAB$V_CR and a mask value of FAB$M_CR.

For most programs, the default value for the carriage control is FAB$V_CR
(carriage return). When you create your own file, however, the default value is
0. When you want to create a stream format file or a file containing ASCII text,
specify the FAB$V_CR option for the Create service. RMS sets this field when
you invoke an Open service.

When a process-permanent file is accessed indirectly for output, the value in
this field is always an input value. Therefore, RMS automatically uses the
process-permanent file’s record attributes.

This field corresponds to the FDL primary attribute RECORD.

Options
FAB$V_CR
Indicates that each record is to be preceded by a line feed and followed by a
carriage return when the record is written to a carriage control device such as a
line printer or terminal.

This option corresponds to the FDL attribute RECORD CARRIAGE_CONTROL
CARRIAGE_RETURN. It cannot be used with either the FAB$V_FTN option or
the FAB$V_PRN option.

FAB$V_FTN
Indicates that the first byte of each record contains a FORTRAN (ASA) carriage
control character.

This option corresponds to the FDL attribute RECORD CARRIAGE_CONTROL
FORTRAN. Records are defined as follows:

4–24 File Access Block (FAB)

File Access Block (FAB)
4.27 FAB$B_RAT Field

Byte 0
Value (Hex)

ASCII
Character Meaning

0 (null) Null carriage control (sequence: print buffer
contents).

20 (space) Single-space carriage control (sequence: line
feed, print buffer contents, carriage return).

30 0 Double-space carriage control (sequence: line
feed, line feed, print buffer contents, carriage
return).

31 1 Page eject carriage control (sequence: form feed,
print buffer contents, carriage return).

2B + Overprint carriage control (sequence: print
buffer contents, carriage return). Allows double
printing for emphasis.

24 $ Prompt carriage control (sequence: line feed,
print buffer contents).

Other values Same as ASCII space character: single-space
carriage control.

The FAB$V_FTN option cannot be used with either the FAB$V_CR option or the
FAB$V_PRN option.

FAB$V_PRN
Indicates print file format for variable-length records having 2-byte fixed-length
control fields, where the fixed-length control area contains the carriage control
specification. The first byte of the control area constitutes a ‘‘prefix’’ area, that
is, action to be taken before printing the record. The second byte constitutes a
‘‘suffix’’ area, that is, action to be taken after printing the record.

The following table shows the coding scheme for both control bytes (even though
they are interpreted separately):

Bit 7 Bit 6 Bit 5 Bit 4 Meaning

0 0 0 0 To specify no carriage control (NULL), set
bits 3 through 0 at 0.

0 x x x Use bits 6 through 0 to specify a count of
new lines (line feed followed by carriage
return).

1 0 0 x Output the ASCII C0 control character
specified by the configuration of bits 4
through 0.

1 0 1 x Reserved.

1 1 0 0 Skip to the vertical format unit (VFU)
channel (1–16) specified by bits 3 through
0. Devices that do not have hardware VFUs
translate these codes as a 1-line advance.

1 1 0 1 Reserved.

1 1 1 0 Reserved.

This option corresponds to the FDL attribute RECORD CARRIAGE_CONTROL
PRINT. It cannot be used with either the FAB$V_CR option or the FAB$V_FTN
option.

File Access Block (FAB) 4–25

File Access Block (FAB)
4.27 FAB$B_RAT Field

FAB$V_BLK
Applicable to sequential files only; indicates that records are not permitted to
cross block boundaries. The FAB$V_BLK record attribute option may be used
with any one of the other record attribute options (FABV_CR, FABV_FTN,
or FAB$V_PRN), but it cannot be used with files that use the STREAM record
format.

This option corresponds to the FDL attribute RECORD BLOCK_SPAN.

FAB$V_MSB
The state of this control bit determines whether the format for the 2-byte count
field that is prefixed to each variable-length record is formatted as LSB or MSB.
If the bit is set, RMS reads the contents of the 2-byte count field using the
most significant byte as the high-order byte. The 2-byte count field contains the
number of bytes in the associated variable-length record.

This option corresponds to the FDL attribute RECORD MSB_RECORD_
LENGTH.

4.28 FAB$B_RFM Field
The record format (RFM) field specifies the format for all the records in a file.

The FAB$B_RFM field is a keyword value field where each record format has
a symbolic value. Options are identified by mnemonics. Each option has its
own symbolic constant value. For example, the FIX (fixed) record format has a
symbolic constant value of FAB$C_FIX; the STMCR (stream with carriage return)
record format has a symbolic constant value of FAB$C_STMCR.

When you create the file, you must set this field before you invoke the Create
service. RMS returns the record format when you invoke an Open service. The
record format options are described under Options.

This field corresponds to the FDL attribute RECORD FORMAT.

Options
FAB$C_FIX
Indicates fixed-length record format.

This option corresponds to the FDL attribute RECORD FORMAT FIXED.

FAB$C_STM
Indicates stream record format. Records are delimited by FF, VT, LF, or CR LF,
and all leading zeros are ignored. This format applies to sequential files only and
cannot be used with the block spanning option.

This option corresponds to the FDL attribute RECORD FORMAT STREAM.

FAB$C_STMCR
Indicates stream record format. Records are delimited by CR. This format is
supported for sequential files only.

This option corresponds to the FDL attribute RECORD FORMAT STREAM_CR.

FAB$C_STMLF
Indicates stream record format. Records are delimited by LF. This format is
supported for sequential files only.

This option corresponds to the FDL attribute RECORD FORMAT STREAM_LF.

4–26 File Access Block (FAB)

File Access Block (FAB)
4.28 FAB$B_RFM Field

FAB$C_UDF
Indicates undefined record format. The undefined record format is valid for
sequential files only. This is the default value if the FAB is not initialized with a
$FAB macro.

This option corresponds to the FDL attribute RECORD FORMAT UNDEFINED.

FAB$C_VAR
Indicates variable-length record format. For the $FAB macro, this is the default
value.

This option corresponds to the FDL attribute RECORD FORMAT VARIABLE.

FAB$C_VFC
Indicates variable-length with fixed-length control record format. This format is
not supported for indexed files.

This option corresponds to the FDL attribute RECORD FORMAT VFC.

If you intend to use stream record format, then specify the FAB$V_CR record
attribute (see FAB$B_RAT).

4.29 FAB$B_RTV Field
The retrieval window size (RTV) field specifies the number of retrieval pointers
RMS is to maintain in memory for the file. Retrieval pointers are stored in the
file header and indicate the beginning of each extent associated with the file. If a
file has been extended repeatedly, the extents may be scattered noncontiguously
on the disk, requiring numerous retrieval pointers. When RMS needs to access a
new extent, it must obtain the retrieval pointer for that extent. RMS first looks
for the retrieval pointer in the retrieval window, which contains the number of
retrieval pointers specified by this field. If the retrieval pointer is not in the
retrieval window, RMS reads the file header, thereby requiring an additional I/O
operation.

This field contains a numeric value in the range of 0 through 127, or 255. A value
of 0 directs RMS to use the system default number of retrieval pointers. A value
of 255 means to map the entire file, if possible. If you specify a value of 255 when
creating a file, the initial number of retrieval pointers is minimal; as records
are added, however, the number of retrieval pointers increases as the number
of extents increases. The system resources required for retrieval windows are
subtracted from the buffered I/O quota of the process. Values from 128 to 254
(inclusive) are reserved for future use.

This field corresponds to the FDL attribute FILE WINDOW_SIZE and it is not
supported for DECnet for OpenVMS operations.

4.30 FAB$L_SDC Field
The secondary device characteristics (SDC) field is equivalent to the FAB$L_DEV
field, except that secondary device characteristics refer to the intermediate device
used for spooling or the logical link for DECnet for OpenVMS operations. Within
the FAB$L_SDC field, the bit definitions are the same as those defined for the
FAB$L_DEV field (see Table 4–2). Like the FAB$L_DEV field, the bit definitions
must first be made available to your process referring to the $DEVDEF system
macro definition; the values are set by certain record management services (see
FAB$L_DEV for additional information).

File Access Block (FAB) 4–27

File Access Block (FAB)
4.31 FAB$B_SHR Field

4.31 FAB$B_SHR Field
The file sharing (SHR) field defines the record operations that the opening
process allows sharing processes to perform. RMS supports file sharing for all file
organizations.

Within the FAB$B_SHR field, each record operation that sharing processes are
permitted to do has a corresponding bit assignment. You can specify multiple
record operations (multiple bits may be set).

Options are identified by symbolic bit offsets. Note that conflicts between the
names of symbolic offsets in the FAB$B_SHR field and the names of symbolic
offsets in the FAB$B_FAC field are resolved by prefixing the letters SHR to the
symbolic offset in the FAB$B_SHR field. For example, both the FAB$B_FAC
and FAB$B_SHR fields have a bit that specifies the get record option. In the
FAB$B_FAC field, this bit offset is assigned the symbol FAB$V_GET; in the
FAB$B_SHR field, this bit is assigned the symbol FAB$V_SHRGET.

Note that the letters SHR in the mnemonic part of the bit offset symbol may be
omitted by VAX MACRO programs. Thus, the GET option, which is common to
the FAB$B_FAC and FAB$B_SHR fields, has a symbolic bit offset of FAB$V_
SHRGET and a mask value of FAB$M_SHRGET, but VAX MACRO programs
may use the synonyms FAB$V_GET and FAB$M_GET. This rule applies to the
FABV_SHRPUT, FABV_SHRGET, FAB$V_SHRDEL, and FAB$V_SHRUPD
options.

The way in which RMS uses the file access (FAB$B_FAC) field and file sharing
(FAB$B_SHR) field is described in greater detail in the FAB$B_FAC field
discussion.

Note that if you do not specify a value in the FAB$B_SHR field, the following
defaults apply:

• If the FAB$B_FAC field is set or defaulted to FAB$V_GET, the FAB$B_SHR
field defaults to FAB$V_SHRGET.

• If the FAB$B_FAC field is set or defaulted to either FABV_PUT, FABV_
DEL, FAB$V_UPD, or FAB$V_TRN, the FAB$B_SHR field defaults to
FAB$V_NIL. Thus, write sharing must be explicitly requested using the
FAB$B_SHR field (because it is not the default).

This field corresponds to the FDL primary attribute SHARING. See the Guide to
OpenVMS File Applications for additional details on file sharing.

The following list includes descriptions of the sharing options.

Options
FAB$V_MSE
Allows multistream access and is relevant for record operations only. You must
specify FAB$V_MSE whenever you want to call Connect services for multiple
RABs for this FAB.

Note that if you specify the FAB$V_MSE and FAB$V_BIO options, you must set
the FAB$V_UPI bit regardless of the other sharing bits. To specify a read-only
global buffer cache, the initial accessor must set the FAB$B_SHR field FAB$V_
SHRGET and FAB$V_MSE bits. Selecting the FAB$V_MSE option turns on
locking to coordinate access to buffers.
The FAB$V_MSE option is not supported for DECnet for OpenVMS operations.
RMS returns an error when the application program attempts to connect a second
stream. Although RMS cannot perform multistreaming for DECnet for OpenVMS

4–28 File Access Block (FAB)

File Access Block (FAB)
4.31 FAB$B_SHR Field

operations, you can obtain similar functionality by using multiple FABs to access
the file in a shared manner.

This option is available for all file organizations and corresponds to the FDL
attribute SHARING MULTISTREAM.

FAB$V_NIL
Prohibits any file sharing by other users. Setting this option requires the user
to have write protection access to the file. If FAB$V_NIL is specified with other
options, it takes precedence.

This option corresponds to the FDL attribute SHARING PROHIBIT.

FAB$V_NQL
Requests that RMS disable query locking (see the description of the query record
locking option in the Guide to OpenVMS File Applications) for any read operation
that has both RAB$V_NLK and RAB$V_RRL set in the RAB$L_ROP field for the
entire period the file is open. If both record options are not set, RMS ignores the
query disabling request. This option is only processed when some form of write
sharing is allowed, and can be set with any combination of the other sharing
options in this list that can be assigned to the FAB$B_SHR field.

This option is implemented on the Alpha platform with OpenVMS V7.2–1H1.
The FAV$V_NQL symbol facilitates common code and you may specify it in
applications that execute on both the Alpha and VAX platforms. The functionality
for the option is not implemented on the VAX platform.

This option is not supported for DECnet for OpenVMS operations, and has no
corresponding FDL attribute.

FAB$V_SHRPUT
Allows other users to write records to the file or to extend the file.

This option corresponds to the FDL attribute SHARING PUT.

FAB$V_SHRGET
Allows other users to read the file.

This option corresponds to the FDL attribute SHARING GET.

FAB$V_SHRDEL
Allows other users to delete records from the file.

This option corresponds to the FDL attribute SHARING DELETE.

FAB$V_SHRUPD
Allows other users to update records that currently exist in the file or to extend
the file.

This option corresponds to the FDL attribute SHARING UPDATE.

FAB$V_UPI
This option is used when the user wants to assume responsibility for interlocking
of multiple, simultaneous accessors of a file. This option disables all RMS locking
for the current access of the file. Except for block I/O, the FAB$V_MSE option
overrides the FAB$V_UPI option. Usually, the FAB$V_UPI option is used for a
file that is open for block I/O (FAB$V_BIO or FAB$V_BRO).

File Access Block (FAB) 4–29

File Access Block (FAB)
4.31 FAB$B_SHR Field

When you select the FAB$V_UFO option, you must also select the FAB$V_UPI
option if the file is write shared. A file is specified as being write shared when
you select either the FAB$V_PUT option, the FAB$V_DEL option, the FAB$V_
TRN option, or the FAB$V_UPD option in the FAB$B_SHR field.

This option corresponds to the FDL attribute SHARING USER_INTERLOCK.

4.32 FAB$L_STS Field
RMS sets the completion status code (STS) field with success or failure codes
before it returns control to your program (except for a subset of errors, as detailed
in Section 2.4). Register 0 contains the same status as the STS field. Potential
error codes for specific services are listed under their descriptions.

4.33 FAB$L_STV Field
RMS sets the status value (STV) field on the basis of the operation performed
and the contents of the completion status code (FAB$L_STS) field, communicates
additional completion information to your program.

4.34 FAB$L_XAB Field
The extended attribute block address (XAB) field specifies the XAB, or first of a
series of XABs, that you want to use for file operations. This field contains the
symbolic address of a XAB control block. A value of 0 (the default) indicates no
XABs for the file.

For some operations, you must associate extended attribute blocks with a FAB
to convey additional attributes about a file. (See Section 1.2.2 for a description
of a XAB.) The FAB$L_XAB field can contain the symbolic address of the first
associated block (of a potential chained list of such blocks) for the file.

RMS uses XAB values as follows:

• If you specify a XAB for either an Open or Display service, RMS returns the
file attributes to the XAB.

• If you specify a XAB for a Create, Close, or Extend service, RMS uses the
XAB as input to those functions.

4–30 File Access Block (FAB)

5
Name Block (NAM)

The name (NAM) block provides additional fields for extended file specification
use, including parsing and obtaining the actual file specification used for a file
operation. On Alpha systems, the long name block (NAML) can optionally take
the place of a NAM block (see Chapter 6).

5.1 Summary of Fields
The symbolic offset, the size, and a brief description of each NAM block field are
presented in Table 5–1. Additional details are given in the remaining sections of
this chapter.

Table 5–1 NAM Block Fields

Field Offset
Size
(Bytes) Description

NAM$B_BID1 1 Block identifier

NAM$B_BLN1 1 Block length

NAM$B_DEV2 1 Device string length

NAM$L_DEV2 4 Device string address

NAM$W_DID2 6 Directory identification

NAM$B_DIR2 1 Directory string length

NAM$L_DIR2 4 Directory string address

NAM$T_DVI2 16 Device identification

NAM$L_ESA 4 Expanded string area address

NAM$B_ESL2 1 Expanded string length

NAM$B_ESS 1 Expanded string area size

NAM$W_FID2 6 File identification

NAM$W_FIRST_WILD_DIR 2 The topmost directory level to contain a
wildcard.

NAM$L_FNB2 4 File name status bits

NAM$W_LONG_DIR_LEVELS 2 Total number directories

NAM$B_NAME2 1 File name string length

NAM$L_NAME2 4 File name string address

NAM$B_NMC 1 Name characteristics

NAM$B_NODE2 1 Node name string length

1This field is statically initialized by the $NAM macro to identify this control block as a NAM.
2This field cannot be initialized by the $NAM macro.

(continued on next page)

Name Block (NAM) 5–1

Name Block (NAM)
5.1 Summary of Fields

Table 5–1 (Cont.) NAM Block Fields

Field Offset
Size
(Bytes) Description

NAM$L_NODE2 4 Node name string address

NAM$B_NOP 1 Name block options

NAM$L_RLF3 4 Related file NAM or NAML block
address

NAM$L_RSA 4 Resultant string area address

NAM$B_RSL2 1 Resultant string length

NAM$B_RSS 1 Resultant string area size

NAM$B_TYPE2 1 File type string length

NAM$L_TYPE2 4 File type string address

NAM$B_VER2 1 File version string length

NAM$L_VER2 4 File version string address

NAM$L_WCC2 4 Wildcard context

2This field cannot be initialized by the $NAM macro.
3The NAM$L_RLF_NAML is available for C programmers to allow for appropriate type checking of a
NAML block.

The NAM block fields have no corresponding FDL equivalents. However, if your
application requires the presence of a NAM block, consider using the $NAM
macro (or equivalent) in a USEROPEN or a USERACTION routine.

Unless otherwise indicated, each field is supported for DECnet for OpenVMS
operations on files at remote OpenVMS systems. For information about the
support of RMS options for remote file access to other systems, see the DECnet
for OpenVMS Networking Manual.

Depending on the services to be used, the user may need to allocate program
storage for the expanded string and the resultant string. The Parse service uses
the expanded string to pass information related to wildcards (or search lists)
to the Search service. When it creates a resultant string for other file services,
RMS uses the expanded string as a work area to apply defaults. You can use the
resultant string with file services to provide the file specification that results from
the translation of logical names and the application of defaults. Typical uses of
the resultant string include showing the resulting file specification after a partial
file specification is entered by a terminal user, reporting errors, and logging the
progress of a program.

To request use of the expanded or resultant strings, you must indicate the
address and size of the user-allocated buffer to receive the string. The expanded
string is indicated by the NAM$L_ESA and NAM$B_ESS fields; the resultant
string is indicated by the NAM$L_RSA and NAM$B_RSS fields. When it fills in
the expanded or resultant strings, RMS returns the actual length of the returned
string in the NAM$B_ESL or NAM$B_RSL fields.

5–2 Name Block (NAM)

Name Block (NAM)
5.2 File Specification Component Descriptors

5.2 File Specification Component Descriptors
For each element of the fully qualified file specification returned in the expanded-
string field or the resultant-string field in the NAM block, RMS returns a
descriptor in the NAM block made up of a 1-byte size field and a 4-byte
(longword) address field. The fields of these descriptors are described as one of
the following:

NAM$B_xxx (size field of xxx)

NAM$L_xxx (address field of xxx)

Descriptors
NAMB_NODE, NAML_NODE
Node name descriptor, including access control string and double colon (::)
delimiter.

NAMB_DEV, NAML_DEV
Device name descriptor, including colon (:) delimiter.

NAMB_DIR, NAML_DIR
Directory name descriptor, including brackets ([] or <>).

NAMB_NAME, NAML_NAME
File name descriptor or, if the file specification following a node name is within
quotation marks (‘‘file’’), a quoted string descriptor.

NAMB_TYPE, NAML_TYPE
File type descriptor, including period (.) delimiter.

NAMB_VER, NAML_VER
File version number descriptor, including semicolon (;) or period (.) delimiter.

These descriptors are returned, enabling the program to extract a particular
component from the resultant string without having to parse the resultant or
expanded string. The entire resultant or expanded string, including delimiters, is
described by the various component descriptors. If the value in the NAM$B_RSL
field is nonzero, then the descriptors point to the NAM$L_RSA field. If the value
in the NAM$B_RSL field is 0 and the value in the NAM$B_ESL field is nonzero,
then the descriptors point to the NAM$L_ESA field. In all other cases, they are
undefined.

This is an example of a resultant file specification and its file specification
component descriptors:

NODE"TEST password"::WORK_DISK:[TEST.TEMP]FILE.DAT;3

NODE NODE"TEST password"::
DEV WORK_DISK:
DIR [TEST.TEMP]
NAME FILE
TYPE .DAT
VER ;3

You can use the file component descriptors individually or collectively to describe
sections of the resultant or expanded string. For example, if you want to use the
file name and file type fields, use NAM$L_NAME for the starting address and
NAM$B_NAME+NAM$B_TYPE for the total length.

Name Block (NAM) 5–3

Name Block (NAM)
5.3 NAM$B_BID Field

5.3 NAM$B_BID Field
The block identifier (BID) field is a static field that identifies this control block
as a NAM block. Once set, this field must not be altered unless the control
block is no longer needed. This field must be initialized to the symbolic value
NAM$C_BID (this is done by the $NAM macro).

5.4 NAM$B_BLN Field
The block length (BLN) field is a static field that defines the length of the NAM
block, in bytes. Once set, this field must not be altered unless the control block
is no longer needed. This field must be initialized to the symbolic value NAM$C_
BLN (this is done by the $NAM macro).

5.5 NAM$B_DEV and NAM$L_DEV Fields
RMS fills this field with a pointer into either the expanded string buffer specified
by NAM$L_ESA or the resultant string buffer specified by NAM$L_RSA. The
pointer in NAM$L_DEV points to the start of the device name within the
complete file specification in the buffer. You can tell which buffer this field points
into by checking NAM$B_RSS. If NAM$B_RSS is 0, this field points into the
buffer specified by NAM$L_ESA. Otherwise, it points into the buffer specified by
NAM$L_RSA. The device name is always returned with uppercase letters.

For NAM$B_DEV, RMS fills this field with the length, in bytes, of the device
name pointed to by NAM$L_DEV, including the ":".

5.6 NAM$W_DID Field
The directory identification (DID) field identifies the directory for the file. RMS
outputs this 3-word field as part of the Open, Create and Display services. RMS
also outputs this field as part of the Parse service unless you specify the syntax
check option (NAM$V_SYNCHK). If, once you open the file, you want to refer to
this directory again, you can do so more quickly by specifying that the NAM block
has a valid directory identifier.

This field is not supported for DECnet for OpenVMS operations; it is ignored on
input and zero-filled on output.

5.7 NAM$B_DIR and NAM$L_DIR Fields
RMS fills this field with a pointer into either the expanded string buffer specified
by NAM$L_ESA or the resultant string buffer specified by NAM$L_RSA. The
pointer in NAM$L_DIR points to the directory specification within the complete
file specification in the buffer. You can tell which buffer this field points into
by checking NAM$B_RSS. If NAM$B_RSS is 0, this field points into the buffer
specified by NAM$L_ESA. Otherwise, it points into the buffer specified by
NAML$L_RSA.

For NAM$B_DIR fills this field with the length, in bytes, of the directory pointed
to by NAM$L_DIR, including the delimiter] or >.

5–4 Name Block (NAM)

Name Block (NAM)
5.8 NAM$T_DVI Field

5.8 NAM$T_DVI Field
The device identification (DVI) field defines the device for the file. RMS outputs
this field as part of the Open, Create, and Display services. RMS also outputs
this field as part of the Parse service unless you specify the syntax check option
(NAM$V_SYNCHK). You can use this field with the file identification field to
reopen the file by referring to the NAM block. The symbolic value NAM$S_DVI
gives the length of this field in bytes. The form of this field is a counted string.
The first byte is a count of the number of characters following it.

This field is not supported for DECnet for OpenVMS operations; it is ignored on
input and zero-filled on output.

5.9 NAM$L_ESA Field
The expanded string area address (ESA) field contains the symbolic address of
a user buffer in the application program to receive the file specification string
resulting from the translation of logical names and the application of default file
specification information.

You must specify this field for processing wildcard characters.

5.10 NAM$B_ESL Field
RMS sets the expanded string length (ESL) field as part of the Open, Create, and
Parse services. This field contains the length, in bytes, of the file specification
string returned in the buffer whose address is in the NAM$L_ESA field.

5.11 NAM$B_ESS Field
The expanded string area size (ESS) field contains the size of the user-allocated
buffer whose address is contained in the NAM$L_ESA field.

This field contains a numeric value representing the size, in bytes, of the user
buffer that will receive the file specification string, in the range of 0 through 255.

The symbolic value NAM$C_MAXRSS defines the maximum possible length of an
expanded file specification string.

5.12 NAM$W_FID Field
The file identification (FID) field is a 3-word field that RMS uses to identify the
file when it invokes an Open, Create, or Display service. When you want to open
a file by using the file identifier, set this field before you open the file.

This field is not supported for DECnet for OpenVMS operations; it is ignored on
input and zero-filled on output.

5.13 NAM$W_FIRST_WILD_DIR Field
The first wild directory field contains a number that indicates how may levels
below the device or root directory RMS first encountered a wildcard. The topmost
directory level is numbered 0. If there are no wildcards, this field contains -1.

The following examples illustrate the use of NAM$W_FIRST_WILD_DIR:

For the filespec DKB100:[ROOT1.ROOT2.][*.SUBDIR1.SUBDIR2], NAM$W_
FIRST_WILD_DIR would be set to 0.

For the filespec DKB100:[SUBDIR0.*.SUBDIR2], NAM$W_FIRST_WILD_DIR
would be set to 1.

Name Block (NAM) 5–5

Name Block (NAM)
5.13 NAM$W_FIRST_WILD_DIR Field

For the filespec DKB100:[SUBDIR0.SUBDIR1.SUBDIR2], NAM$W_FIRST_
WILD_DIR would be set to -1.

This field is not supported by DECnet for OpenVMS operations.

5.14 NAM$L_FNB Field
The file name status (FNB) field is a binary options field that RMS uses to convey
status information obtained from the file specification parsing routine. Each bit
within this field denotes a specific status relative to the various components of
the file specification.

Each status bit has its own offset and mask value. For instance, the number of
directory levels (DIR_LVLS) field has a symbolic bit offset of NAM$V_DIR_LVLS
and a mask value of NAM$M_DIR_LVLS. The bits and the conditions they
express for the NAM$L_FNB field are described in Table 5–2.

Table 5–2 NAM$L_FNB Status Bits

Field Offset Description

NAM$V_CNCL_DEV Device name is a concealed device.

NAM$V_DIR_LVLS Indicates the number of subdirectory levels (value is 0 if
there is a user file directory only); a 3-bit field (maximum
7).

NAM$V_DIR_LVLS_G7 Indicates that the number of directory levels are greater
than 7. If this is set, NAM$V_DIR_LVLS is set to 7.

NAM$V_EXP_DEV Device name is explicit in primary filespec.

NAM$V_EXP_DIR Directory specification is explicit in primary filespec.

NAM$V_EXP_NAME File name is explicit in primary filespec.

NAM$V_EXP_TYPE File type is explicit in primary filespec.

NAM$V_EXP_VER Version number is explicit in primary filespec.

NAM$V_GRP_MBR Directory specification is in the group/member number
format.

NAM$V_HIGHVER A higher-numbered version of the file exists (output from
Create and Enter services). For DECnet for OpenVMS
operations, this bit is returned as a binary zero.

NAM$V_LOWVER A lower-numbered version of the file exists (output from
Create and Enter services). For DECnet for OpenVMS
operations, this bit is returned as a binary zero.

NAM$V_NODE File specification includes a node name.

NAM$V_PPF File is indirectly accessed process-permanent file.

NAM$V_QUOTED File specification includes a quoted string; indicates that
the file name length and address field contains a quoted
string file specification. Applies to network operations or
magnetic tape devices only.1

NAM$V_ROOT_DIR Device name incorporates a root directory.

NAM$V_SEARCH_LIST A search list logical name is present in the file specification.

1To distinguish network quoted string file specifications from quoted strings containing ASCII ‘‘a’’ file
names (supported for ANSI-labeled magnetic tapes), both the NAM$V_QUOTED and NAM$V_NODE
bits are set.

(continued on next page)

5–6 Name Block (NAM)

Name Block (NAM)
5.14 NAM$L_FNB Field

Table 5–2 (Cont.) NAM$L_FNB Status Bits

Field Offset Description

NAM$V_WILDCARD File specification string includes a wildcard; returned
whenever any of the other wildcard bits is set.

NAM$V_WILD_DIR Directory specification includes a wildcard character.

NAM$V_WILD_GRP Group number contains a wildcard character.

NAM$V_WILD_MBR Member number contains a wildcard character.

NAM$V_WILD_NAME File name contains a wildcard character.

NAM$V_WILD_SFD1–
NAM$V_WILD_SFD7

Subdirectory 1 through 7 specification includes a wildcard
character.

NAM$V_WILD_SFDG7 Indicates that a subdirectory greater than 7 contains a
wildcard character.

NAM$V_WILD_TYPE File type contains a wildcard character.

NAM$V_WILD_UFD User file directory specification includes a wildcard
character.

NAM$V_WILD_VER Version number contains a wildcard character.

5.15 NAM$W_LONG_DIR_LEVELS Field
This field contains the total number of directory levels that exist below the device
or root directory. The topmost directory level is numbered 0. For directory levels
between 0 and 7, this field contains the same number that NAM$V_DIR_LVLS
contains. If NAM$V_DIR_LVLS_G7 is set, this field is the only way to find out
the number of directory levels.

The following are examples of using NAM$W_LONG_DIR_LEVELS:

For the filespec, DKB100:[ROOT1.ROOT2.][*.SUBDIR1.SUBDIR2], NAM$W_
LONG_DIR_LEVELS would be set to 2.

For the filespec, DKB100:[SUBDIR0.SUBDIR1], NAM$W_LONG_DIR_LEVELS
would be set to 1.

This field is not supported by DECnet for OpenVMS operations.

5.16 NAM$B_NAME and NAM$L_NAME Fields
RMS fills this field with a pointer into either the expanded string buffer specified
by NAM$L_ESA or the resultant string buffer specified by NAM$L_RSA. The
pointer in NAM$L_NAME points to the start of the file name within the complete
file specification in the buffer. You can tell which buffer this field points into
by checking NAM$B_RSS. If NAM$B_RSS is 0, this field points into the buffer
specified by NAM$L_ESA. Otherwise, it points into the buffer specified by
NAM$L_RSA.

For NAM$B_NAME, RMS fills this field with the length, in bytes, of the file
name pointed to by NAM$L_NAME, not including the type field nor the period
separating the name from the type.

Name Block (NAM) 5–7

Name Block (NAM)
5.17 NAM$B_NMC

5.17 NAM$B_NMC
The name characteristics (NMC) field is a binary field that RMS uses to convey
characteristics of file specifications. Each bit within this field denotes a specific
status relative to the various components of the file specification.

The bits and the characteristics they describe are shown in the following table:

Field Offset Meaning

NAM$V_DID Set by RMS if it found a DID-compressed directory in the root or
directory name component of an input directory.

NAM$V_FID Set by RMS if it found a FID-compressed file name in an input
file specification.

NAM$V_RES_DID Set by RMS if there is a DID-compressed directory in the short
resultant or expanded buffer.

NAM$V_RES_FID Set by RMS if there is a FID-compressed name in the short
resultant or expanded buffer.

NAM$V_RES_
ESCAPE

Set by RMS if there are any escape characters (^) in the short
resultant or expanded buffer.

NAM$V_RES_
UNICODE

Set by RMS if there are one or more ^U sequences in the short
resultant or expanded buffer.

5.18 NAM$B_NODE and NAM$L_NODE Fields
RMS fills this field with a pointer into either the expanded string buffer specified
by NAML$L_NODE or the resultant string buffer specified by NAM$L_RSA.
The pointer in NAM$L_NODE points to the start of the node name within the
complete file specification in the buffer. You can tell which buffer this field points
into by checking NAM$B_RSS. If NAM$B_RSS is 0, this field points into the
buffer specified by NAM$L_ESA. Otherwise, it points into the buffer specified by
NAM$L_RSA.

For NAM$B_NODE, RMS fills this field with the length, in bytes, of the node
name pointed to by NAM$L_NODE, including the ::. Note that if this is not a
DECnet file specification, NAM$B_NODE will be 0.

5.19 NAM$B_NOP Field
The name block options (NOP) field indicates the options applicable to the file
name parsing services.

The NAM$B_NOP field is a binary options field in which each option has a
corresponding bit assignment. Multiple options can be specified (multiple bits can
be set) but the default state for each bit is clear (not set). Each option has its
own symbolic bit offset and mask value. For example, the SYNCHK option has a
symbolic bit offset of NAM$V_SYNCHK and a mask value of NAM$M_SYNCHK.

Options
NAM$V_NOCONCEAL
When used with the Open, Create, Parse, Search, or Display services, a concealed
device logical name is translated into its physical device name (and directory,
if so defined) in the resultant string field, whose address is supplied by the
NAM$L_RSA field. If this option is not set and a concealed device name is used,
the concealed device name appears in the resultant string field, instead of the
physical device name (and directory, if so defined).

5–8 Name Block (NAM)

Name Block (NAM)
5.19 NAM$B_NOP Field

NAM$V_NO_SHORT_UPCASE
When set by the user, this option tells RMS not to uppercase the directory and
file specification in the NAM$L_ESA buffer.

NAM$V_PWD
When used with the Create, Open, Parse, Search, or Display services, the
password in the access control string of a node specification, if present, is returned
unaltered in the expanded or resultant file specification fields. If you do not select
this option, the actual password used is replaced by the word ‘‘password’’ in the
resultant or expanded file specification string fields for security reasons.

NAM$V_SRCHXABS
When used with the Search service for remote file access, this option directs
RMS to fill in the FAB and any chained XABs as if a Display service had been
invoked. This allows you to obtain file attribute information using the Search
service without the need to open the file.

NAM$V_SYNCHK
This gives you the option of using the Parse service to verify the syntax validity
of the file specification without invoking I/O processing that verifies the actual
existence of the specified device and directory.

If you invoke the Parse service without setting the NAMV_SYNCHK bit, an
accompanying I/O process verifies that the device and directory exist. Note that
this processing verifies the existence of the device and directory, only; it does not
verify the existence of the file. You can only verify the existence of the file using
a $SEARCH or $OPEN.

If you opt to set the NAM$V_SYNCHK bit when you invoke the Parse service,
RMS does not return the device characteristics (FAB$L_DEV and FAB$L_SDC
fields) and does not fill in the NAM$W_DID and NAM$T_DVI fields, rendering
the results of the $PARSE unusable for subsequent Search services. It also does
not do a directory ID (DID) compression of long path names.

5.20 NAM$L_RLF Field
The related file NAM block address (RLF) field contains the symbolic address of
the NAM block for the related file. A NAML block may optionally be used. This
field supports the secondary file concept of the command language (DCL), giving
an extra default level in processing file specifications.

To provide an extra level of file specification defaults, the related NAM or NAML
block must have been used previously by an Open, Create, Search, or Display
service to create a resultant file specification string. Moving the address of
the related NAM block into the NAM$L_RLF field of the current NAM block
specifies that the previously parsed NAM block’s resultant file specification string
should be used as a default when the current NAM block is parsed. Note that
the previously parsed NAM block must contain a resultant file specification (see
NAM$L_RSA and NAM$B_RSS for additional details).

Note that a NAM can be used in the NAM$L_RLF field of a NAML, and a NAM
can be used in the NAML$L_RLF field of a NAML. To allow for appropriate type
checking of a NAML block, NAM$L_RLF_NAML is available as an alternative
definition for C programmers who are using a NAML block.

Refer to the Guide to OpenVMS File Applications for additional details on file
specification parsing concepts.

Name Block (NAM) 5–9

Name Block (NAM)
5.21 NAM$L_RSA Field

5.21 NAM$L_RSA Field
The resultant string area address (RSA) field contains the symbolic address of
a buffer in your program to receive the resultant file specification string. The
NAM$B_RSS field must also be specified to obtain a resultant file specification
string.

This string is the fully specified name of the file that results from the resolution
of all system defaults, including version numbers and wildcard character
substitution in the expanded file name string. You must specify this field for
wildcard processing.

5.22 NAM$B_RSL Field
The resultant string length (RSL) contains the length, in bytes, of the resultant
file specification string returned in the buffer whose address is in the NAM$L_
RSA field.

5.23 NAM$B_RSS Field
The resultant string area size (RSS) field defines the size of the user-allocated
buffer whose address is contained in the NAM$L_RSA field.

This field contains a numeric value representing the size, in bytes, of the user
buffer that will receive the resultant file specification string, in the range of 0
through 255.

The symbolic value NAM$C_MAXRSS defines the maximum possible length of a
resultant file specification string.

5.24 NAM$B_TYPE and NAM$L_TYPE Fields
RMS fills this field with a pointer into either the expanded string buffer specified
by NAM$L_ESA or the resultant string buffer specified by NAM$L_RSA. The
pointer in NAM$L_TYPE points to the start of the file type, including the dot
separating it from the name, within the complete file specification in the buffer.
You can tell which buffer this field points into by checking NAM$B_RSS. If
NAM$B_RSS is 0, this field points into the buffer specified by NAM$L_ESA.
Otherwise, it points into the buffer specified by NAM$L_RSA.

For NAM$B_TYPE, RMS fills this field with the length, in bytes, of the file type
pointed to by NAM$L_TYPE.

5.25 NAM$B_VER and NAM$L_VER Fields
RMS fills this field with a pointer into either the expanded string buffer specified
by NAM$L_ESA or the resultant string buffer specified by NAM$L_RSA. The
pointer in NAM$L_VER points to the start of the file version, including the
semicolon separating if from the type, within the complete file specification in the
buffer. You can tell which buffer this field points into by checking NAM$B_RSS.
If NAM$B_RSS is 0, this field points into the buffer specified by NAM$L_ESA.
Otherwise, it points into the buffer specified by NAM$L_RSA.

For NAM$B_VER, RMS fills this field with the length, in bytes, of the file version
pointed to by NAM$L_VER.

5–10 Name Block (NAM)

Name Block (NAM)
5.26 NAM$L_WCC Field

5.26 NAM$L_WCC Field
The wildcard context (WCC) field contains the information needed to use wildcard
characters in place of the various file specification components. In particular, this
field restarts a directory search to find the next matching file name, type, and/or
version number. You can also use it to identify various RMS extended contexts;
for instance, during remote file processing.

Name Block (NAM) 5–11

6
Long Name Block (NAML)

On Alpha systems, the long name block (NAML) can optionally take the place of
a NAM block (see Chapter 5). The NAML allows OpenVMS Alpha users to locate
and use file specifications that are longer than 255 bytes.

6.1 Using the NAM and NAML Block
The NAML has fields that are equivalent to all the NAM fields, plus 28 additional
fields to accommodate longer file specifications. The additional fields are not
supported for DECnet operations. There are also no equivalent FDL attributes
for these additional fields.

Many of the additional fields in the NAML correspond to NAM fields but allow
longer names. For example, the fields NAML$L_LONG_EXPAND, NAML$L_
LONG_EXPAND_ALLOC, and NAML$L_LONG_EXPAND_SIZE correspond to
NAML_ESA, NAMB_ESS, and NAM$B_ESL, but allow names that are longer
than 255 bytes. When there are fields that correspond like this, the original field
is referred to as a "short field." The corresponding field is referred to as a "long
field."

When RMS is writing information into fields in a NAML that have both a
short and long version, RMS normally writes the equivalent information into
both fields. If either the short field or the long field is too small to contain
the information, RMS returns an error, though RMS attempts to compress file
specifications to allow them to fit in the short fields. You can prevent RMS from
writing into the short fields by setting the flag NAML$V_NO_SHORT_OUTPUT.
However, if you are using a NAML, RMS always uses the long fields. If you do
not want RMS to use the long fields, you must use a NAM rather than a NAML.

When RMS is reading information from fields in a NAML that has both a short
and a long version, RMS always reads from the long version. If you want RMS to
read from the short fields, you must use a NAM rather than a NAML. The most
common time that RMS reads from these fields is during a $SEARCH operation
following a $PARSE, when RMS reads from the buffer pointed to by NAML$L_
LONG_EXPAND for a NAML and NAM$L_ESA for a NAM. In addition, if a
NAM or NAML is used as a related name block, RMS reads information from the
buffer pointed to by NAML$L_LONG_RESULT for a NAML, or NAM$L_RSA for
a NAM.

Because of these differences in the way RMS processes a NAM and a NAML,
it is important that any code that might come in contact with the NAML be
aware that it is a NAML and not a NAM. Several operations that a routine might
do on a NAM will not work as expected on a NAML. For example, if a routine
makes a copy of a NAML but uses the NAM$C_BLN constant as the length to
copy, the result is an illegal NAML. If a routine replaces the buffers pointed
to by NAM$L_ESA and NAM$L_RSA with the expectation that it can use the
NAM without affecting the calling routine, it misses the buffers pointed to by
NAML$L_LONG_EXPAND and NAML$L_LONG_RESULT.

Long Name Block (NAML) 6–1

Long Name Block (NAML)
6.1 Using the NAM and NAML Block

For this reason, any API supplied by OpenVMS adheres to the rule that if
it returned a NAM (either directly or indirectly through a FAB) in previous
versions, it will not now start returning a NAML without some explicit action
by the caller (usually setting a flag bit). We recommend that other APIs use the
same rule. Further, if a NAML-aware application passes a NAML to an API,
it must be prepared for that API to use only the NAM section (for example, it
should not set the NAML$V_NO_SHORT_OUTPUT bit).

If you are writing a routine that is to accept either a NAM or a NAML, you
should check the NAM$B_BID field to determine whether you have a NAM or a
NAML; if you have a NAML, and you wish to read information that RMS has left
in the NAML, look at the information in the long fields. In addition, if you wish
to copy that NAM or NAML block to another location, you must be careful to use
the length that is stored in the structure itself to determine how much to copy.
You should use the NAM$B_BLN field in the structure you are copying rather
than the NAM$C_BLN constant, since NAM$B_BLN contains the actual length
of the structure. If you use the NAM$C_BLN, which is the length of a NAM, it
would be too short for a NAML.

6.2 Summary of Fields
The additional fields in the NAML data structure are summarized at the
beginning of Table 6–1 and are described in Chapter 5. All the other NAML fields
are exactly like their NAM counterparts described in Table 5–1, unless noted
otherwise in this chapter.

Table 6–1 NAML Fields

Field Offset
Size
(Bytes)

Corresponding NAM or FAB
Field Description

Alpha-Only NAML Fields Described in this Chapter:

NAML$B_BID 1 None Block identifier

NAML$B_BLN 1 None Block length

NAML$L_FILESYS_NAME 4 None File system name
buffer address.

NAML$L_FILESYS_NAME_ALLOC 4 None File system name
buffer allocated size

NAML$L_FILESYS_NAME_SIZE 4 None File system name
length

NAML$L_INPUT_FLAGS 4 None Additional flags
specified as input

NAML$L_LONG_DEFNAME 4 FAB$L_DNA Long default file
specification string
address specified as
input (used if FAB$L_
DNA contains -1)

NAML$L_LONG_DEFNAME_SIZE 4 FAB$B_DNS Long default file
specification string
size specified as input

NAML$L_LONG_DEV 4 NAM$L_DEV Long device string
address

(continued on next page)

6–2 Long Name Block (NAML)

Long Name Block (NAML)
6.2 Summary of Fields

Table 6–1 (Cont.) NAML Fields

Field Offset
Size
(Bytes)

Corresponding NAM or FAB
Field Description

Alpha-Only NAML Fields Described in this Chapter:

NAML$L_LONG_DEV_SIZE 4 NAM$B_DEV Long device string
length

NAML$L_LONG_DIR 4 NAM$L_DIR Long directory string
address

NAML$L_LONG_DIR_SIZE 4 NAM$B_DIR Long directory string
length

NAML$L_LONG_EXPAND 4 NAM$L_ESA Long expanded string
area address

NAML$L_LONG_EXPAND_ALLOC 4 NAM$B_ESS Long expanded string
area size

NAML$L_LONG_EXPAND_SIZE 4 NAM$B_ESL Long expanded string
length

NAML$L_LONG_FILENAME 4 FAB$L_FNA Long file specification
string address

NAML$L_LONG_FILENAME_SIZE 4 FAB$B_FNS Long file specification
string size

NAML$L_LONG_NAME 4 NAM$L_NAME Long file name string
address

NAML$L_LONG_NAME_SIZE 4 NAM$B_NAME Long file name string
length

NAML$L_LONG_NODE 4 NAM$L_NODE Long node name string
address

NAML$L_LONG_NODE_SIZE 4 NAM$B_NODE Long node name string
length

NAML$L_LONG_RESULT 4 NAM$L_RSA Long resultant string
area address

NAML$L_LONG_RESULT_ALLOC 4 NAM$B_RSS Long resultant string
area size

NAML$L_LONG_RESULT_SIZE 4 NAM$B_RSL Long resultant string
length

NAML$L_LONG_TYPE 4 NAM$L_TYPE Long file type string
length

NAML$L_LONG_TYPE_SIZE 4 NAM$B_TYPE Long file type string
address

NAML$L_LONG_VER 4 NAM$L_VER Long file version string
address

NAML$L_LONG_VER_SIZE 4 NAM$B_VER Long file version string
length

NAML$L_OUTPUT_FLAGS 4 None Additional status bits
passed as output

NAML$L_USER_CONTEXT 8 None User context

(continued on next page)

Long Name Block (NAML) 6–3

Long Name Block (NAML)
6.2 Summary of Fields

Table 6–1 (Cont.) NAML Fields

Field Offset
Size
(Bytes)

Corresponding NAM or FAB
Field Description

NAML Fields Equivalent to NAM Fields (Described in Chapter 5:)

NAML$B_DEV 1 NAM$B_DEV Device string length

NAML$L_DEV 4 NAM$L_DEV Device string address

NAML$W_DID 6 NAM$W_DID Directory identification

NAML$B_DIR 1 NAM$B_DIR Directory string length

NAML$L_DIR 4 NAM$L_DIR Directory string
address

NAML$T_DVI 16 NAM$T_DVI Device identification

NAML$L_ESA 4 NAM$L_ESA Expanded string area
address

NAML$B_ESL 1 NAM$B_ESL Expanded string
length

NAML$B_ESS 1 NAM$B_ESS Expanded string area
size

NAML$W_FID 6 NAM$W_FID File identification

NAML$W_FIRST_WILD_DIR 2 NAM$W_FIRST_WILD_DIR The topmost directory
level to contain a
wildcard.

NAML$L_FNB 4 NAM$L_FNB File name status bits

NAML$W_LONG_DIR_LEVELS 2 NAM$W_LONG_DIR_
LEVELS

Total number
directories

NAML$B_NAME 1 NAM$B_NAME File name string
length

NAML$L_NAME 4 NAM$L_NAME File name string
address

NAML$B_NMC 1 NAM$B_NMC Name characteristics

NAML$B_NODE 1 NAM$B_NODE Node name string
length

NAML$L_NODE 4 NAM$L_NODE Node name string
address

NAML$B_NOP 1 NAM$B_NOP Name block options

NAML$L_RLF1 4 NAM$L_RLF Related file NAM or
NAML block address

NAML$L_RSA 4 NAM$L_RSA Resultant string area
address

NAML$B_RSL 1 NAM$B_RSL Resultant string length

NAML$B_RSS 1 NAM$B_RSS Resultant string area
size

NAML$B_TYPE 1 NAM$L_TYPE File type string length

NAML$L_TYPE 4 NAM$B_TYPE File type string
address

1The NAML$L_RLF_NAML is available for C programmers to allow for approprite type checking of a NAML block.

(continued on next page)

6–4 Long Name Block (NAML)

Long Name Block (NAML)
6.2 Summary of Fields

Table 6–1 (Cont.) NAML Fields

Field Offset
Size
(Bytes)

Corresponding NAM or FAB
Field Description

NAML Fields Equivalent to NAM Fields (Described in Chapter 5:)

NAML$B_VER 1 NAM$B_VER File version string
length

NAML$L_VER 4 NAM$L_VER File version string
address

NAML$L_WCC 4 NAM$L_WCC Wildcard context

6.3 Validating the NAML Block
If the name block passed to RMS (see FAB$L_NAM) contains a block identifier
(see NAML$B_BID) equal to NAML$C_BID, RMS performs the following
validation checks:

1. NAML$B_BLN field is exactly equal to NAML$C_BLN.

2. NAML$L_LONG_RESULT_ALLOC and NAML$L_LONG_EXPAND_ALLOC
are less than or equal to NAML$C_MAXRSS.

3. All unused fields (which have a symbolic name containing MBZ) contain zero.
You can clear the entire structure before initializing any fields to meet this
requirement.

If any of these validation checks fail, a RMS$_NAML error status is returned.

6.4 NAML$B_BID Field
The block identifier (BID) field is a static field that identifies this control block
as a NAML block. Once set, this field must not be altered unless the control
block is no longer needed. This field must be initialized to the symbolic value
NAML$C_BID (this is done by the $NAML macro).

6.5 NAML$B_BLN Field
The block length (BLN) field is a static field that defines the length of the NAML
block, in bytes. Once set, this field must not be altered unless the control block is
no longer needed. This field must be initialized to the symbolic value NAML$C_
BLN (this is done by the $NAML macro).

6.6 NAML$L_FILESYS_NAME Field
This field contains the address of a user buffer that receives the file name, type,
and version in a form appropriate for specifying directly to the file system by the
SYS$QIO system service.

6.7 NAML$L_FILESYS_NAME_ALLOC Field
This field contains the size of the user-allocated buffer whose address is contained
in the NAML$L_FILESYS_NAME field.

Long Name Block (NAML) 6–5

Long Name Block (NAML)
6.8 NAML$L_FILESYS_NAME_SIZE Field

6.8 NAML$L_FILESYS_NAME_SIZE Field
RMS sets this field to indicate the length, in bytes, of the name string returned
in NAML$L_FILESYS_NAME.

6.9 NAML$L_INPUT_FLAGS Field
The input flags field contains additional flags specified as input to RMS, including
NAML$V_NO_SHORT_OUTPUT.

The NAML$L_INPUT_FLAGS field contains the following flag:

Flag Meaning

NAML$V_NO_SHORT_OUTPUT Set by the user to tell RMS not to fill in the
NAM$L_ESA or NAM$L_RSA buffer.

6.10 NAML$L_LONG_DEFNAME and
NAML$L_LONG_DEFNAME_SIZE Fields

These fields can be used to replace the FAB$L_DNA and FAB$B_DNS fields in
the FAB. Using these NAML fields allows you to specify a default name string
longer than the 255 bytes allowed by FAB$B_DNS.

RMS uses the NAML$L_LONG_DEFNAME and NAML$L_LONG_DEFNAME_
SIZE fields in place of the FAB$L_DNA and FAB$L_DNS fields if FAB$L_DNA
contains a -1 and FAB$B_DNS contains 0.

The following table illustrates this procedure.

To use this field: Put a -1 in this field: Use this size field: Put a 0 in this field:

NAML$L_LONG_DEFNAME FAB$L_DNA NAML$L_LONG_DEFNAME_SIZE FAB$B_DNS

6.11 NAML$L_LONG_DEV and NAML$L_LONG_DEV_SIZE Fields
RMS fills this field with a pointer into either the expanded string buffer
specified by NAML$L_LONG_EXPAND or the resultant string buffer specified
by NAML$L_LONG_RESULT. The pointer in NAML$L_LONG_DEV points to
the start of the device name within the complete file specification in the buffer.
You can tell which buffer this field points into by checking NAML$L_LONG_
RESULT_SIZE. If NAML$L_LONG_RESULT_SIZE is 0, this field points into the
buffer specified by NAML$L_LONG_EXPAND. Otherwise, it points into the buffer
specified by NAML$L_LONG_RESULT. The device name is always returned with
uppercase letters.

For NAML$L_LONG_DEV_SIZE, RMS fills this field with the length, in bytes, of
the device name pointed to by NAML$L_LONG_DEV, including the ":".

6–6 Long Name Block (NAML)

Long Name Block (NAML)
6.12 NAML$L_LONG_DIR and NAML$L_LONG_DIR_SIZE Fields

6.12 NAML$L_LONG_DIR and NAML$L_LONG_DIR_SIZE Fields
RMS fills this field with a pointer into either the expanded string buffer
specified by NAML$L_LONG_EXPAND or the resultant string buffer specified by
NAML$L_LONG_RESULT. The pointer in NAML$L_LONG_DIR points to the
directory specification within the complete file specification in the buffer. You can
tell which buffer this field points into by checking NAML$L_LONG_RESULT_
SIZE. If NAML$L_LONG_RESULT_SIZE is 0, this field points into the buffer
specified by NAML$L_LONG_EXPAND. Otherwise, it points into the buffer
specified by NAML$L_LONG_EXPAND.

For NAML$L_LONG_DIR_SIZE, RMS fills this field with the length, in bytes, of
the directory pointed to by NAML$L_LONG_DIR, including the delimiter] or >.

6.13 NAML$L_LONG_EXPAND Field
The expanded string area address field contains the symbolic address of a
user buffer in the application program to receive the file specification string
resulting from the translation of logical names and the application of default file
specification information.

You must specify this field for processing wildcard characters.

The NAML$L_LONG_EXPAND field’s corresponding short field, NAML$L_ESA,
can be specified as well, but a separate buffer must be allocated for it.

6.14 NAML$L_LONG_EXPAND_ALLOC Field
The expanded string area allocation size field contains the size of the user-
allocated buffer whose address is contained in the NAML$L_LONG_EXPAND
field.

This field contains a numeric value representing the size, in bytes, of the user
buffer that will receive the file specification string, in the range of 0 through
4095.

The symbolic value NAML$C_MAXRSS defines the maximum possible length of
an expanded file specification string.

6.15 NAML$L_LONG_EXPAND_SIZE Field
RMS sets the expanded string size field as part of the Open, Create, and Parse
services. This field contains the length, in bytes, of the file specification string
returned in the buffer whose address is in the NAML$L_LONG_EXPAND field.

6.16 NAML$L_LONG_FILENAME and
NAML$L_LONG_FILENAME_SIZE Fields

These fields can be used to replace the FAB$L_FNA and FAB$L_FNS fields in the
FAB. Using these NAML fields allows you to specify a default name string longer
than the 255 bytes allowed by FAB$B_FNS.

RMS uses the NAML$L_LONG_FILENAME and NAML$L_LONG_FILENAME_
SIZE fields in place of the FAB$L_FNA and FAB$L_FNS fields if FAB$L_FNA
contains -1 and FAB$B_FNS contains 0.

Long Name Block (NAML) 6–7

Long Name Block (NAML)
6.16 NAML$L_LONG_FILENAME and NAML$L_LONG_FILENAME_SIZE Fields

The following illustrates this procedure.

To use this field: Put a -1 in this field: Use this size field: Put a 0 in this field:

NAML$L_LONG_FILENAME FAB$L_FNA NAML$L_LONG_FILENAME_SIZE FAB$B_FNS

6.17 NAML$L_LONG_NAME and NAML$L_LONG_NAME_SIZE
Fields

RMS fills this field with a pointer into either the expanded string buffer
specified by NAML$L_LONG_EXPAND or the resultant string buffer specified
by NAML$L_LONG_RESULT. The pointer in NAML$L_LONG_NAME points
to the start of the file name within the complete file specification in the buffer.
You can tell which buffer this field points into by checking NAML$L_LONG_
RESULT_SIZE. If NAML$L_LONG_RESULT_SIZE is 0, this field points into
the buffer specified by NAML$L_LONG_EXPAND. Otherwise, it points into the
buffer specified by NAML$L_LONG_RESULT.

For NAML$L_LONG_NAME_SIZE, RMS fills this field with the length, in bytes,
of the file name pointed to by NAML$L_LONG_NAME, not including the type
field nor the period separating the name from the type.

6.18 NAML$L_LONG_NODE and NAML$L_LONG_NODE_SIZE
Fields

RMS fills this field with a pointer into either the expanded string buffer
specified by NAML$L_LONG_EXPAND or the resultant string buffer specified
by NAML$L_LONG_RESULT. The pointer in NAM$L_LONG_NODE points to
the start of the node name within the complete file specification in the buffer.
You can tell which buffer this field points into by checking NAML$L_LONG_
RESULT_SIZE. If NAML$L_LONG_RESULT_SIZE is 0, this field points into
the buffer specified by NAML$L_LONG_EXPAND. Otherwise, it points into the
buffer specified by NAML$L_LONG_RESULT.

For NAML$L_LONG_NODE_SIZE, RMS fills this field with the length, in
bytes, of the node name pointed to by NAML$L_LONG_NODE, including the ::
delimiter. Note that if this is not a DECnet file specification, NAML$L_LONG_
NODE_SIZE will be 0.

6.19 NAML$L_LONG_RESULT Field
The resultant string area address field contains the symbolic address of a buffer
in your program to receive the resultant file specification string. The NAML$L_
LONG_RESULT_ALLOC field must also be specified to obtain a resultant file
specification string.

This string is the fully specified name of the file that results from the resolution
of all system defaults, including version numbers and wildcard character
substitution in the expanded file name string. You must specify this field for
wildcard processing.

The NAML$L_LONG_RESULT field’s corresponding short field, NAML$L_RSA,
can be specified as well, but a separate buffer should be allocated for it.

6–8 Long Name Block (NAML)

Long Name Block (NAML)
6.20 NAML$L_LONG_RESULT_ALLOC Field

6.20 NAML$L_LONG_RESULT_ALLOC Field
The resultant string area allocation size field defines the size of the user-allocated
buffer whose address is contained in the NAML$L_LONG_RESULT field.

This field contains a numeric value representing the size, in bytes, of the user
buffer that will receive the resultant file specification string, in the range of 0
through 4095.

The symbolic value NAML$C_MAXRSS defines the maximum possible length of a
resultant file specification string.

6.21 NAML$L_LONG_RESULT_SIZE Field
The resultant string size contains the length, in bytes, of the resultant file
specification string returned in the buffer whose address is in the NAML$L_
LONG_RESULT field.

6.22 NAML$L_LONG_TYPE and NAML$L_LONG_TYPE_SIZE Fields
RMS fills this field with a pointer into either the expanded string buffer
specified by NAML$L_LONG_EXPAND or the resultant string buffer specified by
NAML$L_LONG_RESULT. The pointer in NAML$L_LONG_TYPE points to the
start of the file type, including the dot separating it from the name, within the
complete file specification in the buffer. You can tell which buffer this field points
into by checking NAML$L_LONG_RESULT_SIZE. If NAML$L_LONG_RESULT_
SIZE is 0, this field points into the buffer specified by NAML$L_LONG_EXPAND.
Otherwise, it points into the buffer specified by NAML$L_LONG_RESULT.

For NAML$L_LONG_TYPE_SIZE, RMS fills this field with the length, in bytes,
of the file type pointed to by NAML$L_LONG_TYPE.

6.23 NAML$L_LONG_VER and NAML$L_LONG_VER_SIZE Fields
RMS fills this field with a pointer into either the expanded string buffer
specified by NAML$L_LONG_EXPAND or the resultant string buffer specified
by NAML$L_LONG_RESULT. The pointer in NAML$L_LONG_VER points
to the start of the file version, including the semicolon separating it from the
type, within the complete file specification in the buffer. You can tell which
buffer this field points into by checking NAML$L_LONG_RESULT_SIZE. If
NAML$L_LONG_RESULT_SIZE is 0, this field points into the buffer specified
by NAML$L_LONG_EXPAND. Otherwise, it points into the buffer specified by
NAML$L_LONG_RESULT.

For NAML$L_LONG_VER_SIZE, RMS fills this field with the length, in bytes, of
the file version pointed to by NAML$L_LONG_VER.

6.24 NAML$L_OUTPUT_FLAGS Field
The output flags field contains additional status bits returned by RMS.

The NAML$L_OUTPUT_FLAGS field contains the following flags.

Long Name Block (NAML) 6–9

Long Name Block (NAML)
6.24 NAML$L_OUTPUT_FLAGS Field

Flag Meaning

NAML$V_FILESYS_NAME_UCS2 Set by RMS if name pointed to by NAML$L_
FILESYS_NAME consists of a 2-byte Unicode
character.

NAML$V_LONG_RESULT_DID Set by RMS if there is a DID-compressed
directory in the long resultant or expanded
buffer.

NAML$V_LONG_RESULT_ESCAPE Set by RMS if there are any escape characters
(^) in the long resultant or expanded buffer.

NAML$V_LONG_RESULT_FID Set by RMS if there is a FID-compressed name
in the long resultant or expanded buffer.

NAML$V_LONG_RESULT_UNICODE Set by RMS if there is one or more ^U
sequences in the long resultant or expanded
buffer.

6.25 NAML$Q_USER_CONTEXT Field
The user context field contains any user-selected value, up to 8 bytes long. This
field is devoted exclusively to your use. RMS makes no use of the contents of
this field; therefore, you can set any value you want in this field. For example,
you could use this field to communicate with a file I/O completion routine in your
program that the file access block (FAB) is passed to, since the FAB$L_NAM
provides a link to this name block.

6–10 Long Name Block (NAML)

7
Record Access Block (RAB)

The record access block (RAB) defines run-time options for a record stream and
for individual operations within a predefined record stream context. After you
connect the file to a record stream and associate the record stream with a FAB,
you use the RAB fields to specify the next record you want to access and to
identify appropriate record characteristics.

Note

If you are using 64-bit addressing on an OpenVMS Alpha system, refer to
Chapter 8 for information about using RAB64 instead of RAB.

7.1 Summary of Fields
Table 7–1 gives the symbolic offset, the size, the FDL equivalent, and a brief
description of each RAB field.

Table 7–1 RAB Fields

Field Offset
Size
(Bytes) FDL Equivalent Description

RAB$B_BID1 1 None Block identifier

RAB$L_BKT 4 CONNECT BUCKET_CODE Bucket code

RAB$B_BLN1 1 None Block length

RAB$L_CTX 4 CONNECT CONTEXT User context

RAB$L_FAB 4 None File access block address

RAB$W_ISI2 2 None Internal stream identifier

RAB$L_KBF 4 None Key buffer address

RAB$B_KRF 1 CONNECT KEY_OF_REFERENCE Key of reference

RAB$B_KSZ 1 None Key size

RAB$B_MBC 1 CONNECT MULTIBLOCK_COUNT Multiblock count

RAB$B_MBF 1 CONNECT MULTIBUFFER_COUNT Multibuffer count

RAB$L_PBF 4 None Prompt buffer address

RAB$B_PSZ 1 None Prompt buffer size

RAB$B_RAC 1 CONNECT3 Record access mode

1This field is statically initialized by the $RAB macro to identify this control block as a RAB.
2This field cannot be initialized by the $RAB macro.
3This field contains options; corresponding FDL equivalents are listed in the description of the field.

(continued on next page)

Record Access Block (RAB) 7–1

Record Access Block (RAB)
7.1 Summary of Fields

Table 7–1 (Cont.) RAB Fields

Field Offset
Size
(Bytes) FDL Equivalent Description

RAB$L_RBF 4 None Record buffer address

RAB$W_RFA 6 None Record file address

RAB$L_RHB 4 None Record header buffer
address

RAB$L_ROP 4 CONNECT3 Record-processing options

RAB$W_RSZ 2 None Record size

RAB$L_STS2 4 None Completion status code

RAB$L_STV2 4 None Status value

RAB$W_STV04 2 None Low-order word status
value

RAB$W_STV24 2 None High-order word status
value

RAB$B_TMO 1 CONNECT TIMEOUT_PERIOD Timeout period

RAB$L_UBF 4 None User record buffer address

RAB$W_USZ 2 None User record buffer size

RAB$L_XAB 4 None Next XAB address

2This field cannot be initialized by the $RAB macro.
3This field contains options; corresponding FDL equivalents are listed in the description of the field.
4Alternate definition of RAB$L_STV field.

Unless otherwise indicated, each field is supported for DECnet for OpenVMS
operations using files at remote OpenVMS systems. For information about the
support of RMS options for remote file access to other systems, see the DECnet
for OpenVMS Networking Manual.

The format and arguments of the $RAB macro and the $RAB_STORE macro are
described in Appendix A.

7.2 RAB$B_BID Field
The block identifier (BID) field is a static field that identifies the block as a RAB.
Once set, this field must not be altered unless the control block is no longer
needed. This field must be initialized to the symbolic offset value RAB$C_BID
(this is done by the $RAB macro).

7.3 RAB$L_BKT Field
The bucket code (BKT) field is used with records in a relative file and when
performing block I/O.

This field contains a relative record number or a numeric value representing the
virtual block number to be accessed.

For relative files, the relative record number of the record acted upon (or which
produced an error) is returned to the RAB$L_BKT field only after the completion
of a sequential operation. That is, RMS returns the relative record number when
you set the record access mode for sequential access (RAB$B_RAC is RAB$C_
SEQ) on the execution of a Get, Put, or Find service.

7–2 Record Access Block (RAB)

Record Access Block (RAB)
7.3 RAB$L_BKT Field

Before performing block I/O on disk devices, this field must contain the virtual
block number (VBN) of the first block you want to read or write. For all other
devices, this field is not used. If you specify a VBN of 0, RMS begins the block
transfer at the block pointed to by the next block pointer (NBP). (The NBP is an
internal pointer maintained by RMS; it is described in Section B.3.12.)

This field is also input to the Space service to specify the number of blocks to be
spaced forward or backward.

This field corresponds to the FDL attribute CONNECT BUCKET_CODE.

7.4 RAB$B_BLN Field
The block length (BLN) field is a static field that defines the length of the RAB,
in bytes. Once set, this field must not be altered unless the control block is no
longer needed. This field must be initialized to the symbolic value RAB$C_BLN
(this is done by the $RAB macro).

7.5 RAB$L_CTX Field
The user context (CTX) field contains any user-selected value, up to four bytes
long. This field is devoted exclusively to your use. RMS makes no use of the
contents of this field; therefore, you can set any value you want in this field. For
example, you could use this field to communicate with a completion routine in
your program.

This field corresponds to the FDL attribute CONNECT CONTEXT.

7.6 RAB$L_FAB Field
The file access block address (FAB) field contains the symbolic address of the
FAB for the file. Before you invoke the Connect service, you must set this field to
indicate the address of the FAB associated with the open file.

7.7 RAB$W_ISI Field
The internal stream identifier (ISI) field associates the RAB with a corresponding
FAB. RMS sets this field after the execution of a Connect service. A Disconnect
service clears this field. This field should not be altered.

7.8 RAB$L_KBF Field
The key buffer address (KBF) field contains the symbolic address of the buffer
containing the key value for random access. Note that the RAB$B_KBF field has
the same offset as the RAB$L_PBF (prompt buffer address) field, but no conflict
is presented because the fields are used in mutually exclusive operations.

When the RAB$B_RAC (record access mode) field specifies random access by
key value, this field provides the address of a buffer that contains the key of the
desired record. The key is the relative record number in files that are organized
for relative access or in files organized for sequential access containing fixed-
length records. In indexed files, the key value in RAB$L_KBF is used with the
index specified in the key of reference field (RAB$B_KRF) to randomly access
the desired record. Note that although a collating key affects the stored order
for records, the collating value does not govern record lookups. For example, a
collating sequence may assign the same ordering for the keys ‘‘dog’’ and ‘‘DOG’’.
However, both keys do not have the same access (lookup) value. Therefore, when
doing lookups, a program should specify either the specific key value or a range

Record Access Block (RAB) 7–3

Record Access Block (RAB)
7.8 RAB$L_KBF Field

of values that includes the uppercase and lowercase combinations of the key. See
the Guide to OpenVMS File Applications for more information about accessing
indexed records.

Before you invoke the Get or Find service for doing random access in an indexed
file, you place the address of the location containing the specified key value
in the RAB$L_KBF field. The size of this key value must be specified in the
RAB$B_KSZ field. During execution of the Get or Find service, RMS uses
the specified key value for searching an index (which you specify using the
RAB$B_KRF field) to locate the desired record. The type of match, that is, exact,
generic, approximate, or approximate generic, is determined by examining the
RAB$B_KSZ field in combination with selected search bits in the RAB$L_ROP
field.

7.9 RAB$B_KRF Field
The key of reference (KRF) field specifies the key or index (primary, first
alternate, and so on) to which the operation applies. The RAB$B_KRF field is
applicable to indexed files only.

This field contains a numeric value representing the key path to records in a file.
The value 0, the default, indicates the primary key. The values 1 through 254
indicate alternate keys.

When your program invokes a Get or Find service in random access mode, the
key of reference specifies the index to search for a match on the key value that
is described by the RAB$L_KBF and RAB$B_KSZ fields. When your program
invokes a Connect or Rewind service, the key of reference identifies the index
in the file of the next record in the stream. The next record is important when
records are retrieved sequentially.

Note that although a collating key affects the stored order for records, the
collating value does not govern record lookups. For example, a collating sequence
may assign the same ordering for the keys ‘‘dog’’ and ‘‘DOG’’. However, both keys
do not have the same access (lookup) value. Therefore, when doing lookups, a
program should specify either the specific key value or a range of values that
includes the uppercase and lowercase combinations of the key. See the Guide to
OpenVMS File Applications for more information about accessing indexed records.
This field corresponds to the FDL attribute CONNECT KEY_OF_REFERENCE.

7.10 RAB$B_KSZ Field
The key size (KSZ) field contains a numeric value equal to the size, in bytes, of
the record key pointed to by the RAB$L_KBF field.

Note that the RAB$B_KSZ field has the same offset as the RAB$B_PSZ (prompt
buffer size) field but no conflict is presented because the fields are used in
mutually exclusive operations.

For indexed files, the size of the key depends on the key data type:

• For string data-type keys, a value from 1 through the size of the key field can
be used.

Note

The string data-type keys include STRING, DSTRING, COLLATED, and
DCOLLATED keys.

7–4 Record Access Block (RAB)

Record Access Block (RAB)
7.10 RAB$B_KSZ Field

If the specified size is less than the size of the key field, then only the leftmost
characters of each key are used for comparison.

• For numeric key data types, a value of 0 causes RMS to use the key data type
defined at file creation to determine the key size. A nonzero value is checked
against the defined size, and an error is returned if they are not equal.

Note that for DECnet for OpenVMS operations, the RAB$B_KSZ field must be
explicitly specified as a nonzero value because the key data type information
might not be available to RMS at the local node.

The size of the relative record number of a record in a relative file or a sequential
file with fixed-length records is a longword, positive, integer value; therefore, the
key size is 4. For relative record numbers, the default value of 0 causes a key size
of 4 to be used. For DECnet for OpenVMS operations, however, the RAB$B_KSZ
field must be explicitly specified as 4 for relative files.

With indexed files, the size of key values in bytes of an indexed file can be from 1
to 255 bytes.

A program can access indexed file records directly in one of four ways:

• By an exact match

• By an approximate match

• By a generic match

• By a combination of approximate and generic matches

The program specifies the type of match using the RAB$B_KSZ field together
with the search options from the RAB$L_ROP field (see Indexed File Options).

• To specify an exact match, do the following:

Set a value in the RAB$B_KSZ field equal to the number of bytes in the
key.

Reset the appropriate search bit, RAB$V_EQNXT or RAB$V_NXT.

Specify the search direction by doing the following:

* For a forward search (toward the end of the file), be sure that the
RAB$V_REV bit is not set.

* For a reverse search (toward the beginning of the file), set the
RAB$V_REV bit.

Note

Compaq recommends the use of the mask designator (M) in specifying
the equal or next and the next search options because it is more
universally applicable, especially for high-level languages. Using
mask designators, you can specify multiple options in a single instruction.
See the description of the reverse search option in RAB$V_REV.

• To specify an approximate match, do the following:

Set a value in the RAB$B_KSZ field equal to the number of bytes in the
key.

Record Access Block (RAB) 7–5

Record Access Block (RAB)
7.10 RAB$B_KSZ Field

Specify the type of match by doing the following:

* If you want to match on a record having either an equal key value
or the next key value (greater for ascending sort order, less for
descending sort order) set the RAB$V_EQNXT bit.

Note

Sort order is established in the data type (XAB$B_DTP) field of the
associated XABKEY when the file is created.

* If you want to match on a record having the next value and to ignore
equal key values, set the RAB$V_NXT bit.

Specify the search direction by doing the following:

* For a forward search (toward the end of the file), be sure that the
RAB$V_REV bit is not set.

* For a reverse search (toward the beginning of the file), set the
RAB$V_REV bit.

• To specify a generic match, do the following:

Set a value in the RAB$B_KSZ field equal to the number of leading bytes
in the key you want to match on.

Reset the appropriate search bit, RAB$V_EQNXT or RAB$V_NXT

Specify the search direction by doing the following:

* For a forward search (toward the end of the file), be sure that the
RAB$V_REV bit is not set.

* For a reverse search (toward the beginning of the file), set the
RAB$V_REV bit.

• To specify an approximate generic match, do the following:

Set a value in the RAB$B_KSZ field equal to the number of leading bytes
in the key you want to match on.

Specify the type of match by doing the following:

* If you want to match on a record having a generic key value equal to
the specified generic key value or the next generic key value, set the
RAB$V_EQNXT bit.

* If you want to match on a record having the next generic key value
but to ignore equal generic key values, set the RAB$V_NXT bit.

Specify the search direction by doing the following:

* For a forward search (toward the end of the file), be sure that the
RAB$V_REV bit is not set.

* For a reverse search (toward the beginning of the file), set the
RAB$V_REV bit.

7–6 Record Access Block (RAB)

Record Access Block (RAB)
7.11 RAB$B_MBC Field

7.11 RAB$B_MBC Field
The multiblock count (MBC) field applies only to sequential disk file operations.
This field specifies the number of blocks, in the range of 0 through 127, to be
allocated to each process (local) I/O buffer and, correspondingly, the number of
blocks of data to be transferred in each I/O unit. If you do not specify this field,
or if you specify the value 0, RMS uses the process default for the multiblock
count. If the process default is 0, RMS uses the system default, and if the system
default is 0, RMS assigns each local buffer one block.

Note

The DCL command SET RMS_DEFAULT is used to set process or system
defaults.

When it invokes the Connect service, RMS uses the RAB$B_MBC field to
determine the number of blocks in the I/O transfers for this record stream and
allocates a local buffer with the appropriate storage capacity. Note that either
the RAB$B_MBF (multibuffer count) field or the XAB$_MULTIBUFFER_COUNT
XABITM field (see Section 12.6) can be used to allocate multiple local buffers of
this size for the record stream.

For shared sequential file operations, the first accessor of the file uses the
RAB$B_MBC field to establish the global buffer size for all subsequent accessors.

The use of the RAB$B_MBC field optimizes data throughput for sequential
operations, and does not affect the structure of the file. It reduces the number
of disk accesses for record operations, resulting in faster program execution.
However, the extra buffering increases memory requirements.

Note that the RAB$B_MBC field is not used with block I/O. With multiblocks, the
number of blocks in an I/O unit is fixed by the multiblock count, whereas in block
I/O operations the number of blocks being transferred is specified by the program.

This field corresponds to the FDL attribute CONNECT MULTIBLOCK_COUNT
and it is not supported for DECnet for OpenVMS operations.

7.12 RAB$B_MBF Field
The multibuffer count (MBF) field indicates the number (0 to 255) of process
(local) I/O buffers you want RMS to allocate when you invoke the Connect service
for a record stream.

Note

You can optionally override the RAB$B_MBF field with the XAB$_
MULTIBUFFER_COUNT XABITM (see Section 12.6 for information),
which allows you to specify up to 32,767 local buffers.

If this field is not specified or is set to 0, and if the XAB$_MULTIBUFFER_
COUNT XABITM is not implemented, RMS uses the process default for the
particular file organization and device type. If the process default is also 0, the
system default for the particular file organization and device type applies. If the
system default is 0, RMS allocates the record stream one local buffer. However,
if you specify either the read-ahead option or the write-behind option, RMS
allocates at least two buffers.

Record Access Block (RAB) 7–7

Record Access Block (RAB)
7.12 RAB$B_MBF Field

RMS allocates at least one local buffer for sequential and relative files and at
least two buffers for indexed files, unless the file is to be processed with block I/O
operations only. Multiple local buffers can be used efficiently to overlap I/O time
with compute time, particularly in read-ahead or write-behind processing (see
RAB$L_ROP for information on these options), and to increase use of the local
buffers (as compared to disk I/O) when performing random processing.

Note that the RAB$B_MBF field is not used when block I/O access is specified
with the Open, Create, or Connect services because no local buffers are required.

This field corresponds to the FDL attribute CONNECT MULTIBUFFER_COUNT
and it is not supported for DECnet for OpenVMS operations.

7.13 RAB$L_PBF Field
The prompt buffer address (PBF) field points to a character string to be used as a
prompt for terminal input. Note that the RAB$L_PBF field has the same offset
as the RAB$B_KBF (key buffer address) field but, because the fields are used in
mutually exclusive operations, no conflict is presented.

This field contains the symbolic address of the buffer containing the prompt
character string. If you select the RAB$V_PMT option of the RAB$L_ROP field
when you invoke a Get service, RMS outputs this character string to the terminal
before the Get service begins its task.

To perform any carriage control on the terminal, you must insert the appropriate
carriage control characters into this character string.

This field is not supported for DECnet for OpenVMS operations; it is ignored.

7.14 RAB$B_PSZ Field
The prompt buffer size (PSZ) field indicates the size of the prompt character
string to be used as a terminal prompt. This field contains the size, in bytes, in
the range of 0 to 255.

Note that the RAB$B_PSZ field has the same offset as the RAB$B_KSZ (key
buffer size) field but no conflict is presented because the fields are used in
mutually exclusive operations.

This field is not supported for DECnet for OpenVMS operations; it is ignored.

7.15 RAB$B_RAC Field
The record access mode (RAC) field indicates the method of retrieving or inserting
records in the file; that is, whether records are read (or written) sequentially,
directly, or by record file address. Only one access method can be specified for
any single record operation, but you can change the record access mode between
record operations.

The RAB$B_RAC field is a keyword value field in which each record access mode
has a symbolic offset. Options are identified using mnemonics. Each access mode
in the RAB$B_RAC field has its own symbolic constant. For example, the SEQ
(sequential record) access mode has the symbolic constant RAB$C_SEQ.

The RAB$B_RAC field is not applicable to block I/O operations and there is no
corresponding FDL attribute for this field.

7–8 Record Access Block (RAB)

Record Access Block (RAB)
7.15 RAB$B_RAC Field

Options
RAB$C_SEQ
Indicates sequential record access mode (the default); it can be specified with any
type of file organization.

Records read from (or written to) sequential files are accessed in chronological
order. That is, older records are accessed before newer records.

Records read sequentially from indexed files are accessed by the key of reference
according to the key’s sort order. Where records have duplicate keys, older records
are read before newer records, regardless of the key’s sort order.

For example, assume an ascending key indexed file with four 2-byte records
(A1, B1, B2, C1), where the key is the first byte of each record. When processed
sequentially, the records are encountered in the following order:

A1 B1 B2 C1

Here, records B1 and B2 have the duplicate key B, but record B1 was inserted
chronologically before record B2 and, therefore, is encountered before B2 when
the program is reading records sequentially.

If this file is reorganized as a descending-key indexed file, the records are
encountered in the following order:

C1 B1 B2 A1

Note that the chronological order of insertion for the two records with duplicate
keys is maintained without regard to sort order.

When records are written sequentially to indexed files, RMS verifies that the key
value of each successive record is ordered correctly with respect to the key value
in the previously written record. For example, with a descending key of reference,
RMS ensures that the key value of the third record written is less than the value
of the second record.

RAB$C_KEY
Indicates random access by key. For relative files and sequential files on disk
with fixed-length records, random access is by relative record number. Indexed
files are accessed directly by specifying the appropriate value for the key of
reference.

RAB$C_RFA
Indicates random access by record file address; used for all disk file organizations.

7.16 RAB$L_RBF Field
When a program invokes a service that writes records to a file, the output record
buffer address (RBF) field contains the symbolic address of the buffer that holds
the record to be written. The record size field (RAB$W_RSZ) specifies the size of
the record buffer.

When you invoke the Get or Read service, RMS sets this field to the address of
the record just read from the file; you do not need to initialize this field. The
record’s address can be based on whether the program specifies locate mode
(RAB$V_LOC). For locate mode, the address can be within an RMS buffer;
otherwise, the address is in the user buffer (RAB$L_UBF) provided by the
program.

Record Access Block (RAB) 7–9

Record Access Block (RAB)
7.17 RAB$W_RFA Field

7.17 RAB$W_RFA Field
The record file address (RFA) field comprises three words that define the physical
disk address (not symbolic address) of the current record.

After the successful execution of a record or block I/O operation, RMS sets the
RAB$W_RFA field to the address of the record acted on by the operation. This
address provides an unambiguous means of directly locating this same record at
some later time but is meaningful for disk files only.

You can store the contents of the RAB$W_RFA field for future use. When you
want to retrieve the record again, merely restore the saved contents of the field,
set the record access mode to random by RFA, and invoke a Get or Find service.

The following rules apply to RFA access:

• There are two additional names for portions of this field: RAB$L_RFA0 is the
offset of the first of three words; RAB$W_RFA4 is the offset of the last word.

• RFA values remain valid for a record in a sequential file as long as the
record is within the space defined by the logical file; that is, until the file is
truncated to a point before the record.

• RFA values remain valid for a record in a relative file for the life of the file;
that is, until the file is reorganized, using the Convert utility, or deleted.

• With an indexed file, RFA values remain valid until the file is reorganized,
using the Convert utility, or deleted. Note that the Convert/Reclaim utility
partially reorganizes a file while maintaining RFA values.

7.18 RAB$L_RHB Field
The fixed-length record header buffer (RHB) field contains the symbolic address
of the record header buffer, which RMS uses only when processing VFC records.

For a Get service, RMS strips the fixed control area portion of the record and
places it in the buffer whose address is specified in this field. For Put or Update
services, RMS writes the contents of the specified buffer to the file as the fixed
control area portion of the record.

If this field is not specified, RMS assumes the absence of a record header buffer.
When no record header buffer exists, the fixed control area is discarded for a Get
service, zeroed for a Put service, and left unchanged for an Update service.

The size of the fixed control area is defined in the FAB, using the FAB$B_FSZ
field. You must ensure that the buffer size described in the RAB$L_RHB field is
equal to the value specified by the FAB$B_FSZ field.

7.19 RAB$L_ROP Field
RAB$L_ROP is the symbolic offset for the RAB’s record-processing options (ROP)
field. This field specifies which of the various optional record operations are to be
implemented for the program.

The ROP is a 32-bit field in which each record-processing option has a
corresponding bit assignment to let you specify multiple options (multiple
bits can be set), when applicable. Each option has a unique symbolic offset and a
unique mask value but you need only specify the appropriate 3-letter mnemonic
when coding a function. For example, the end-of-file option is assigned symbolic
offset RAB$V_EOF, but to specify the option, you use the following MACRO
statement:

7–10 Record Access Block (RAB)

Record Access Block (RAB)
7.19 RAB$L_ROP Field

ROP=EOF

The record-processing option bits are never affected by record management
services.

This section describes the seven types of record-processing options alphabetically
by functional category:

• Connect service options

• Indexed file options

• Miscellaneous options

• Performance options

• Put service options

• Record locking options

• Terminal device options

This field corresponds to the FDL primary attribute CONNECT.

Table 7–2 lists the options alphabetically by category.

Table 7–2 Record Processing Options

Option Symbolic Offset

Connect Service Options

Block I/O RAB$V_BIO

End of file RAB$V_EOF

Read ahead RAB$V_RAH

Write behind RAB$V_WBH

Indexed File Options

Key greater than or equal RAB$V_EQNXT (or RAB$V_KGE)

Limit RAB$V_LIM

Load RAB$V_LOA

Key greater than RAB$V_NXT (or RAB$V_KGT)

Reverse search RAB$V_REV

Miscellaneous Options

Check for duplicate key RAB$V_CDK

Timeout RAB$V_TMO

(continued on next page)

Record Access Block (RAB) 7–11

Record Access Block (RAB)
7.19 RAB$L_ROP Field

Table 7–2 (Cont.) Record Processing Options

Option Symbolic Offset

Performance Options

Asynchronous RAB$V_ASY

Fast delete RAB$V_FDL

Locate mode RAB$V_LOC

Read ahead RAB$V_RAH

Synchronous status RAB$V_SYNCSTS

Write behind RAB$V_WBH

Put Service Options

Truncate on put RAB$V_TPT

Update-if RAB$V_UIF

Record Locking Options

Do not lock RAB$V_NLK

Nonexistent record RAB$V_NXR

Lock for read RAB$V_REA

Lock for write RAB$V_RLK

Ignore read lock RAB$V_RRL

Timeout RAB$V_TMO

Manual unlock RAB$V_ULK

Wait to lock RAB$V_WAT

Terminal Device Options

Cancel CTRL/O RAB$V_CCO

Convert RAB$V_CVT

Extended operation RAB$V_ETO

Prompt RAB$V_PMT

Purge type-ahead RAB$V_PTA

Read, no echo RAB$V_RNE

Read, no filter RAB$V_RNF

Timeout RAB$V_TMO

In the following text, each of the options is described under its symbolic offset.
For example, the asynchronous option is described under RAB$V_ASY.

Connect Service Options
RAB$V_BIO Block I/O; specifies that only block I/O operations are to occur,
when mixed record I/O and block I/O operations are allowed. This option is
meaningful only if the FAB$B_FAC FAB$V_BRO option was specified when the
file was opened (by a Create or Open service). When the RAB$V_BIO option is
set for the Connect service, only block I/O operations are allowed for this record
stream. When the RAB$V_BIO option is clear for the Connect service, only record
I/O operations are allowed when accessing a relative or indexed file and mixed

7–12 Record Access Block (RAB)

Record Access Block (RAB)
7.19 RAB$L_ROP Field

(block I/O and record I/O) operations are allowed for sequential files. This option
corresponds to the FDL attribute CONNECT BLOCK_IO.

RAB$V_EOF End-of-file; indicates that RMS is to position the record stream to
the end of the file for the connect record operation only. An application program
sets the EOF bit when it requires append access to a file. Append access provides
a convenient way of positioning the data entry pointer to point to the end of file
in order to append records. Shared append access is supported only for sequential
files. Unshared append access is supported for sequential, relative, and indexed
file organizations.

This option corresponds to the FDL attribute CONNECT END_OF_FILE.

RABV_RAH, RABV_WBH Read ahead and write behind; see explanation
under Performance Options.

Indexed File Options
Note that search operations have limited application with relative files. See the
Guide to OpenVMS File Applications for details.

Indexed file options can be enabled or disabled during any record operation.

RMS supports four search key options, two forward search and two reverse
search, using combinations of the three search bits shown in the following table.

Search Option Definition

RAB$V_EQNXT Return the next record having a key value equal to, or greater
than, the current key of reference, according to the specified sort
order.

RAB$V_NXT Return the next record having a key value greater than the
current key of reference, according to the specified sort order.

RAB$V_REV When used with either of the first two options, reverses the search
direction, that is, searches toward the beginning of the file.

RAB$V_EQNXT When you select the RAB$V_EQNXT option and ascending sort
order, RMS returns the next record having a key value equal to or greater than
the value specified by the RAB$L_KBF and RAB$B_KSZ fields. If you specify
descending sort order, RMS returns the next record that contains a key value
equal to or less than the value specified by the RAB$L_KBF and RAB$B_KSZ
fields. In either case, the file is searched in the forward direction (toward the end
of the file) unless the reverse search key option is selected.

Note

Sort order is established in the data type field (symbolic offset XAB$B_
DTP) of the associated XABKEY when the file is created.

If the program specifies a RAB$V_EQNXT search and no record has a key value
identical to the specified search value, RMS returns the record with the next key
value according to the specified sort order. (See the description of the RAB$V_
NXT bit.)

If the program specifies a RAB$V_EQNXT search and a record with a key value
identical to the search key is found, RMS returns the record regardless of sort
order.

Record Access Block (RAB) 7–13

Record Access Block (RAB)
7.19 RAB$L_ROP Field

If the program specifies a reverse search by setting the RAB$V_EQNXT bit and
the RAB$V_REV bit, RMS reverses the search direction, searching toward the
beginning of the file.

Table 7–3 provides the search results for both ascending and descending sort
order in a file that has records containing one of three index keys (‘‘B’’, ‘‘K’’, and
‘‘Q’’), and three keys of reference (‘‘A’’, ‘‘K’’, and ‘‘Z’’). For example, assume the
current key of reference is ‘‘Z’’, the sort order is ascending, and the program is
looking for the next record having a key that is greater than the key of reference.
In this case, RMS returns RNF (record not found) because there are no records
that have a key greater than ‘‘Z’’ in the file.

Table 7–3 Search Option Results

Current Key of Reference

Resultant
Search Option Sort Order ‘‘A’’ ‘‘K’’ ‘‘Z’’

NXT Ascending ‘‘B’’ ‘‘Q’’ RNF

Descending RNF ‘‘B’’ ‘‘Q’’

EQNXT Ascending ‘‘B’’ ‘‘K’’ RNF

Descending RNF ‘‘K’’ ‘‘Q’’

REV + NXT Ascending RNF ‘‘B’’ ‘‘Q’’

Descending ‘‘B’’ ‘‘Q’’ RNF

REV + EQNXT Ascending RNF ‘‘K’’ ‘‘Q’’

Descending ‘‘B’’ ‘‘K’’ RNF

If neither a RAB$V_EQNXT search nor a RAB$V_NXT search is specified, an
exact key match is required unless a generic key match is specified. (See the
description of the RAB$B_KSZ bit.)

This option corresponds to the FDL CONNECT attribute KEY_GREATER_
EQUAL.

RAB$V_KGE This bit is logically synonymous with the RAB$V_EQNXT option
and is described under RAB$V_EQNXT.

RAB$V_KGT This bit is logically synonymous with the RAB$V_NXT option and
is described under RAB$V_NXT.

RAB$V_LIM This option is supported for indexed files only. It permits you to use
RMS as a limit sensor when accessing a file sequentially. When the RAB$V_LIM
bit is set, the key value defined by the RAB$L_KBF and RAB$B_KSZ fields (limit
key value) is compared to the key value in each record as it is accessed. When a
record is accessed that has a key value different from the limit key value, RMS
returns the RMS$_OK_LIM success status code.

This option corresponds to the FDL attribute CONNECT KEY_LIMIT.

RAB$V_LOA This option is supported for indexed files only. It specifies that
RMS is to load buckets according to the fill size established at file creation time.
The bucket fill size is established in the XAB$W_DFL and XAB$W_IFL fields
of the key definition XAB. If the LOA option is not specified, RMS ignores the
established bucket fill size; that is, buckets are completely filled.

This option corresponds to the FDL attribute CONNECT FILL_BUCKETS.

7–14 Record Access Block (RAB)

Record Access Block (RAB)
7.19 RAB$L_ROP Field

RAB$V_NXT If you select the RAB$V_NXT option and ascending sort order,
RMS returns the next record that has a key value greater than the value specified
by the RAB$L_KBF and RAB$B_KSZ fields. If descending sort order is specified,
RMS returns the next record having a key value less than the value specified by
the RAB$L_KBF and RAB$B_KSZ fields. In either case, the file is searched in
the forward direction (toward the end of the file) unless the reverse search key
option is selected.

If you specify neither RAB$V_NXT nor RAB$V_EQNXT, an exact key match is
required.

Note

Sort order is established in the data type XAB$B_DTP field of the
associated XABKEY when the file is created.

If the program specifies a reverse search by setting the RAB$V_NXT bit and
the RAB$V_REV bit, RMS reverses the search direction, searching toward the
beginning of the file. This option corresponds to the FDL CONNECT attribute
KEY_GREATER_THAN.

RAB$V_REV The RAB$V_REV option reverses the direction of the search when
used with either of the forward search key options in random keyed access only.
Sequential access still proceeds forward only, according to the sort order.

• RAB$V_REV + RAB$V_EQNXT—This combination of search key options
searches toward the beginning of the file and returns records having either
the same key value as the current key of reference, or a key value less than
the current key of reference, according to the specified sort order.

• RAB$V_REV + RAB$V_NXT—This combination of search key options
searches toward the beginning of the file and returns records having a key
value less than the current key of reference, according to the specified sort
order.

When a set of records having duplicate keys is encountered, RMS returns only
the first record in the set. An application that needs to access all of the records
having duplicate key values requires additional compiler or program logic.

In all cases, you specify search key options symbolically, using the mask bits in
the RAB$L_ROP field of the RAB structure. Table 7–4 identifies the results of all
combinations of the REV, EQNXT, and NXT bits.

Table 7–4 Keyed Search Combinations

Search Result REV EQNXT NXT

Equal (default) 0 0 0

Greater-than or equal 0 1 0

Greater-than (next) 0 0 1

RMS$_ROP error 0 1 1

RMS$_ROP error 1 0 0

Less-than or equal 1 1 0

(continued on next page)

Record Access Block (RAB) 7–15

Record Access Block (RAB)
7.19 RAB$L_ROP Field

Table 7–4 (Cont.) Keyed Search Combinations

Search Result REV EQNXT NXT

Less than (previous) 1 0 1

RMS$_ROP error 1 1 1

The reverse-search option includes a performance caching optimization to improve
performance when retrieving successive previous records. To take advantage of
this feature, specify full key sizes (RAB$B_KSZ) and select the RAB$V_NXT
search option.

Miscellaneous Options
RAB$V_CDK During RMS $GET operations, the CDK option allows applications
to look ahead for indexed file records with keys that duplicate the current key
of reference. If the RAB$V_CDK bit is set, and a record with a duplicate key is
detected during a successful $GET operation, RMS returns an alternate success
status, RMS$_OK_DUP. Note that this does not guarantee access to the record
with the duplicate key. For example, if the record is in a shared file, another
accessor may delete the record before your application can access it.

RAB$V_TMO Timeout; in addition to its use for terminals and preventing delays
due to record locks (described later), the RAB$V_TMO option serves a special
purpose for mailbox devices. If specified in combination with a timeout value of
0 (RAB$B_TMO), Get and Put services to mailbox devices use the IO$M_NOW
modifier. Doing so causes the operation to complete immediately, instead of
synchronizing with another cooperating writer or reader of the mailbox.

This option corresponds to the FDL attribute CONNECT TIMEOUT_ENABLE
and is not supported for DECnet for OpenVMS operations.

See the OpenVMS I/O User’s Reference Manual for a further discussion of
mailboxes.

Performance Options
RAB$V_ASY Asynchronous; indicates that this I/O operation is to be performed
asynchronously. When you specify RAB$V_ASY, you pass the address of the RAB
as an argument to the AST routine. RMS returns control to your program as
soon as an I/O operation is initiated, even though that operation might not yet
be completed. This option is normally used with the Wait service to synchronize
with operation completion.

The RAB$V_ASY option corresponds to the FDL attribute CONNECT
ASYNCHRONOUS.

RAB$V_FDL Fast delete; this option reduces the time required to delete records
in indexed files when you are using duplicate alternate keys. The saving in time
is achieved by temporarily avoiding the processing needed to eliminate pointers
from alternative indexes to the record. However, there is a cost associated with
this option. First, the structural linkage from the alternate indexes remains in
place but has no utility; therefore, a certain amount of space is wasted. Second,
if the program tries to access the deleted record from an alternate index, RMS
traverses the linkage, finds the record no longer exists, and then generates a
‘‘nonexistent record’’ error message that the program must process.

You should take the fast delete option only if the immediate saving in time is of
greater benefit to you than the associated costs in space and overhead.

7–16 Record Access Block (RAB)

Record Access Block (RAB)
7.19 RAB$L_ROP Field

This option corresponds to the FDL attribute CONNECT FAST_DELETE.

RAB$V_LOC Locate mode; under specified conditions, you have the option of
specifying locate mode instead of move mode, which is the default method of
buffer handling. In locate mode, your program accesses records directly in an I/O
buffer, thus eliminating the overhead of moving records between I/O buffers and
application program buffers.

The RAB$V_LOC option activates locate mode. RMS supports the locate mode
option for the Get service only and ignores requests for the option if one of the
following conditions exists:

• Record crosses one or more block boundaries

• The FAB$B_FAC field FAB$V_UPD option is set

• Process-permanent files are accessed indirectly

• Records are compressed (applies to indexed Prolog 3 files only)

• Global buffers

• Multistreaming

In move mode, RMS transfers individual records between I/O buffers and the
application’s program buffer. When the application program invokes a Get
service, RMS reads a block or set of blocks (for sequential files) or a bucket (for
relative and indexed files) into an I/O buffer. It then selects the desired record
from the I/O buffer and moves it into the program-specified location. Locate mode
eliminates the last step by accessing the record directly in the I/O buffer.

This option corresponds to the FDL attribute CONNECT LOCATE_MODE. It
is not supported for DECnet for OpenVMS operations, which always use move
mode.

RAB$V_RAH Read-ahead; used with multiple local buffers to indicate read-
ahead operations. RMS issues I/O requests as soon as possible when a local
buffer is needed. When the first local buffer is filled, the I/O operation takes place
for the first local buffer as the second local buffer receives the next record; the
second local buffer soon becomes filled and the next record is read into the first
local buffer as the I/O operation for the second local buffer occurs. The system
does not have to wait for I/O completion, which permits an overlapping of input
and computing. Read ahead is ignored for unit record device I/O and is supported
only for the nonshared sequential file organization. If the RAB$V_RAH option
is specified when the multibuffer count (specified by RAB$B_MBF or by the
XAB$_MULTIBUFFER_COUNT XABITM) is 0, two local buffers are allocated to
allow multibuffering. If two or more local buffers are specified, multibuffering is
allowed regardless of what was specified to the Connect service. Conversely, if a
buffer count of 1 is specified, multibuffering is disabled regardless of what was
specified to the Connect service.

This option corresponds to the FDL attribute CONNECT READ_AHEAD and it is
not supported for DECnet for OpenVMS operations.

RAB$V_SYNCSTS When you select this option, RMS returns the success status
RMS$_SYNCH if the requested service completes its task immediately. The most
common reason for not completing a task immediately is that the task involves
I/O operations. If the service completes synchronously (that is, it has not returned
to caller’s execution mode prior to completion), RMS returns RMS$_SYNCH as
the completion status in R0, stores the true completion status (success or failure)
in RAB$L_STS, and does not deliver an AST.

Record Access Block (RAB) 7–17

Record Access Block (RAB)
7.19 RAB$L_ROP Field

The status RMS$_SYNCH is returned in R0 only. Refer to the RAB$L_STS field
for the actual success status or failure status of the task.

The RAB$V_SYNCSTS option should be used in conjunction with the RAB$V_
ASY option.

RAB$V_WBH Write-behind; used with multiple local buffers. When one local
buffer is filled, the next record is written into the next local buffer while the I/O
operation takes place for the first local buffer. The system does not have to wait
for I/O completion, which allows for an overlapping of computing and output.
Write-behind is ignored for unit record devices. This option is implemented
only for the nonshared sequential file organization. If the RAB$V_WBH option
is specified when the multibuffer count (specified by RAB$B_MBF or by the
XAB$_MULTIBUFFER_COUNT XABITM) is 0, two local buffers are allocated to
allow multibuffering. If two or more local buffers are specified, multibuffering is
allowed regardless of what was specified to the Connect service. Conversely, if
you specify a multibuffer count of 1, RMS disables multibuffering regardless of
what was specified to the Connect service.

This option corresponds to the FDL attribute CONNECT WRITE_BEHIND and it
is not supported for DECnet for OpenVMS operations.

Put Service Options
RAB$V_TPT Truncate-on-put; specifies that a Put or Write service using
sequential record access mode can occur at any point in the file, truncating
the file at that point. The end-of-file mark is set to the position immediately
following the last byte written.

Truncating a file deletes all records beyond the point of truncation. In a shared
environment, the application must ensure proper interpretation of a truncate
operation. The process must have specified truncate access by setting the FAB$V_
TRN option in the FAB$B_FAC field when the file was opened or created.

This option applies only to sequential files and corresponds to the FDL attribute
CONNECT TRUNCATE_ON_PUT.

RAB$V_UIF Update-if; indicates that if a Put service is invoked for a record that
already exists in the file, the operation is converted to an Update. This option
is necessary to overwrite (as opposed to update) an existing record in relative
and indexed files. Indexed files using this option must not allow duplicates on
the primary key. The process must have specified Update access by setting the
FAB$V_UPD option in the FAB$B_FAC field when the file was opened or created.

When using this option with shared files and automatic record locking, you should
be aware that the Put service, unlike the Update service, briefly releases record
locks until it is determined that an Update should take place. At that point, the
record is relocked for the Update operation. Note that during the time the Put
operation is being converted into an Update operation, it is possible that another
record stream could update or delete the record.

This option corresponds to the FDL attribute CONNECT UPDATE_IF.

Record Locking Options
This section describes the record-processing options related to controlling record
locking. Except as noted, these options apply to all file organizations and can be
selected for each operation.

7–18 Record Access Block (RAB)

Record Access Block (RAB)
7.19 RAB$L_ROP Field

RAB$V_NLK Do not lock record; specifies that the record accessed through a
Get or Find service is not to be locked. The RAB$V_NLK option takes precedence
over the RAB$V_ULK option.

This option corresponds to the FDL attribute CONNECT NOLOCK.

RAB$V_NXR Nonexistent record processing; specifies that if the record directly
accessed through a Get or Find service does not exist (was never inserted into the
file or was deleted), the service is to be performed anyway. For a Get service, the
previous contents of a deleted record are returned. The processing of a deleted
record returns a completion status code of RMS$_OK_DEL, and the processing of
a record that never existed returns RMS$_OK_RNF.

This option applies only to relative files and it corresponds to the FDL attribute
CONNECT NONEXISTENT_RECORD.

RAB$V_REA Lock record for read; specifies that the record is to be locked for a
read operation for this process, while allowing other accessors to read the record
(but not to modify the record). Use this option only when you do not want the file
to be modified by any subsequent activities. Use the RAB$V_RLK option to allow
possible subsequent modification of the file.

This option corresponds to the FDL attribute CONNECT LOCK_ON_READ.

RAB$V_RLK Lock record for write; specifies that a user who locks a record for
modification is allowing the locked record to be read by other accessors. If both
RAB$V_RLK and RAB$V_REA are specified, the RAB$V_REA option is ignored.
The RAB$V_NLK option takes precedence over all others.

This option corresponds to the FDL attribute CONNECT LOCK_ON_WRITE.

RAB$V_RRL Read regardless of lock; read the record even if another stream
has locked the record. This option allows the reader some control over access.
If a record is locked against all access and this bit is set for either a Find
or Get service request, the record is returned without a lock for all three file
organizations. The returned status, however, varies, depending on the file
organization:

• The service returns RMS$_SUC for sequential files.

• The service returns alternate success status, RMS$_OK_RRL, for relative and
indexed files.

For relative and indexed file applications, the RMS$_OK_RRL status has the
added value of indicating when the record is returned without a lock.

This option corresponds to the FDL attribute CONNECT READ_REGARDLESS.

RAB$V_TMO Timeout; specifies that if the RAB$V_WAT option was specified,
the RAB$B_TMO field contains the maximum time value, in seconds, to be
allowed for a record input wait caused by a locked record. If the timeout period
expires and the record is still locked, RMS aborts the record operation with
the RMS$_TMO completion status. Note that the maximum time allowed for a
timeout is 255 seconds. Other functions of the RAB$V_TMO option are listed
under Miscellaneous Options.

This option corresponds to the FDL attribute CONNECT TIMEOUT_ENABLE
and it is not supported for DECnet for OpenVMS operations.

Record Access Block (RAB) 7–19

Record Access Block (RAB)
7.19 RAB$L_ROP Field

RAB$V_ULK Manual unlocking; prohibits RMS from automatically unlocking
records. Instead, once locked (through a Get, Find, or Put service), a record must
be specifically unlocked by a Free or Release service. The RAB$V_NLK option
takes precedence over the RAB$V_ULK option.

This option corresponds to the FDL attribute CONNECT MANUAL_
UNLOCKING.

RAB$V_WAT Wait; if the record is currently locked by another stream, wait
until it is available. This option can be used with the RAB$V_TMO option to
limit waiting periods to a specified time interval.

This option corresponds to the FDL attribute CONNECT WAIT_FOR_RECORD.

Terminal Device Options
This section describes the record-processing options related to terminal devices.
These options map directly into equivalent modifiers to the QIO function code.
For a further discussion of their effects, see the OpenVMS I/O User’s Reference
Manual. These options can be selected for each operation.

RAB$V_CCO Cancel CTRL/O; guarantees that terminal output is not discarded
if the operator presses Ctrl/O.

This option corresponds to the FDL attribute CONNECT TT_CANCEL_
CONTROL_O and it is not supported for DECnet for OpenVMS operations.

RAB$V_CVT Convert; changes characters to uppercase on a read from a
terminal.

This option corresponds to the FDL attribute CONNECT TT_UPCASE_INPUT
and it is not supported for DECnet for OpenVMS operations.

RAB$V_ETO Extended terminal operation; indicates presence of a terminal XAB
(XABTRM) to describe terminal input using extended terminal characteristics.
Note that if this option is specified, all other RAB$L_ROP options specific to
terminal devices are ignored (including the RAB$V_TMO option).

This option is not supported for DECnet for OpenVMS operations.

RAB$V_PMT Prompt option; indicates that the contents of the prompt buffer are
to be used as a prompt for reading data from a terminal (see RAB$L_PBF field).

This option corresponds to the FDL attribute CONNECT TT_PROMPT and it is
not supported for DECnet for OpenVMS operations.

RAB$V_PTA Purge type-ahead; eliminates any information that might be in the
type-ahead buffer on a read from a terminal.

This option corresponds to the FDL attribute CONNECT TT_PURGE_TYPE_
AHEAD and it is not supported for DECnet for OpenVMS operations.

RAB$V_RNE Read no echo; indicates that input data is not echoed (displayed)
on the terminal as it is entered on the keyboard.

This option corresponds to the FDL attribute CONNECT TT_READ_NOECHO
and it is not supported for DECnet for OpenVMS operations.

RAB$V_RNF Read no filter; indicates that CTRL/U, CTRL/R, and DELETE are
not to be considered control commands on terminal input but are to be passed to
the application program.

This option corresponds to the FDL attribute CONNECT TT_READ_NOFILTER
and it is not supported for DECnet for OpenVMS operations.

7–20 Record Access Block (RAB)

Record Access Block (RAB)
7.19 RAB$L_ROP Field

RAB$V_TMO Timeout; for terminal operations, indicates that the content of
the RAB$B_TMO field is to be used to determine the number of seconds allowed
between characters received during terminal input. If the timeout period expires,
RMS returns an error status (see RAB$B_TMO). Other functions of the RAB$V_
TMO option are listed under Miscellaneous Options and Record Locking Options.

This option corresponds to the FDL attribute CONNECT TIMEOUT_ENABLE
and is not supported for DECnet for OpenVMS operations.

7.20 RAB$W_ROP_2 Field
The RAB$W_ROP_2 field is the symbolic offset for an extension to the RAB’s
record-processing options (RAB$L_ROP) field. This field specifies which of the
extended record options are to be implemented for an application.

The ROP_2 field is a 16-bit field in which each extended record-processing option
has a corresponding bit assignment to let you specify multiple options (multiple
bits can be set) when applicable.

Table 7–5 lists the options alphabetically and their associated symbols. You may
specify all these symbols, which facilitate common code, in applications that
execute on either platform. The functionality for the RAB$V_NQL option is not
implemented on the VAX platform.

The ROP_2 field was implemented on the Alpha platform with OpenVMS
V7.2–1H1, on the VAX platform with OpenVMS V7.3. The ROP_2 field and its
options are not supported for DECnet for OpenVMS operations and have no
corresponding FDL attributes.

Table 7–5 ROP_2 Record Processing Options

Option Symbolic Offset

No Query Locking RAB$V_NQL

No Deadlock Wait RAB$V_NODLCKWT

No Deadlock Blocking RAB$V_NODLCKBLK

Options
This section describes the options available for the RAB$W_ROP_2 field.

RAB$V_NQL No Query Locking. Applications wishing to read records without
any consideration for record locking (see the description of the no query record
locking option in the Guide to OpenVMS File Applications) may use this option
for read ($get/$find) operations, and avoid the processing associated with record
locking calls to the lock manager. This option is applicable to record processing
for both local and global buffers and to all three file organizations (sequential,
relative, and indexed).

This option takes precedence over all other record locking options (see the
RAB$L_ROP field in this section). You can set this option for each record
operation for a $get or $find. You should set it only if the current read ($get
or $find) operation is not followed by either an $update or a $delete.

This option is implemented on the Alpha platform and is ignored on the VAX
platform.

Record Access Block (RAB) 7–21

Record Access Block (RAB)
7.20 RAB$W_ROP_2 Field

RAB$V_NODLCKWT No Deadlock Wait. RMS uses the distributed lock manager
for record locking. The lock manager provides deadlock detection. The lock
manager allows an application to control deadlock detection with regard to
particular locks using LCK$V_NODLCKWT (see the OpenVMS System Services
Reference Manual: A–GETUAI). By selecting this option, you request RMS to
specify LCK$V_NODLCKWT in its record locking requests for the application.
You can set the option for each record operation for a $get or $find. This option is
implemented on both VAX and Alpha platforms.

RAB$V_NODLCKBLK No Deadlock Blocking. RMS uses the distributed lock
manager for record locking. The lock manager provides deadlock detection. The
lock manager allows an application to control deadlock detection with regard to
particular locks using LCK$V_NODLCKBLK (see the OpenVMS System Services
Reference Manual: A–GETUAI). By selecting this option, you request RMS to
specify LCK$V_NOLCKBLK in its record locking requests for the application.
You can set the option for each record operation for a $get or $find. This option is
implemented on both VAX and Alpha platforms.

7.21 RAB$W_RSZ Field
The record size (RSZ) field contains the size, in bytes, of the record to which the
record buffer address (RAB$L_RBF) field points. For a Write service, the range
is 1 through 65,535. For a Put or Update service, the range is 0 to the maximum
value shown in Table 4–4. The record size field specifies the size of a record that
a Put or Update service can write, or the number of bytes that a Write (block I/O)
service can write. The Update service requires the record size field only if the file
contains variable-length records or VFC records.

On input from a file, RMS sets this field to indicate the length, in bytes, of the
record that a Get service transfers or that a Read service (block I/O) reads.

Three notes apply to this field:

• After a Get service, RMS places the record size in the RAB$W_RSZ field.
On a Read service, RMS sets the RAB$W_RSZ field to the number of bytes
actually transferred.

• For variable with fixed-length control records, RMS does not include the size
of the fixed control area in the RAB$W_RSZ field.

• For block I/O operations, some devices require that an even number of bytes
be transferred. No user action is required because RMS automatically rounds
the number of transfers up to an even number.

7.22 RAB$L_STS Field
RMS sets the completion status code (STS) field together with the success or
failure status codes for a record operation before returning control to your
program. For an asynchronous operation that has been initiated but not yet
completed, this field is 0. When the operation is complete, the field is updated
with the completion status. See Chapter 2 for additional details about signaling
RMS status codes. Potential error codes for specific operations are listed with
their descriptions in Part III.

7–22 Record Access Block (RAB)

Record Access Block (RAB)
7.23 RAB$L_STV Field

7.23 RAB$L_STV Field
The completion status value (STV) field communicates additional completion
information to your program, on the basis of the type of operation and the
contents of the completion status code field. For additional information on the
RAB$L_STS and RAB$L_STV fields, see Part I.

The RAB$L_STV field can be accessed using alternate symbolic offsets; RAB$W_
STV0 is the location of the first word and RAB$W_STV2 is the location of the
second word within RAB$L_STV.

7.24 RAB$B_TMO Field
The timeout (TMO) field indicates the maximum number of seconds, in the range
0 to 255, that RMS should wait for an operation to conclude. If the operation does
not conclude within the specified timeout period, RMS returns an error status
code.

To use this field, you must also specify the RAB$V_TMO record-processing option.

For a Get service using a terminal device, this value specifies the number of
seconds to wait between the characters being typed. If you specify 0 along with
RAB$V_TMO, the current contents of the type-ahead buffer are returned.

When you use a wait-on-record lock (RAB$V_WAT) with a Get, Find, or Put
service, this value specifies the maximum number of seconds for RMS to wait for
the record to become available.

Note that if the RAB$B_TMO field contains a value of 0 and RAB$V_TMO is set
when you invoke either a Get or Put service to a mailbox device, the operation
terminates immediately, rather than waiting for another process. For example, if
you invoke the Put service to a mailbox device with the RAB$B_TMO field clear,
the Put service does not wait for the receiving process to get the record.

This field corresponds to the FDL attribute CONNECT TIMEOUT_PERIOD and
it is not supported for DECnet for OpenVMS operations.

7.25 RAB$L_UBF Field
The user record buffer address (UBF) field indicates the location of a record or
block buffer.

Note

When you invoke the Get service, RMS takes control of the record buffer
and can modify it. RMS returns the record size and only guarantees the
contents from where it accessed the record to the completion of the record.

This field contains the symbolic address of a work area (buffer) within your
program. The size of this buffer must be defined in the RAB$W_USZ (user record
area size) field.

When you invoke a Get service, this field must contain the buffer address,
regardless of the record transfer mode (locate or move). This option also applies
when you invoke the Read service for block I/O. However, a Put or Write service
never needs a user buffer.

Record Access Block (RAB) 7–23

Record Access Block (RAB)
7.26 RAB$W_USZ Field

7.26 RAB$W_USZ Field
The user record buffer size (USZ) field indicates the length (1 through 65,535
bytes) of the user record buffer (RAB$L_UBF).

The user record buffer should be large enough to contain the largest record in the
file. If the buffer is not large enough to accommodate a record obtained by a Get
service operation, RMS moves as much of the record as possible into the buffer
and returns a warning status code.

The value in this field specifies the transfer length, in bytes, for block I/O
operations with a Read service and for a Get service to UDF (undefined) format
sequential files.

7.27 RAB$L_XAB Field
The extended attribute block address (XAB) field contains the symbolic address of
a XAB control block that you want to use when performing an operation such as
a Get service for a terminal device. A value of 0 (the default) indicates no XABs
for this record stream.

For certain record operations, you can associate XABs with a RAB to convey
additional attributes about an operation. (See Section 1.2.2 for the description of
a XAB.)

7–24 Record Access Block (RAB)

8
64-Bit Record Access Block (RAB64)

On an Alpha system, the 64-bit record access block (RAB64) is an extension of
the RAB (described in Chapter 7) that allows OpenVMS Alpha users to use 64-bit
addresses for the following I/O buffers:

• UBF (user record buffer)

• RBF (record buffer)

• RHB (fixed-length record header buffer; fixed portion of VFC record format)

• KBF (key buffer containing the key value for random access)

RAB64 has fields corresponding to all the RAB fields, plus seven additional fields
to accommodate 64-bit addressing.

8.1 Summary of Fields
The additional fields in the extended RAB64 data structure are summarized at
the beginning of Table 8–1 and are described in this chapter. All the other RAB64
fields are exactly like their RAB counterparts described in Chapter 7, unless
noted otherwise in this chapter.

Table 8–1 gives the symbolic offset, the size, the RAB cross-reference, and a brief
description for each RAB64 field.

Table 8–1 RAB64 Fields

Field Offset
Size
(Bytes) RAB Cross-Reference Description

Alpha-Only RAB64 Fields Described in this Chapter 1:

RAB64$Q_CTX 8 None User context (64-bit)

RAB64$PQ_KBF 8 None Key buffer 64-bit address

RAB64$PQ_RBF 8 None Record buffer 64-bit
address

RAB64$PQ_RHB 8 None Record header buffer
64-bit address

RAB64$Q_RSZ 8 None Record buffer size

RAB64$PQ_UBF 8 None User record buffer 64-bit
address

RAB64$Q_USZ 8 None User record buffer size

1None of these fields have FDL equivalents.

(continued on next page)

64-Bit Record Access Block (RAB64) 8–1

64-Bit Record Access Block (RAB64)
8.1 Summary of Fields

Table 8–1 (Cont.) RAB64 Fields

Field Offset
Size
(Bytes) RAB Cross-Reference Description

RAB64 Fields Equivalent to RAB Fields Described in Chapter 7:

RAB64$B_BID 2 1 See RAB$B_BID in Section 7.2 Block identifier

RAB64$L_BKT 4 See RAB$L_BKT in Section 7.3 Bucket code

RAB64$B_BLN 3 1 See RAB$B_BLN in Section 7.4 Block length

RAB64$L_CTX 4 See RAB$L_CTX in Section 7.5 User context

RAB64$L_FAB 4 See RAB$L_FAB in Section 7.6 File access block address

RAB64$W_ISI 4 2 See RAB$W_ISI in Section 7.7 Internal stream identifier

RAB64$L_KBF 4 See RAB$L_KBF in Section 7.8 Key buffer address

RAB64$B_KRF 1 See RAB$B_KRF in Section 7.9 Key of reference

RAB64$B_KSZ 1 See RAB$B_KSZ in Section 7.10 Key size

RAB64$B_MBC 1 See RAB$B_MBC in Section 7.11 Multiblock count

RAB64$B_MBF 1 See RAB$B_MBF in Section 7.12 Multibuffer count

RAB64$L_PBF 4 See RAB$L_PBF in Section 7.13 Prompt buffer address

RAB64$B_PSZ 1 See RAB$B_PSZ in Section 7.14 Prompt buffer size

RAB64$B_RAC 1 See RAB$B_RAC in Section 7.15 Record access mode

RAB64$L_RBF 4 See RAB$L_RBF in Section 7.16 Record buffer address

RAB64$W_RFA 6 See RAB$W_RFA in Section 7.17 Record file address

RAB64$L_RHB 4 See RAB$L_RHB in Section 7.18 Record header buffer
address

RAB64$L_ROP 4 See RAB$L_ROP in Section 7.19 Record-processing options

RAB64$W_ROP_2 2 See RAB$W_ROP_2 in Section 7.20 Extended record-
processing options

RAB64$W_RSZ 2 See RAB$W_RSZ in Section 7.21 Record buffer size

RAB64$L_STS 4 4 See RAB$L_STS in Section 7.22 Completion status code

RAB64$L_STV 4 4 See RAB$L_STV in Section 7.23 Status value

RAB64$W_STV0 5 2 See RAB$L_STV in Section 7.23 Low-order word status
value

RAB64$W_STV2 5 2 See RAB$L_STV in Section 7.23 High-order word status
value

RAB64$B_TMO 1 See RAB$B_TMO in Section 7.24 Timeout period

RAB64$L_UBF 4 See RAB$L_UBF in Section 7.25 User record buffer address

RAB64$W_USZ 2 See RAB$W_USZ in Section 7.26 User record buffer size

RAB64$L_XAB 4 See RAB$L_XAB in Section 7.27 Next XAB address

2The $RAB64 macro statically initializes this field to identify this control block as a RAB.
3The $RAB64 macro statically initializes this field to identify this control block as a RAB64. If the user initializes this
field, it must be initialized to RAB64$C_BLN64.
4This field cannot be initialized by the $RAB64 macro.
5Alternate definition of RAB64$L_STV field.

The RAB64 $PQ_ fields can hold either 64-bit addresses or 32-bit addresses
sign-extended to 64-bits. Therefore, you can use these fields in all applications
whether or not you are using 64-bit addresses.

8–2 64-Bit Record Access Block (RAB64)

64-Bit Record Access Block (RAB64)
8.1 Summary of Fields

If your application already uses RAB fields, only minimal source code changes are
required to use 64-bit RMS support. The RAB64 64-bit counterpart to a 32-bit
address field is used only if the following two conditions exist:

• The RAB64$B_BLN field has been initialized to RAB64$C_BLN64.

• The 32-bit address cell in the 32-bit portion of the RAB64 contains �1.

Because the RAB64 is an upwardly compatible version of the RAB, RMS allows
you to use the RAB64 wherever you can use a RAB. For example, a RAB64 can
be used in place of a RAB as the first argument passed to any of the RMS record
or block I/O services.

While RMS allows you to use the RAB64 wherever you can use a RAB, some
source languages may impose other restrictions. Consult the documentation for
your source language for more information.

DECnet for OpenVMS support for RAB64 fields is identical to support described
for RAB fields in Chapter 7.

The format and arguments of the $RAB64 macro and the $RAB64_STORE macro
are described in Appendix A.

8.2 RAB64$Q_CTX Field
This Alpha-only, 8-byte field is a 64-bit extension of the user context field and
serves the same purpose as RAB$L_CTX (see Section 7.5 for details). The only
difference between these fields, other than size, is that there is no corresponding
FDL attribute for RAB64$Q_CTX.

8.3 RAB64$PQ_KBF Field
This Alpha-only, 8-byte field is a key buffer 64-bit address field that serves the
same purpose as RAB$L_KBF (see Section 7.8 for details). This field can hold
either a 64-bit address or a 32-bit address sign-extended to 64 bits.

To use this field: Put a -1 in this field: Use this size field:

RAB64$PQ_KBF RAB64$L_KBF RAB64$B_KSZ

8.4 RAB64$PQ_RBF Field
This Alpha-only, 8-byte field is a record buffer 64-bit address field that serves the
same purpose as RAB$L_RBF (see Section 7.16 for details). This field can hold
either a 64-bit address or a 32-bit address sign-extended to 64 bits.

To use this field: Put a -1 in this field: Use this size field: Put a 0 in this field:

RAB64$PQ_RBF RAB64$L_RBF RAB64$Q_RSZ RAB64$W_RSZ

For most record I/O service requests, there is an RMS internal buffer between
the device and the user’s data buffer. The one exception occurs with the RMS
service $PUT. If the device is a unit record device and it is not being accessed
over the network, RMS passes the address of the user record buffer to the
$QIO system service. If you inappropriately specify a record buffer allocated in
64-bit address space for a $PUT service to a unit record device that does not
support 64-bit address space (for example, a terminal), the $QIO service returns

64-Bit Record Access Block (RAB64) 8–3

64-Bit Record Access Block (RAB64)
8.4 RAB64$PQ_RBF Field

error status SS$_NOT64DEVFUNC. RMS returns error status RMS$_SYS with
SS$_NOT64DEVFUNC as the secondary status value in RAB64$L_STV.

8.5 RAB64$PQ_RHB Field
This Alpha-only, 8-byte field is a record header buffer 64-bit address field that
serves the same purpose as RAB$L_RHB (see Section 7.18 for details). This field
can hold either a 64-bit address or a 32-bit address sign-extended to 64 bits.

To use this field: Put a -1 in this field: Use this size field:

RAB64$PQ_RHB RAB64$L_RHB FAB$B_FSZ

8.6 RAB64$Q_RSZ Field
This Alpha-only, 8-byte field is an extended record size field that serves the same
purpose as RAB$W_RSZ (see Section 7.21 for details). Use this field whenever
you use the RAB64$PQ_RBF field.

The buffer size maximum for the RMS block I/O service $WRITE has been
increased from 65535 bytes to 2 � �31 � 1 bytes for OpenVMS Alpha users, with
two exceptions:

• For RMS journaling, a journaled $WRITE service is restricted to the current
maximum (65535 minus 99 bytes of journaling overhead). An RSZ error is
returned (RAB$L_STS) if the maximum is exceeded.

• Magnetic tape is still limited at the device driver level to 65535 bytes.

8.7 RAB64$PQ_UBF Field
This Alpha-only, 8-byte field is a user record buffer 64-bit address field that
serves the same purpose as RAB$L_UBF (see Section 7.25 for details). This field
can hold either a 64-bit address or a 32-bit address sign-extended to 64 bits.

To use this field: Put a -1 in this field: Use this size field: Put a 0 in this field:

RAB64$PQ_UBF RAB64$L_UBF RAB64$Q_USZ RAB64$W_USZ

8.8 RAB64$Q_USZ Field
This Alpha-only, 8-byte field is an extended user record buffer size field that
serves the same purpose as RAB$W_USZ (see Section 7.26 for details). Use this
field whenever you use the RAB64$PQ_UBF field.

The buffer size maximum for the RMS block I/O service $READ has been
increased from 65535 bytes to 2 � �31 � 1 bytes for OpenVMS Alpha users, with
one exception:

• Magnetic tape is still limited at the device driver level to 65535 bytes.

8–4 64-Bit Record Access Block (RAB64)

9
Allocation Control XAB (XABALL)

The allocation control XAB (XABALL) provides additional control over file or
area space allocation on disk devices in order to optimize performance. In the
following descriptions, the terms file and area are synonymous for sequential and
relative files because these file organizations are limited to a single area (Area
0).

9.1 Summary of Fields
When RMS uses a XAB to create or extend an area, the following XABALL fields
duplicate and take precedence over associated fields in the related FAB:

• The allocation quantity (ALQ) field, XAB$L_ALQ, overrides FAB$L_ALQ

• The bucket size (BKZ) field, XAB$B_BKZ, overrides FAB$B_BKS

• The default extension quantity (DEQ) field, XAB$W_DEQ, overrides FAB$W_
DEQ

• The XAB$V_CBT and XAB$V_CTG options of the allocation options field,
XAB$B_AOP, override the FAB$V_CBT and FAB$V_CTG options of the
file-processing options field, FAB$L_FOP

When opening a file or displaying a file’s attributes, RMS outputs appropriate
information to your program using these fields.

The symbolic offset, the size, the FDL equivalent, and a brief description of each
XABALL field are presented in Table 9–1.

Table 9–1 XABALL Fields

Field Offset
Size
(Bytes) FDL Equivalent Description

XAB$B_AID 1 AREA n Area identification number

XAB$B_ALN 1 AREA POSITION1 Alignment boundary type

XAB$L_ALQ 4 AREA ALLOCATION Allocation quantity

XAB$B_AOP 1 AREA1 Allocation options

XAB$B_BKZ 1 AREA BUCKET_SIZE Bucket size

XAB$B_BLN2 1 None Block length

XAB$B_COD2 1 None Type code

XAB$W_DEQ 2 AREA EXTENSION Default extension quantity

1This field contains options; corresponding FDL equivalents are listed in the description of the field.
2This field is statically initialized by the $XABALL macro to identify this control block as a XABALL.

(continued on next page)

Allocation Control XAB (XABALL) 9–1

Allocation Control XAB (XABALL)
9.1 Summary of Fields

Table 9–1 (Cont.) XABALL Fields

Field Offset
Size
(Bytes) FDL Equivalent Description

XAB$L_LOC 4 AREA POSITION Location

XAB$L_NXT 4 None Next XAB address

XAB$W_RFI 6 AREA POSITION FILE_ID
or FILE_NAME

Related file identifier

XAB$W_VOL 2 AREA VOLUME Related volume number

Unless otherwise indicated, each field is supported for DECnet for OpenVMS
operations on files at remote OpenVMS systems. For information about the
support of RMS options for remote file access to other systems, see the DECnet
for OpenVMS Networking Manual.

9.2 XAB$B_AID Fields
RMS uses the area identification number (AID) field to determine which area
within a file is supported by this XAB. Note that sequential and relative files are
limited to area 0.

The area is identified by a numeric value in the range 0 through 254 (default is 0)
and is most appropriate for use with index files having multiple areas allocated.

This field corresponds to the FDL attribute AREA n, where n indicates the area
number.

9.3 XAB$B_ALN Field
The alignment boundary type (ALN) field gives you several options for aligning
the allocated area. RMS uses this field in conjunction with the XAB$L_LOC field
and with the XAB$W_RFI field to provide precise positioning control of the area
or area extension.

The XAB$B_ALN field is a keyword value field in which an alignment boundary
option is defined by a symbolic constant value. For example, the cylinder
boundary option has a symbolic constant value of XAB$C_CYL.

Note that if no value is defined for this field, RMS assumes the XAB$C_ANY
option (no additional positioning control desired). Additional positioning control
is not supported for DECnet for OpenVMS operations.

The XAB$B_ALN field corresponds to the FDL attribute AREA POSITION.

Options
XAB$C_ANY
Any allocation; specifies that no positioning control over the area is desired. If
this option is selected, the XAB$L_LOC and XAB$W_RFI fields are ignored.

This option corresponds to the FDL attribute AREA POSITION NONE.

XAB$C_CYL
Specifies that the area boundary begin at the cylinder number identified by the
location field XAB$L_LOC.

This option corresponds to the FDL attribute AREA POSITION CYLINDER.

9–2 Allocation Control XAB (XABALL)

Allocation Control XAB (XABALL)
9.3 XAB$B_ALN Field

XAB$C_LBN
Specifies that the area boundary begin at the logical block number identified by
the location field XAB$L_LOC.

This option corresponds to the FDL attribute AREA POSITION LOGICAL.

XAB$C_RFI
This option is used only for extending an area. It specifies that the area extension
begin as close as possible to the file identified by the related-file-identification
field (XAB$W_RFI), and that the extent begin with the VBN specified by the
location field XAB$L_LOC.

This option corresponds to the FDL attribute AREA POSITION FILE_ID or
AREA POSITION FILE_NAME. If you try to use this option with DECnet for
OpenVMS operations, RMS replaces it with the XAB$C_ANY option.

XAB$C_VBN
This option applies to area extension only. It specifies that the area extension
begin as close as possible to the virtual block number identified by the location
field XAB$L_LOC.

This option corresponds to the FDL attribute AREA POSITION VIRTUAL.

9.4 XAB$L_ALQ Field
The allocation quota field defines the number of blocks to be initially allocated
to an area when it is created using a Create service, or the number of blocks to
be added to an area when it is explicitly extended using an Extend service (as
opposed to automatic extension). In both cases, this field overrides the allocation
quantity in the associated FAB (see Chapter 4).

The XAB$L_ALQ field accepts numeric values of up to 4,294,967,295 for initial
allocation, but the allocation is limited by the number of blocks available on the
device.

When you create a new area using the Create service, RMS interprets the value
in the XAB$L_ALQ field as the number of blocks for the area’s initial extent. If
the value is 0, RMS allocates a minimum number of blocks depending on the file
organization. For example, RMS allocates only the number of blocks needed for
the key and area definitions with indexed files.

When you use either the Create or Extend services with indexed files, RMS
rounds the allocation quantity value up to the next cluster boundary and returns
this value to the program in the XAB$L_ALQ field. RMS uses this value as
the extension value when you extend an existing area using the Extend service,
unless the program changes the value before invoking the Extend service. Note
that the value 0 is not acceptable for extending an area.

9.5 XAB$B_AOP Field
The allocation options (AOP) field lets you specify a particular type of allocation.

This field is a binary options field where one or more options may be selected by
setting the appropriate bits. Each option is identified by a symbolic offset and
has a mask value; for example, the CBT option has an offset of XAB$V_CBT and
a mask value of XAB$M_CBT.

Allocation Control XAB (XABALL) 9–3

Allocation Control XAB (XABALL)
9.5 XAB$B_AOP Field

Options
XAB$V_CBT
Contiguous best try; indicates that the allocation or extension should use
contiguous blocks, on a ‘‘best effort’’ basis. This option overrides the FAB$L_
FOP field FAB$V_CBT option.

This option corresponds to the FDL attribute AREA BEST_TRY_CONTIGUOUS.

XAB$V_CTG
Contiguous; indicates that the initial allocation extension must use contiguous
blocks only; the allocation fails if the requested number of contiguous blocks is not
available. If this is the initial allocation and only a single area is specified, the
file is marked contiguous. This option overrides the FAB$L_FOP field FAB$V_
CTG option.

This option corresponds to the FDL attribute AREA CONTIGUOUS.

XAB$V_HRD
Hard; indicates that if the requested alignment cannot be performed, an error
will be returned. By default, the allocation is performed as near as possible to the
requested alignment.

Note that the XAB$V_HRD option is applicable only to XAB$C_CYL and XAB$C_
LBN alignment boundary types, specified by the XAB$B_ALN field.

This option corresponds to the FDL attribute AREA EXACT_POSITIONING.

XAB$V_ONC
On cylinder boundary; indicates that RMS is to begin the allocation on any
available cylinder boundary.

This option corresponds to the FDL attribute AREA POSITION ANY_
CYLINDER.

9.6 XAB$B_BKZ Field
When RMS creates relative and indexed files, this field specifies bucket size using
numeric values ranging from 0 through 63 to represent the number of blocks in
a bucket. If this argument is omitted, or if a value of 0 is inserted, RMS uses a
default size equal to the minimum number of blocks required to contain a single
record. For RMS-11 processing, the bucket size must be less than or equal to 32
blocks.

When calculating the bucket size, you must consider the control information
(overhead) associated with each bucket. Note that some record types contain
control bytes and to calculate the overhead you must multiply the number of
records per bucket by the number of control bytes per record. See the Guide to
OpenVMS File Applications for more information.

The Edit/FDL utility can be used to calculate efficient bucket sizes for indexed
files. (For information about the Edit/FDL utility, see the OpenVMS Record
Management Utilities Reference Manual.)

When you create a file, RMS uses this field as input to determine the specified
bucket size and, upon conclusion, uses the field to output the bucket size. Because
relative files are limited to one area, this field specifies the size for all buckets in
the file. For indexed files, you can specify a different size for each area using this
field in the appropriate XABALL.

9–4 Allocation Control XAB (XABALL)

Allocation Control XAB (XABALL)
9.6 XAB$B_BKZ Field

When you open an existing file, RMS uses this field to output the bucket size to
your program.

The value in this field overrides the contents of the bucket size field of the FAB
on a Create service (see Chapter 4).

You can specify multiple areas for a single index by having the XAB$B_IAN and
XAB$B_LAN fields in the key definition XAB (XABKEY) indicate that the lowest
level of the index and the remainder of that index occupy different areas (defined
by different XABALLs). However, the number of blocks per bucket (XAB$B_BKZ
value) must be the same for the entire index of a particular key. If multiple areas
are specified for an index and if the XAB$B_BKZ values are not the same, RMS
returns an error because the values for one index must be the same. However,
if you specify the XAB$B_BKZ field for at least one area and use the default (0)
for the XAB$B_BKZ field of a different area (or areas) of the same index, RMS
uses the largest XAB$B_BKZ value specified among the XABALL control blocks
to determine the bucket size for that index.

This field corresponds to the FDL attribute AREA BUCKET_SIZE.

9.7 XAB$B_BLN Field
The block length (BLN) field is a static field that defines the length of the
XABALL, in bytes. Once set, this field must not be altered unless the control
block is no longer needed. This field must be initialized to the symbolic value
XAB$C_ALLLEN (this is done by the $XABALL macro).

9.8 XAB$B_COD Field
The type code (COD) field is a static field that identifies this control block as a
XABALL. Once set, this field must not be altered unless the control block is no
longer needed. This field must be initialized to the symbolic value XAB$C_ALL
(this is done by the $XABALL macro).

9.9 XAB$W_DEQ Field
The default extension quantity (DEQ) field specifies the number (0 to 65,535)
of blocks to be added when RMS extends the area. If you specify 0, the RMS
provides a default extension value.

The value in this field overrides the contents of the default extension quantity
field of the FAB (see Chapter 4).

This field corresponds to the FDL attribute AREA EXTENSION.

9.10 XAB$L_LOC Field
The location (LOC) field contains a numeric value that indicates the beginning
point for area allocation. RMS refers to the location field when executing a Create
or Extend service, but only if the XAB$B_ALN field specifies an alignment option.
The way the XAB$L_LOC field is used depends on the value specified for the
XAB$B_ALN field (a binary options field). The beginning point for the allocation
is determined as follows:

• If the XAB$B_ALN field XAB$C_CYL option is specified, the location number
is the cylinder number (0 through the maximum cylinder number on the
volume) where the allocation begins.

Allocation Control XAB (XABALL) 9–5

Allocation Control XAB (XABALL)
9.10 XAB$L_LOC Field

• If the XAB$B_ALN field XAB$C_LBN option is specified, the location number
is the logical block number (0 through the maximum number of blocks on the
volume) where the allocation begins.

• If the XAB$B_ALN field XAB$C_VBN or XAB$C_RFI option is specified,
the location number is the virtual block number (1 through the maximum
number of blocks in the file) where the allocation begins. This applies only to
the Extend service. If the number 0 is specified, or if the number is omitted
during an Extend service, RMS places the file extension as near to the end of
the file as possible.

This field corresponds to the FDL attribute AREA POSITION.

9.11 XAB$L_NXT Field
The next XAB address (NXT) field specifies the symbolic address of the next XAB
in the XAB chain. A value of 0 (the default) indicates that the current XAB is the
last (or only) XAB in the chain.

9.12 XAB$W_RFI Field
The related file identification (RFI) field allows you to position files or areas of an
indexed file close to a specified file.

This field contains the 3-word file identification value of the related file. A value
of 0,0,0 (the default) indicates that the current file is to be used. Specifying the
XAB$B_ALN field XAB$C_RFI option and specifying the XAB$W_RFI field as
0,0,0 are equivalent to specifying the XAB$B_ALN field XAB$C_VBN option.

You can view the file identification of a file using the DCL command DIRECTORY
with the /FULL qualifier.

The file is created or extended as near to the specified related file as possible at
the virtual block number specified by the LOC argument.

The XAB$W_RFI field is ignored unless the XAB$B_ALN field is set to XAB$C_
RFI. It is also ignored for DECnet for OpenVMS operations.

This field corresponds to the FDL attribute AREA POSITION FILE_ID or AREA
POSITION FILE_NAME.

9.13 XAB$W_VOL Field
The relative volume number (VOL) field indicates the specific member of a
volume set upon which the file is to be allocated.

This field contains an integer in the range 0 through 255. The default is 0,
specifying the ‘‘current’’ member of the volume set.

Note that volume placement will be performed only if an alignment type in the
XAB$B_ALN field is either XAB$C_CYL or XAB$C_LBN (you cannot specify
XAB$C_VBN or XAB$C_RFI alignment types). If the XAB$B_ALN field contains
a value of 0, placement of the file within the volume set will be at the discretion
of the system, regardless of the contents of the XAB$W_VOL field.

This field corresponds to the FDL attribute AREA VOLUME.

9–6 Allocation Control XAB (XABALL)

10
Date and Time XAB (XABDAT)

On Alpha systems for Files-11 B (ODS–2) media, the date and time XAB
(XABDAT) block provides extended control of the date and time of the file’s
creation, revision (update), backup, and expiration.

10.1 Summary of Fields
RMS sets certain values for date and time and returns them in XABDAT fields
for your inspection. You can override these system-supplied values by using a
XABDAT as input to a Create service. Note that date-time values are expressed
in either absolute (positive) or delta (negative) format, and several system
services are available for date-time conversion and use (see Example B–1 in
Appendix B of this manual and the OpenVMS System Services Reference Manual).

The symbolic offset, the size, the FDL equivalent (where applicable), and a brief
description of each XABDAT field are presented in Table 10–1.

Table 10–1 XABDAT Fields

Field Offset
Size
(Bytes) FDL Equivalent Description

XAB$Q_BDT1 8 DATE BACKUP Backup date and time

XAB$B_BLN2 1 None Block length

XAB$Q_CDT1 8 DATE CREATION Creation date and time

XAB$B_COD2 1 None Type code

XAB$Q_EDT 8 DATE EXPIRATION Expiration date and time

XAB$L_NXT 4 None Next XAB address

XAB$Q_RDT1 8 DATE REVISION Revision date and time

XAB$W_RVN1 2 FILE REVISION Revision number

1This field cannot be initialized by the $XABDAT macro.
2This field is statically initialized by the $XABDAT macro to identify this control block as a XABDAT.

The Display service and the Open service always use the XABDAT fields as
output. The Create service uses the XABDAT fields as input when it creates
a new file. However, when it opens an existing file (see the description of the
FAB$V_CIF option in Section 4.17), the Create service also uses the XABDAT
fields as output.

No other RMS services use the XABDAT block.

Each XABDAT field is described in the following sections. Unless indicated
otherwise, each field is supported for DECnet for OpenVMS operations on files
at remote OpenVMS systems. For information about the support of RMS options

Date and Time XAB (XABDAT) 10–1

Date and Time XAB (XABDAT)
10.1 Summary of Fields

for remote file access to other systems, see the DECnet for OpenVMS Networking
Manual.

10.2 XAB$Q_BDT Field
The backup date and time (BDT) field contains a 64-bit binary value expressing
the date and time when the file was most recently backed up. Note that this field
is limited to a granularity of 1 second for remote files.

This field corresponds to the FDL attribute DATE BACKUP.

10.3 XAB$B_BLN Field
The block length (BLN) field is a static field that defines the length of the
XABDAT in bytes. Once set, this field must not be altered unless the control
block is no longer needed. This field must be initialized to the symbolic value
XAB$C_DATLEN (this is done by the $XABDAT macro).

10.4 XAB$Q_CDT Field
The creation date and time (CDT) field contains a 64-bit binary value expressing
the date and time when the file was created. Note that this field is limited to a
granularity of 1 second for remote files. If the application program specifies this
field as 0 (either explicitly or by default), the Create service uses the current date
and time.

This field corresponds to the FDL attribute DATE CREATION.

10.5 XAB$B_COD Field
The type code (COD) field is a static field that identifies this control block as a
XABDAT. Once set, this field must not be altered unless the control block is no
longer needed. This field must be initialized to the symbolic value XAB$C_DAT
(this is done by the $XABDAT macro).

10.6 XAB$Q_EDT Field
The expiration date and time (EDT) field contains a 64-bit binary value that
indicates the date and time after which a file residing on a disk device may be
considered for deletion by the system manager. For files residing on magnetic
tape devices, the XAB$Q_EDT field sets the date and time after which you can
overwrite the file. Note that this field is limited to a granularity of 1 second for
remote files.

This field corresponds to the FDL attribute DATE EXPIRATION.

10.7 XAB$L_NXT Field
The next XAB address (NXT) field contains the symbolic address of the next XAB
to be used. A value of 0 (the default) indicates that the current XAB is the last
(or only) XAB in the chain.

10–2 Date and Time XAB (XABDAT)

Date and Time XAB (XABDAT)
10.8 XAB$Q_RDT Field

10.8 XAB$Q_RDT Field
The revision date and time (RDT) field contains a 64-bit binary value representing
the date and time when the file was last revised. The Open and Display services
use this field to read the revision date and time. The Create service uses this field
to set the revision date and time. However, a subsequent Close service overrides
the value set by the Create service by using the value in the XAB$Q_RDT field of
the XABRDT.

Note

The Close service uses the current date and time when the XAB$Q_RDT
field of the XABRDT contains 0 or no value.

If you want to avoid having the Close service override the revision date and
time, use the XAB$Q_RDT field in the XABRDT (see Chapter 16) to establish the
revision date and time.

If the application program specifies this field as 0 (either explicitly or by default),
the Create service uses the current date and time as the revision date and time.
Note that this field is limited to a granularity of 1 second for remote files.

This field corresponds to the FDL attribute DATE REVISION.

10.9 XAB$W_RVN Field
The revision number (RVN) field contains a numeric value that indicates the
number of times this file was opened for write operations.

This field corresponds to the FDL attribute FILE REVISION.

10.10 XAB$Q_RCD Field (VAX Only)
On VAX systems, the XAB$Q_RCD (RCD) field contains a 64-bit binary value
expressing the date and time that the file was recorded.

This field is applicable only to ISO 9660 files and has no corresponding FDL
attribute.

10.11 XAB$Q_EFF Field (VAX Only)
On VAX systems, the XAB$Q_EFF (EFF) field contains a 64-bit binary value
expressing the date and time when the file information may be used. If no value
is specified in this field, the data may be used immediately.

This field is applicable only to ISO 9660 files and has no corresponding FDL
attribute.

Date and Time XAB (XABDAT) 10–3

11
File Header Characteristic XAB (XABFHC)

The file header characteristic XAB (XABFHC) contains file header information
that is output by the Open service and the Display service. The Create service
can output information in this XAB when it opens an existing file through use of
the Create-if option.

The only input field is the longest record length (XAB$W_LRL) field. The Create
service uses this field when it creates a sequential file that does not use a
fixed-length record format.

Note that, for unshared sequential files or sequential files shared using the
FAB$V_UPI option, the values in the end-of-file block (XAB$L_EBK), first
free byte in the end-of-file block (XAB$W_FFB), and longest record length
(XAB$W_LRL) fields correspond to the values at the time of the last Close or
Flush service.

11.1 Summary of Fields
The symbolic offset, size, and a brief description of each RAB field are presented
in Table 11–1. Note that many of these fields are also available in the FAB.

Table 11–1 XABFHC Fields

Field Offset
Size
(Bytes) Description

XAB$B_ATR1 1 Record attributes; equivalent to FAB$B_RAT

XAB$B_BKZ1 1 Bucket size; equivalent to FAB$B_BKS

XAB$B_BLN2 1 Block length

XAB$B_COD2 1 Type code

XAB$W_DXQ1 2 Default file extension quantity; equivalent to
FAB$W_DEQ

XAB$L_EBK1 4 End-of-file block

XAB$W_FFB1 2 First free byte in the end-of-file block

XAB$W_GBC1 2 Default global buffer count

XAB$L_HBK1 4 Highest virtual block in the file; equivalent to
FAB$L_ALQ

XAB$B_HSZ1 1 Fixed-length control header size; equivalent to
FAB$B_FSZ

XAB$W_LRL1 2 Longest record length

1This field cannot be initialized by the $XABFHC macro.
2This field is statically initialized by the $XABFHC macro to identify this control block as a XABFHC.

(continued on next page)

File Header Characteristic XAB (XABFHC) 11–1

File Header Characteristic XAB (XABFHC)
11.1 Summary of Fields

Table 11–1 (Cont.) XABFHC Fields

Field Offset
Size
(Bytes) Description

XAB$W_MRZ1 2 Maximum record size; equivalent to FAB$W_MRS

XAB$L_NXT 4 Next XAB address

XAB$B_RFO1 1 File organization and record format; combines
FAB$B_RFM and FAB$B_ORG

XAB$L_SBN1 4 Starting logical block number for the file if it is
contiguous; otherwise this field is 0

XAB$W_VERLIMIT1 2 Version limit for the file

1This field cannot be initialized by the $XABFHC macro.

There are no FDL equivalents for the XABFHC fields. Unless otherwise
indicated, each field is supported for DECnet for OpenVMS operations on files at
remote OpenVMS systems. See the DECnet for OpenVMS Networking Manual
for information about the support of RMS options for remote file access to other
systems.

11.2 XAB$B_ATR Field
The record attributes (ATR) field indicates the record attributes (special control
information) associated with each record in this file. This field is equivalent to
the FAB$B_RAT field.

This field is a binary options field where each record attribute has a
corresponding bit assignment. Options are identified using mnemonics. Each
option in the field has its own symbolic offset and constant value. For example,
the CR record attribute has the symbolic offset XAB$V_CR and the mask value
XAB$M_CR. The record attribute options are described in the following list.

Options
XAB$V_BLK
Records do not cross block boundaries in sequential files.

XAB$V_CR
Each record is preceded by a line feed and followed by a carriage return.

XAB$V_FTN
Each record contains a FORTRAN (ASA) carriage return in the first byte.

XAB$V_PRN
Print file format.

For more information about the XAB$B_ATR field, refer to the description of the
FAB$B_RAT field in Section 4.27.

11.3 XAB$B_BKZ Field
The bucket size (BKZ) field specifies the number of blocks in each bucket of the
file. It is equivalent to the FAB$B_BKS (or XAB$B_BKZ) field and is used only
for relative or indexed files.

This field contains a numeric value in the range of 0 to 63.

11–2 File Header Characteristic XAB (XABFHC)

File Header Characteristic XAB (XABFHC)
11.3 XAB$B_BKZ Field

For more information about the XAB$B_BKZ field, refer to the description of the
FAB$B_BKS field in Section 4.5 and the description of the XAB$B_BKZ field in
Section 9.6.

11.4 XAB$B_BLN Field
The block length (BLN) field is a static field that defines the length of the
XABFHC, in bytes. Once set, this field must not be altered unless the control
block is no longer needed. This field must be initialized to the symbolic value
XAB$C_FHCLEN (this is done by the $XABFHC macro).

11.5 XAB$B_COD Field
The type code (COD) field is a static field that identifies this control block as a
XABFHC. Once set, this field must not be altered unless the control block is no
longer needed. This field must be initialized to the symbolic value XAB$C_FHC
(this is done by the $XABFHC macro).

11.6 XAB$W_DXQ Field
The default file extension quantity (DXQ) field specifies the number of blocks to
be added when a disk file is extended automatically. This automatic extension
occurs whenever your program performs a Put or Write service and the currently
allocated file space is exhausted.

This field is equivalent to the FAB$W_DEQ (or XAB$W_DEQ) field; it contains a
numeric value in the range 0 through 65,535, which is rounded up to the value of
the next cluster boundary.

For more information about the XAB$W_DXQ field, refer to the description of the
FAB$W_DEQ field in Section 4.10 and the description of the XAB$W_DEQ field
in Section 9.9.

11.7 XAB$L_EBK Field
When you open a file, RMS stores the VBN of the physical block where the next
record will be written in the XAB$L_EBK field. For example, assume that a file
is allocated five physical blocks and that the last record written to the file is at
byte 0FF16 in the file’s second physical block. When your program opens this file,
RMS stores the VBN of the second physical block in XAB$L_EBK and it stores
10016 in the XAB$W_FFB field.

If the previous block is full when you open the file, RMS stores the first location
(00016) of the next block in XAB$W_FFB and the VBN of the next block in
XAB$L_EBK. By way of contrast, in a similar situation RMS-11 stores the last
byte (20016) of the filled block in the XAB$W_FFB field and the VBN of the filled
block in the XAB$L_EBK field.

The XAB$L_EBK field is meaningful for sequential files only.

11.8 XAB$W_FFB Field
The first free byte in the end-of-file block (FFB) field contains the byte location in
the end-of-file block where the next record will be written. The XAB$W_FFB field
is meaningful for sequential files only.

File Header Characteristic XAB (XABFHC) 11–3

File Header Characteristic XAB (XABFHC)
11.9 XAB$W_GBC Field

11.9 XAB$W_GBC Field
The default global buffer count (GBC) field contains the current global buffer
count for this file. For more information about the XAB$W_GBC field, refer to
the description of the FAB$W_GBC field in Section 4.19.

This field is not supported for DECnet for OpenVMS operations; it is ignored.

11.10 XAB$L_HBK Field
The highest virtual block (HBK) field contains the virtual block number currently
allocated to this file. It is equivalent to the FAB$L_ALQ field after a Create,
Open, or Display service executes. For sequential files, the difference between
XAB$L_HBK and XAB$L_EBK equals the number of blocks in the file available
for additional records without extending the file.

11.11 XAB$B_HSZ Field
The fixed-length control header size (HSZ) field indicates the length of the fixed
portion for records in the VFC format. It is equivalent to the FAB$B_FSZ field.

This field contains a numeric value (1 to 255) that indicates, in bytes, the size of
the fixed-length control area. This field is not applicable to indexed files.

For more information about the XAB$B_HSZ field, refer to the description of the
FAB$B_FSZ field in Section 4.18.

11.12 XAB$W_LRL Field
The longest record length (LRL) field contains a numeric value that indicates
the longest record currently in the file, in bytes. This value is meaningful for
sequential files only. If you specify the XAB$W_MRZ field, the LRL field takes
the same value as the XAB$W_MRZ field.

11.13 XAB$W_MRZ Field
The maximum record size (MRZ) field indicates the size of all records in a file
with fixed-length records, the maximum size of variable-length records, the
maximum size of the data area for variable with fixed-length control records, and
the cell size for relative files. It is equivalent to the FAB$W_MRS field.

This field contains a numeric value in the range applicable to the file type and
record format (see Table 4–4), in bytes.

For fixed-length records, the value represents the actual size of each record in the
file.

For variable-length records, the value represents the size of the largest record
that can be written into the file. If the file is not a relative file, a value of 0 is
used to suppress record size checking, thus indicating that there is no user limit
on record size.

For variable with fixed-length control records, the value includes only the data
portion; it does not include the size of the fixed control area.

For more information about the XAB$W_MRZ field, refer to the description of the
FAB$W_MRS field in Section 4.24.

11–4 File Header Characteristic XAB (XABFHC)

File Header Characteristic XAB (XABFHC)
11.14 XAB$L_NXT Field

11.14 XAB$L_NXT Field
The next XAB address (NXT) field contains the symbolic address of the next XAB.
A value of 0 (the default) indicates that the current XAB is the last (or only) XAB
in the chain.

11.15 XAB$B_RFO Field
The file organization and record format (RFO) field combines the FAB$B_RFM
and FAB$B_ORG fields using an inclusive OR.

The following table lists the record formats.

Record Format Description

FIX Fixed length

STM Stream, delimited by FF, VT, LF, or CR LF

STMCR Stream, delimited by CR

STMLF Stream, delimited by LF

UDF Undefined

VAR Variable length

VFC Variable length with fixed control area

The following table lists the file organizations.

File Organization Description

IDX Indexed sequential

REL Relative

SEQ Sequential

For more information about the XAB$B_RFO field, refer to the description of the
FAB$B_ORG field and the FAB$B_RFM field in Section 4.28.

11.16 XAB$L_SBN Field
The starting logical block number (SBN) field contains the starting logical block
number for a contiguous file; if the file is not contiguous, this field contains 0.

11.17 XAB$W_VERLIMIT Field
The file version limit (VERLIMIT) field contains the version limit for this file.
This value is not available if the file was opened by file ID.

This field is not supported for DECnet for OpenVMS operations; it is ignored.

File Header Characteristic XAB (XABFHC) 11–5

12
Item List XAB (XABITM)

The item list XAB (XABITM) provides a convenient means for using item list
information to support RMS functions. Each XABITM points to an item list that
includes one or more entries representing either a set function or a sense function
that can be passed to the application program by way of the RMS interface.

Because the mode field in a XABITM can be used to either set or sense the items
in the list, you cannot use a single XABITM to both set and sense a particular
function. However, you may use multiple XABITMs, some for setting functions
and other for sensing functions. RMS logically ignores items that are irrelevant
to any particular function while acting on any item that is relevant.

Each entry in the item list includes three longwords, and a longword 0 terminates
the list. See Figure 12–1. Note the field "Return length address" in Figure 12–1
is ignored for Set Mode. Also note that RMS does not validate the item list. If
the item list is invalid, RMS indicates that the XABITM is not valid by returning
the invalid XAB status (RMS$_XAB) in the RAB$L_STS field.

Figure 12–1 Item Descriptor Data Structure

ZK−1705−GE

Return length address

Buffer address

Item code Buffer length

31 015

You can store the item list anywhere within process readable address space, but
any buffers required by the related function must be in read/write memory.

The format and arguments of the $XABITM macro are defined in Appendix A.

The XABITM control block currently supports the following functions:

• Enhancements to network file access functions

• Passing of file user characteristic information

• Enhancements to RMS performance monitoring functions

• Support for compound documents

• Specifying the number of local buffers

• Expiration date and time suppression

Item List XAB (XABITM) 12–1

Item List XAB (XABITM)

• Support for file size in heterogeneous environments

Although the benefits derived from these enhancements are readily apparent,
functional details are transparent to most users.

12.1 Summary of Fields
The symbolic offset, the size, and a brief description of each XABITM field are
presented in Table 12–1.

Table 12–1 XABITM Fields

Field Offset Description

XAB$B_BLN1 Block length

XAB$B_COD1 Type code

XAB$L_ITEMLIST Item list address

XAB$B_MODE Set/sense control

XAB$L_NXT Next XAB address

1This field is statically initialized by the $XABITM macro to identify the control block as a XABITM.

12.1.1 XAB$B_BLN Field
The block length (BLN) field is a static field that defines the length of the
XABITM, in bytes. Once set, this field must not be altered unless the control
block is no longer needed. This field must be initialized to the symbolic value
XAB$C_ITMLEN by the $XABITM macro.

12.1.2 XAB$B_COD Field
The type code (COD) field is a static field that identifies this control block as a
XABITM. Once set, this field must not be altered unless the control block is no
longer needed. This field must be initialized to the symbolic value XAB$C_ITM
by the $XABITM macro.

12.1.3 XAB$L_ITEMLIST Field
The item list address (ITEMLIST) field contains the symbolic address of the item
list.

12.1.4 XAB$B_MODE Field
The item list mode (MODE) field specifies whether the items in the item list can
be set or sensed by the program. It contains either the symbolic value XAB$K_
SETMODE or the symbolic value XAB$K_SENSEMODE (default).

12.1.5 XAB$L_NXT Field
The next XAB address (NXT) field contains the symbolic address of the next XAB
to be used. A value of 0 (the default) indicates that the current XAB is the last
(or only) XAB in the chain.

12–2 Item List XAB (XABITM)

Item List XAB (XABITM)
12.2 Network File Access Items (XAB$_NET_... and XAB$_CAP_...)

12.2 Network File Access Items (XAB$_NET_... and XAB$_CAP_...)
This section lists and briefly describes the items that support network file access
features.

Network items are effectively ignored for local operations. Although the
application program may include network items in the XAB chain for the related
FAB, RMS does not consider any of the network-specific fields during local
processing. Nor does RMS return remote file contents to the application program
during local file processing.

Table 12–2 lists the entries in the XABITM item list relating to network file
access features together with the buffer size required to store the data and a brief
functional description. Note that although the application program can sense
all of the item values from the RMS interface, it can set only the following item
values:

• XAB$_NET_BLOCK_COUNT

• XAB$_NET_EXTPROT

• XAB$_NET_LINK_TIMEOUT

• XAB$_NET_LINK_CACHE_ENABLE

• XAB$_NET_DATA_CRC_ENABLE

Table 12–2 XABITM Item List

Item Value Description

XAB$_NET_BUFFER_SIZE The size of the buffer allocated for DAP messages between the
local and remote node is a negotiated value that is decided
by DAP. This informational item returns the actual buffer
size, in bytes, allocated for DAP messages. The buffer size is
slightly larger than the limit specified for the records being
transferred.

A 4-byte buffer is needed to store the net buffer size.

XAB$_NET_BLOCK_COUNT This is the value in blocks that the local node wants to use
for buffering messages between itself and the remote node.

DAP tries to allocate this buffer space at the local node;
however, if the maximum buffer size at the remote node is
smaller, DAP allocates buffer space based on the smaller
value. When the remote system incorporates the file access
listener, it allows any size buffer up to 32,767 bytes.

The minimum buffer size for task-to-task network operations
is 4096 bytes.

A 4-byte buffer is needed to store the net block count.

(continued on next page)

Item List XAB (XABITM) 12–3

Item List XAB (XABITM)
12.2 Network File Access Items (XAB$_NET_... and XAB$_CAP_...)

Table 12–2 (Cont.) XABITM Item List

Item Value Description

XAB$_NET_REMOTE_SYSTEM This informational item returns the identity of the remote
operating system.

A 4-byte buffer is needed to store the symbolic constants
representing the remote system identities listed in the
following table:

Symbolic Constant Operating System

XAB$K_RT11 RT-11

XAB$K_RSTS RSTS/E

XAB$K_RSX11S RSX-11S

XAB$K_RSX11M RSX-11M

XAB$K_RSX11D RSX-11D

XAB$K_IAS IAS

XAB$K_VAXVMS VMS

XAB$K_TOPS10 TOPS–10

XAB$K_TOPS20 TOPS–20

XAB$K_RSX11MP RSX-11M-PLUS

XAB$K_P_OS P/OS

XAB$K_VAXELN VAXELN

XAB$K_MS_DOS MS–DOS

XAB$K_ULTRIX_32 ULTRIX–32

XAB$K_SNA_OS SNA gateway to IBM

(continued on next page)

12–4 Item List XAB (XABITM)

Item List XAB (XABITM)
12.2 Network File Access Items (XAB$_NET_... and XAB$_CAP_...)

Table 12–2 (Cont.) XABITM Item List

Item Value Description

XAB$_NET_REMOTE_FILE_SYSTEM This informational item returns the identity of the remote file
system.

A 4-byte buffer is needed to store the symbolic constants
listed in the following table:

Symbolic Constant File System

XAB$K_RMS11 RMS-11

XAB$K_RMS20 RMS–20

XAB$K_RMS32 RMS-32

XAB$K_FCS11 FCS–11

XAB$K_RT11FS RT-11

XAB$K_NO_FS No file system present

XAB$K_TOPS20FS TOPS–20

XAB$K_TOPS10FS TOPS–10

XAB$K_RMS32S RMS-32 subset (VAXELN)

XAB$K_MS_DOSFS MS–DOS

XAB$K_ULTRIX32_FS ULTRIX–32

XAB$K_SNA_FS SNA gateway to IBM

XAB$_NET_EXTPROT This item permits the application program to specify or to
sense the extended file protection that is likely to be mapped
to a protection subset supported by the remote system.

An 8-byte buffer is needed to store protection mask
specification.

The application program implements extended file protection
as part of either a Create or Close service by specifying the
appropriate protection mask in the related subfield:

Subfield Protection

XAB$W_SYSTEM_ACC System access

XAB$W_OWNER_ACC Owner access

XAB$W_GROUP_ACC Group access

XAB$W_WORLD_ACC World access

(continued on next page)

Item List XAB (XABITM) 12–5

Item List XAB (XABITM)
12.2 Network File Access Items (XAB$_NET_... and XAB$_CAP_...)

Table 12–2 (Cont.) XABITM Item List

Item Value Description

Each of the protection mask fields provides the following
mask values for further defining access:

Mask Value Protection Function

XAB$M_RED_ACC Deny read access

XAB$M_WRT_ACC Deny write access

XAB$M_EXE_ACC Deny execute access

XAB$M_DLT_ACC Deny delete access

XAB$M_APP_ACC Deny append access

XAB$M_DIR_ACC Deny directory access

XAB$M_UPD_ACC Deny update access

XAB$M_CHG_ACC Deny change protection access

XAB$M_EXT_ACC Deny extend access

Note that not all systems support all of the protection mask
fields.

XAB$_NET_SYSCAP_LOCAL This informational item permits the application program to
read the network capabilities of the local system by returning
symbolic bit vector values. An 8-byte buffer is needed to store
the symbolic bit vector values.

See Table 12–3 for a description of the network capabilities
bit vectors used by the local and remote systems.

XAB$_NET_SYSCAP_REMOTE This informational item permits the application program
to read the network capabilities of the remote system by
returning symbolic bit vector values. An 8-byte buffer is
needed to store the symbolic bit vector values.

See Table 12–3 for a description of the network capabilities
bit vectors used by the local and remote systems.

(continued on next page)

12–6 Item List XAB (XABITM)

Item List XAB (XABITM)
12.2 Network File Access Items (XAB$_NET_... and XAB$_CAP_...)

Table 12–2 (Cont.) XABITM Item List

Item Value Description

XAB$_NET_DAPVER_LOCAL This informational item returns the version of DAP on the
local system using five symbolic bytes, thus requiring a 5-byte
buffer:

Symbolic Byte Version Information

XAB$B_VER_DAP DAP protocol version

XAB$B_VER_ECO DAP protocol ECO level

XAB$B_VER_CUS Customer modification level
of DAP protocol; set to 0 by
Compaq

XAB$B_VER_DSV Compaq software version
(release number)

XAB$B_VER_CSV Customer software version
number; set to 0 by Compaq

XAB$_NET_DAPVER_REMOTE This informational item returns the version of DAP on the
remote system using five symbolic bytes:

Symbolic Byte Version Information

XAB$B_VER_DAP DAP protocol version

XAB$B_VER_ECO DAP protocol ECO level

XAB$B_VER_CUS Customer modification level
of DAP protocol; set to 0 by
Compaq

XAB$B_VER_DSV Compaq software version
(release number)

XAB$B_VER_CSV Customer software version
number; set to 0 by Compaq

XAB$_NET_LINK_TIMEOUT This item permits the application program to set the timeout
interval for logical link caching. The setting is passed as the
number of seconds used to cache the logical link. A zero (0)
setting enables caching until image rundown. The default
interval is 30 seconds.

A 4-byte buffer is needed to store the timeout interval value.

XAB$_NET_DATA_CRC_ENABLE This item allows the application program to enable cyclic
redundancy checking at the DAP level. The symbolic value
XAB$K_ENABLE enables CRC checking at the DAP level
(the default state); the symbolic value XAB$K_DISABLE
disables CRC checking at the DAP level.

XAB$_NET_LINK_CACHE_ENABLE This item is used to enable or to disable logical link caching.
The symbolic value XAB$K_ENABLE enables link caching
(the default state); the symbolic value XAB$K_DISABLE
disables link caching. A 4-byte buffer is required.

The system capabilities supported by various DAP implementations are described
using a vector of bits wherein a bit is set if the corresponding capability is
supported. Any attempt to implement a feature at the local node that is not
supported at the remote node is treated as a protocol error. Table 12–3 describes

Item List XAB (XABITM) 12–7

Item List XAB (XABITM)
12.2 Network File Access Items (XAB$_NET_... and XAB$_CAP_...)

the bit vectors that RMS uses to return the networking capabilities for both the
local and remote nodes to the calling program.

Table 12–3 System Networking Capabilities

Bit Value Capability

XAB$V_CAP_FILALL Allocation of space at file creation

XAB$V_CAP_SEQORG Sequential file organization

XAB$V_CAP_RELORG Relative file organization

XAB$V_CAP_EXTEND Manual file extension

XAB$V_CAP_SEQFIL Sequential file access (file transfer mode)

XAB$V_CAP_RANRRN Random access by relative record number

XAB$V_CAP_RANVBN Random access by virtual block number

XAB$V_CAP_RANKEY Random access by key value

XAB$V_CAP_RANRFA Random access by record file address

XAB$V_CAP_IDXORG Multikeyed indexed file organization

XAB$V_CAP_SWMODE Dynamic switching of access modes

XAB$V_CAP_APPEND Records appended to end of file

XAB$V_CAP_SUBMIT Command file submission/execution

XAB$V_CAP_MDS Multiple data streams for each file

XAB$V_CAP_DISPLAY Display of file attributes on request

XAB$V_CAP_MSGBLK Blocking of DAP messages up to response (less than
256 bytes)

XAB$V_CAP_UNRBLK Unrestricted blocking of DAP messages

XAB$V_CAP_BIGBLK Blocking of DAP messages up to response (greater
than or equal to 256 bytes)

XAB$V_CAP_DAPCRC DAP message CRC checksum

XAB$V_CAP_KEYXAB Key definition XAB message

XAB$V_CAP_ALLXAB Allocation XAB message

XAB$V_CAP_SUMXAB Summary XAB message

XAB$V_CAP_DIRECTORY Directory list operation

XAB$V_CAP_TIMXAB Date and time XAB message

XAB$V_CAP_PROXAB File protection XAB message

XAB$V_CAP_FOPSPL Spool file on Close FOP option

XAB$V_CAP_FOPSCF Submit command file on Close FOP option

XAB$V_CAP_FOPDLT Delete file on Close FOP option

XAB$V_CAP_SEQRAC Sequential record access

XAB$V_CAP_BITOPT Bit count option in the FLAGS field

XAB$V_CAP_WARNING Warning status message and error recovery message
exchange

XAB$V_CAP_RENAME File rename operation

XAB$V_CAP_WILDCARD Wildcard operations (excluding directory)

XAB$V_CAP_GNGOPT Go/Nogo option in the ACCOPT field

(continued on next page)

12–8 Item List XAB (XABITM)

Item List XAB (XABITM)
12.2 Network File Access Items (XAB$_NET_... and XAB$_CAP_...)

Table 12–3 (Cont.) System Networking Capabilities

Bit Value Capability

XAB$V_CAP_NAMMSG Name message

XAB$V_CAP_SEGMSG Segmented DAP messages

XAB$V_CAP_CHGATTCLS Changing file attributes on Close using ATT message

XAB$V_CAP_CHGTIMCLS Changing file attributes on Close using TIM message

XAB$V_CAP_CHGPROCLS Changing file attributes on Close using PRO message

XAB$V_CAP_CHGNAMCLS Changing file attributes on Close using NAM message

XAB$V_CAP_MODATTCRE Modified attributes returned when file is created

XAB$V_CAP_NAM3PART Three-part name message format in DISPLAY field of
both Access and Control messages

XAB$V_CAP_CHGATTREN Changing file attributes on Rename using ATT
message

XAB$V_CAP_CHGTIMREN Changing file attributes on Rename using TIM
message

XAB$V_CAP_CHGPROREN Changing file attributes on Rename using PRO
message

XAB$V_CAP_CTLBLKCNT BLKCNT field in Control message

XAB$V_CAP_OCTALVER Octal version numbers only in file specifications

12.3 File User Characteristics Items (XAB$_UCHAR_...)
This section describes the use of the XABITM to pass ODS-2 file information
outside the RMS interface level in contrast to the file header information (see
Chapter 11) which is used internally by the record management system. The
information in this XABITM is independent of any record management system or
database management system.

Table 12–4 lists the file user information you can include in a XABITM. You can
sense all of the functions listed in the table using either $OPEN or $DISPLAY,
but you can set only the following functions using a XABITM:

• XAB$_UCHAR_CONTIGB

• XAB$_UCHAR_ERASE

• XAB$_UCHAR_LOCKED

• XAB$_UCHAR_NOBACKUP

• XAB$_UCHAR_NOMOVE

• XAB$_UCHAR_NOSHELVABLE

• XAB$_UCHAR_READCHECK

• XAB$_UCHAR_WRITECHECK

You can only set these functions when you use the $CREATE operation for a new
file. The buffer associated with the item code must contain the symbolic value
XAB$K_ENABLE and the XAB$B_MODE field must contain the symbolic value
XAB$K_SETMODE.

Item List XAB (XABITM) 12–9

Item List XAB (XABITM)
12.3 File User Characteristics Items (XAB$_UCHAR_...)

You cannot enable or disable these functions for an existing file using the
XABITM interface; you can only enable or disable these functions for an existing
file from the DCL interface using the SET FILE command. See the OpenVMS
DCL Dictionary for details.

None of these functions are supported for DECnet operations; they are ignored.
The user buffer is left unchanged.

Table 12–4 File User Characteristics

Item Description

XAB$_UCHAR_BADACL File’s ACL is corrupt.

XAB$_UCHAR_BADBLOCK File contains bad blocks.

XAB$_UCHAR_CONTIG File is contiguous.

XAB$_UCHAR_CONTIGB Keep the file as contiguous as possible.

XAB$_UCHAR_DIRECTORY File is a directory.

XAB$_UCHAR_ERASE Erase the file’s contents before deleting it.

XAB$_UCHAR_LOCKED File is deaccess-locked.

XAB$_UCHAR_MARKDEL File is marked for deletion.

XAB$_UCHAR_NOBACKUP Do not back up the file.

XAB$_UCHAR_NOCHARGE Do not charge file space.

XAB$_UCHAR_NOMOVE Disable movefile operations on the file.

XAB$_UCHAR_NOSHELVABLE File is not shelvable.

XAB$_UCHAR_PRESHELVED File is shelved but also kept online.

XAB$_UCHAR_READCHECK Verify read operations to the file.

XAB$_UCHAR_SHELVED File is shelved.

XAB$_UCHAR_SPOOL File is an intermediate spool file.

XAB$_UCHAR_WASCONTIG File was (and should be) contiguous.

XAB$_UCHAR_WRITEBACK File may be write-back cached.

XAB$_UCHAR_WRITECHECK Verify write operations to the file.

12.4 RMS Performance Monitoring (XAB$_STAT_ENABLE)
This section describes the implementation of performance monitoring from the
RMS interface using a XABITM.

To explicitly obtain performance statistics for a file through the RMS interface,
the application program enables the statistics function using the XAB$_STAT_
ENABLE item. This item may be used with a $OPEN or $DISPLAY operation
to sense the statistics monitoring state. You can only set the statistics function
when you use a $CREATE operation to create a new file. The buffer associated
with the item code must contain the symbolic value XAB$K_ENABLE and the
XAB$B_MODE field must contain the symbolic value XAB$K_SETMODE.

You cannot enable or disable this function for an existing file using the XABITM
interface. You can only enable or disable this function for an existing file from the
DCL interface using the SET FILE command. See the OpenVMS DCL Dictionary
for details.

For details about using the Monitor utility for gathering performance statistics,
see the OpenVMS System Manager’s Manual.

12–10 Item List XAB (XABITM)

Item List XAB (XABITM)
12.4 RMS Performance Monitoring (XAB$_STAT_ENABLE)

This option is not supported for DECnet operations; it is ignored. The user buffer
is left unchanged.

Example 12–1 illustrates the use of XABITM to enable statistics monitoring.

Example 12–1 Using XABITM to Enable RMS Statistics
.
.
.

ITEMLIST : BLOCK [ITM$S_ITEM+4, BYTE]
INITIAL(REP (ITM$S_ITEM+4) OF (0)),

ITEM_XAB : $XABITM(mode = SETMODE,
itemlist = ITEMLIST),

ITEM_BUFFER : LONG INITIAL (XAB$K_ENABLE);
FILE_FAB : $FAB(

.

.

.
XAB = ITEM_XAB,

.

.

.
);

ITEMLIST[ITM$W_ITMCOD] = XAB$_STAT_ENABLE;
ITEMLIST[ITM$W_BUFSIZ] = 4;
ITEMLIST[ITM$L_BUFADR] = ITEM_BUFFER;
$CREATE(fab = FILE_FAB);

.

.

.

12.5 Compound Document Support (XAB$_..._SEMANTICS)
The term compound documents refers to files that can contain a number of
integrated components including text, graphics, and scanned images. To support
the use of text in compound documents, RMS implements the file attribute, stored
semantics. The value of the stored semantics attribute is called the file tag, and
it specifies how file data is to be interpreted.

RMS support for compound documents requires that compound document files be
tagged. You can tag a file from the RMS interface by using the Create service in
conjunction with a $XABITM macro, and you can sense the tagged status of a file
using a $XABITM macro. Tagged file support involves the use of the two item
codes shown in Table 12–5. Each of these item codes requires buffers up to 64
bytes long.

Table 12–5 Tag Support Item Codes

Item Function

XAB$_STORED_SEMANTICS Defines the file semantics established when the file
is created

XAB$_ACCESS_SEMANTICS Defines the file semantics desired by the accessing
program

The entries XAB$_STORED_SEMANTICS and XAB$_ACCESS_SEMANTICS
in the item list can represent either a control (set) function or a monitor (sense)

Item List XAB (XABITM) 12–11

Item List XAB (XABITM)
12.5 Compound Document Support (XAB$_..._SEMANTICS)

function that can be passed to RMS from the application program by way of the
RMS interface. You can use the symbolic value XAB$K_SEMANTICS_MAX_LEN,
representing the tag length, to allocate buffer space for sensing and setting stored
semantics for the file.

Within any one $XABITM, you can activate either the set function or the sense
function for the XAB$_STORED_SEMANTICS and XAB$_ACCESS_SEMANTICS
items because a common field (XAB$B_MODE) determines which function is
active. If you want to activate both the set function and the sense function for
either or both items, you must use two $XABITM control blocks, one for setting
the functions and one for sensing the functions.

12.6 Specifying the Number of Local Buffers
(XAB$_MULTIBUFFER_COUNT)

This section describes how to use the item list XAB to specify up to 32,767
local buffers. Prior to implementation of the XAB$_MULTIBUFFER_COUNT
XABITM, you could only specify up to 127 local buffers for a record stream from
the RMS interface using the RAB multibuffer count field (RAB$B_MBF). When
you use the multibuffer count XABITM, the value specified overrides any value
that resides in the RAB$_MBF for the related record stream.

The XAB$_MULTIBUFFER_COUNT XABITM requires a 4-byte buffer to store
the value specifying the number of local buffers. Before you increase the size of
the local buffer pool, your current memory management parameters should be
considered because excessively large buffer pools can introduce additional paging
that reduces performance.

This option is not supported for DECnet operations; it is ignored.

You cannot sense the value stored in the XAB$_MULTIBUFFER_COUNT
XABITM, and any attempt to sense this value leaves the user buffer unchanged.

12.7 Expiration Date and Time Suppression
The file system, in conjunction with parameters established through the DCL
interface (see the SET VOLUME command in the OpenVMS DCL Dictionary),
gives users the capability to determine whether the contents of a data file have
grown stale and whether the file is a candidate for less costly and less accessible
storage, typically archived tape.

The file system determines whether a file has grown stale by evaluating the
Expiration Date and Time flag. This value should reflect real file activity; that is,
it should indicate when a file is no longer being actively used for informational
purposes. The flag should not be affected by maintenance functions or for any
function that does not involve data access.

This capability is also available to all user application programs through the RMS
interface using the XAB$_NORECORD XABITM.

12.7.1 XAB$_NORECORD XABITM
When an application program reads data from a disk file or writes data to a disk
file, the $CLOSE service updates the Expiration Date and Time value to the
current date and time. This effectively pushes back the expiration date and time
to reflect user interest in the file.

12–12 Item List XAB (XABITM)

Item List XAB (XABITM)
12.7 Expiration Date and Time Suppression

When the user program accesses a file for maintenance or monitoring purposes,
it should use the XAB$_NORECORD XABITM as an input to the appropriate file
service to inhibit the update of the Expiration Date and Time field and thereby
maintain the true expiration status of the file. For example, the DCL command
DIRECTORY/FULL uses the XAB$_NORECORD XABITM when it opens files
to access prolog data containing key information. In this case, DIRECTORY
displays prolog information but does not display or modify the file data and
therefore should not modify the Expiration Date and Time.

Maintenance utilities should also consider using this XABITM. For example,
a disk defragmentation utility should not affect the expiration status of a disk
file because the file is not accessed for informational purposes, but rather for
maintenance purposes.

The XAB$_NORECORD XABITM uses a 4-byte buffer to set the NORECORD
flag to logic 1 using the symbol XAB$_ENABLE. Any other value in this XABITM
buffer returns an RMS$_XAB error. An application cannot disable this option
because the ODS-2 ACP does not support disabling the option when it is selected
on a $OPEN or $CREATE.

This option is not supported for DECnet operations; it is ignored.

12.7.2 Application
The XAB$_NORECORD function can be enabled on input to the $CLOSE,
$OPEN, and $CREATE services. However, Compaq recommends using the
XAB$_NORECORD XABITM with the $OPEN service instead of with the
$CLOSE service in order to insure that the Expiration Date and Time flag
is updated should the file deaccess or should a close occur because of process
deletion or RMS rundown.

The XAB$_NORECORD XABITM can also be used when the $CREATE service
opens an existing file through the Create-if option and the user does not want to
change the Expiration Date. When the XAB$_NORECORD XABITM is used on a
$CREATE that creates a file, it disables the update on the subsequent $CLOSE
but does not prevent initialization of the Expiration Date and Time on the file
creation in the ACP.

An application typically senses the XAB$_NORECORD XABITM to determine
if the XABITM was specified on a previous $OPEN or $CREATE option or if
it is specified by the current RMS operation. The XAB$_NORECORD can be
sensed on output from RMS for the $OPEN, $CREATE, $DISPLAY, and $CLOSE
services.

12.8 File Length Hint (XAB$_FILE_LENGTH_HINT)
The file length hint is a pair of quadword integer fields (16 bytes) as follows:

1. Record count (bytes 0-7): the number of data records written to the file using
record I/O ($PUT).

2. User data byte count (bytes 8-15): the total number of user data bytes in the
file (excluding any overhead bytes added by RMS).

For sequential files with a record format of variable (VAR) or variable with fixed
control (VFC) on an ODS-5 volume, RMS will maintain the file hint, provided:

• The file is written only using unshared RMS record I/O.

• The file does not have journaling enabled.

Item List XAB (XABITM) 12–13

Item List XAB (XABITM)
12.8 File Length Hint (XAB$_FILE_LENGTH_HINT)

• The contents of the fields are valid when the file is opened.

The XAB$_FILE_LENGTH_HINT item code may be used with an item list
XAB on $OPEN or $DISPLAY operations to sense the file length hint values.
A SETMODE may be used with a $CLOSE operation to set the file length hint
counts. The SETMODE will override any counts that RMS may be concurrently
maintaining.

The XAB$_FILE_LENGTH_HINT XABITM requires a 16-byte buffer for the two
quadwords. These fields are maintained as a set: either both fields are valid or
invalid.

The most significant (sign) bit of each quadword is used to indicate whether
the associated count is valid. A sequential file with VAR or VFC format that is
created on an ODS-5 volume, had any data added to it using RMS record I/O
($PUTs) and has met the conditions indicated above should have valid counts. If,
however, at some point in time, some data are written to a file using RMS block
I/O, for example, then the sign bits will be set on file deaccess to indicate the
counts are invalid. The last count maintained in each field is retained as a hint
of what its last valid value was, but the sign bit being set indicates it is stale.

If these fields have never been modified by RMS for a file on an ODS-5 volume,
then the contents of each quadword will be 8 bytes of 0xFF. For example, after
a file originally created and maintained on an ODS-2 volume is converted from
ODS-2 format to ODS-5 format, these fields will contain 8 bytes of 0xFF.

The counts in these fields are invalidated if a truncate-on-put is done, except if
the truncate is to zero.

The utility ANALYZE/RMS_FILE has an /UPDATE_HEADER function that can
be used to revalidate the counts in these fields.

If a SENSEMODE using this item code is requested for a non-ODS-5 file, the
contents returned for each quadword will be 8 bytes of 0xFF. A SETMODE using
this item code for a non-ODS-5 file will be ignored.

The file length hint is not supported for DECnet operations; it is ignored. If a
SENSE is attempted, 8 bytes of 0xFF will be returned to the user buffer for each
quadword.

12.9 Extended File Cache (XAB$_CACHE_OPTIONS) (Alpha Only)
The ODS-2 and ODS-5 volumes of the Files-11 file system can use a caching
technique to improve performance. In using caching, the file system keeps a copy
of data that it recently read from disk in an area of memory called a cache. When
an application reads data, for example, the file system checks whether the data is
in its cache. The file system only issues an I/O to read the data from disk if the
data is not in the cache. Caching improves read performance, because reading
data from cache memory is much faster than reading it from disk.

The extended file cache (XFC) is a virtual block cache, which caches both data
and image files, and is available only on Alpha Systems. The extended file cache
allows you to specify the following caching options:

• Write-through caching

• No caching

You can control the files that the Extended File Cache option caches by setting
and showing the current caching option. This is described in the following
section.

12–14 Item List XAB (XABITM)

Item List XAB (XABITM)
12.9 Extended File Cache (XAB$_CACHE_OPTIONS) (Alpha Only)

Setting and Showing the Current Caching Option
When you access a file, you can specify the caching option that you would like
for the current process. If you want the file to be cached, select write-through
caching. This is the default. The write-through cache allows an application to
write data to a file and straight through to disk. When this occurs, the application
waits until the disk I/O is done and the data is on the disk.

The current caching option is stored in the XAB$_CACHING_OPTIONS XABITM,
which has the following structure.

MBZ MBZXAB$V_FLUSH_ON_CLOSE XAB$V_FILE_CONTENTS

31 1231 11 8 7 4 3 0

VM-0521A-AI

Table 12–6 shows the fields and gives a description of XAB$_CACHING_
OPTIONS XABITM.

Table 12–6 XAB$_CACHING_OPTIONS XABITM

Field Description

XAB$V_FILE_CONTENTS Can have one of the following values:

• XAB$K_NOCACHING

• XAB$K_WRITETHROUGH

XAB$V_FLUSH_ON_CLOSE Must have the value XAB$K_FLUSH.1

1Note that this must be set. It is required for future enhancements.

You can set the caching option by supplying a set mode XAB$_CACHING_
OPTIONS XABITM when you do the following:

• When you create a file using SYS$CREATE

• When you open an existing file using SYS$OPEN

If you do not supply a XABITM or, if you supply a XABITM whose value is zero
(0), the file system uses the value in the file’s caching attribute.

If another process on your computer is accessing the file, and you ask for write-
through caching, your request is ignored if the file’s current caching option is no
caching. When more than one process is accessing a file on a single node, the
most restrictive caching option takes effect on that node. Write-through caching
is least restrictive; no caching is most restrictive.

When more than one node in an OpenVMS Cluster is accessing a file, its caching
option may be different on different nodes. It may be write-through on one node
and no caching on another.

To show the caching option, supply a sense mode XABITM on a call to
SYS$DISPLAY.

Item List XAB (XABITM) 12–15

13
Journaling XAB (XABJNL)

The journaling XAB (XABJNL) control block supports file journaling operations.
See the RMS Journaling for OpenVMS Manual for details.

Journaling XAB (XABJNL) 13–1

14
Key Definition XAB (XABKEY)

You must provide a key definition XAB (XABKEY) for each key in an indexed file
in order to define the key’s characteristics. Before you create an indexed file, you
must establish the contents of the XABKEY fields for the primary key and for
each alternate key.

When you invoke an Open or Display service for an existing indexed file, you can
use XABKEYs if you want to provide your program with one or more of the key
definitions specified when the file was created. Alternatively, the summary XAB
(see Chapter 18) provides the number of keys, the number of allocated areas, and
the prolog version assigned to the file.

14.1 Summary of Fields
Table 14–1 lists the symbolic offset, the size, the FDL equivalent, and a brief
description of each XABKEY field.

Table 14–1 XABKEY Fields

Field Offset
Size
(Bytes) FDL Equivalent Description

XAB$B_BLN1 1 None Block length

XAB$B_COD1 1 None Type code

XAB$L_COLNAM 4 None Collating sequence name

XAB$L_COLSIZ 4 None Collating sequence table size

XAB$L_COLTBL 4 COLLATING_SEQUENCE Collating sequence table address

XAB$B_DAN 1 KEY DATA_AREA Data bucket area number

XAB$B_DBS2 1 None Data bucket size

XAB$W_DFL 2 KEY DATA_FILL Data bucket fill size

XAB$B_DTP 1 KEY TYPE3 Data type of the key

XAB$L_DVB2 4 None First data bucket virtual block
number

XAB$B_FLG 1 KEY3 Key options flag

XAB$B_IAN 1 KEY INDEX_AREA Index bucket area number

XAB$B_IBS2 1 None Index bucket size

XAB$W_IFL 2 KEY INDEX_FILL Index bucket file size

XAB$L_KNM 4 KEY NAME Key name buffer address

1This field is statically initialized by the $XABKEY macro to identify this control block as a XABKEY.
2This field cannot be initialized by the $XABKEY macro.
3This field contains options; corresponding FDL equivalents are listed in the description of the field.

(continued on next page)

Key Definition XAB (XABKEY) 14–1

Key Definition XAB (XABKEY)
14.1 Summary of Fields

Table 14–1 (Cont.) XABKEY Fields

Field Offset
Size
(Bytes) FDL Equivalent Description

XAB$B_LAN 1 KEY LEVEL1_INDEX_AREA Lowest level of index area
number

XAB$B_LVL2 1 None Level of root bucket

XAB$W_MRL2 2 None Minimum record length

XAB$B_NSG2 1 None Number of key segments

XAB$B_NUL 1 KEY NULL_VALUE Null key value

XAB$L_NXT 4 None Next XAB address

XAB$W_POSn 2 KEY POSITION and
SEGn_POSITION

Key position, XAB$W_POS0 to
XAB$W_POS7

XAB$B_PROLOG 1 KEY PROLOG Prolog level

XAB$B_REF4 1 KEY n Key of reference

XAB$L_RVB2 4 None Root bucket virtual block
number

XAB$B_SIZn 1 KEY LENGTH and SEGn_
LENGTH

Key size XAB$B_SIZ0 to
XAB$B_SIZ7

XAB$B_TKS2 1 None Total key field size

2This field cannot be initialized by the $XABKEY macro.
4For BLISS-32, this field is designated XAB$B_KREF.

Unless otherwise indicated, each field is supported for DECnet for OpenVMS
operations on files at remote OpenVMS nodes. For information about the support
of RMS options for remote file access to other systems, see the DECnet for
OpenVMS Networking Manual.

14.2 XAB$B_BLN Field
The block length (BLN) field is a static field that defines the length of the
XABKEY, in bytes. Once set, this field must not be altered unless the control
block is no longer needed. The $XABKEY macro initializes the XAB$B_BLN field
to the symbolic value XAB$C_KEYLEN.

14.3 XAB$B_COD Field
The type code (COD) field is a static field that identifies this control block as a
XABKEY. Once set, this field must not be altered unless the control block is no
longer needed. The $XABKEY macro initializes the XAB$B_COD field to the
symbolic value XAB$C_KEY.

14.4 XAB$L_COLNAM Field
When you invoke the Display service, RMS uses this field to return a pointer to a
memory buffer containing the name of the collating sequence for this key.

The name buffer is in the form of an ASCII counted string where the first
byte indicates the length of the name and the remaining bytes are the ASCII
representation of the name itself. The maximum length of the buffer is 32 bytes,
1 byte for the count and 31 bytes for the name.

14–2 Key Definition XAB (XABKEY)

Key Definition XAB (XABKEY)
14.5 XAB$L_COLSIZ Field

14.5 XAB$L_COLSIZ Field
When you invoke the Display service, RMS returns the size, in bytes, of the
collating sequence used with this key to this field.

14.6 XAB$L_COLTBL Field
RMS provides you with a way to use alternative (non-ASCII) collating sequences
with indexed file keys. You can define a collating sequence for each key of
reference, yielding, for example, a file sorted in German by one key, French by
another key, and so forth.

This feature is based on the National Character Set utility, which permits you
to define alternative collating sequences for special characters and to establish
and maintain a library of collating sequences. This eliminates having to redefine
an alternative collating sequence when the application requires it. See the
OpenVMS National Character Set Utility Manual for details.

Note

Key compression and index compression are not permitted with collating
keys.

To access an alternative collating sequence for a key, enter the symbolic address
of the appropriate collating table in the XAB$L_COLTBL field. For example, you
might enter the following:

DST_KEY0:
$XABKEY

.

.

.
COLTBL=FRENCH, - ;symbolic address of French collating table
.
.
.

RMS responds by storing the specified collating table in the initial blocks of the
indexed file immediately following the area descriptors. Collating tables are
typically about one block long.

When you invoke the Display or the Open service, RMS returns the address of
the collating table in this field.

This field corresponds to the FDL attribute COLLATING_SEQUENCE.

14.7 XAB$B_DAN Field
The data bucket area number (DAN) field contains a numeric value that identifies
the area where the data buckets for this key reside. The number reflects the
value in the XAB$B_AID field of the XABALL for this XAB chain. The numeric
value may range from 0 through 254, but the default is 0; that is, area 0.

When you create a new indexed file or when you use allocation XABs to define
areas (see Chapter 9), you must specify a value for this field to identify the file
area where the data buckets are to reside.

Key Definition XAB (XABKEY) 14–3

Key Definition XAB (XABKEY)
14.7 XAB$B_DAN Field

When a XABKEY describes the primary key, the data level of the index consists
of buckets that contain the actual data records of the file. However, when the
key definition describes an alternate key, the data level of the index consists of
buckets in which RMS maintains pointers to the actual data records.

The XAB$B_DAN field corresponds to the FDL attribute KEY DATA_AREA.

14.8 XAB$B_DBS Field
After an Open or Display service, the data bucket size (DBS) field contains the
size of the data level (level 0) buckets, in virtual blocks, for the key described by
the XAB.

14.9 XAB$W_DFL Field
The data bucket fill size (DFL) field contains a numeric value that indicates the
maximum number of bytes (of data) in a data bucket. The largest possible fill
size is the bucket size, in blocks, multiplied by 512. The default value is 0, which
is interpreted as the maximum available space (that is, no unused space). If the
specified size is not 0, but is less than one-half of the bucket size (in bytes), then
the fill size used is one-half of the bucket size.

When you create an indexed file, you use this field to specify the number of bytes
of data you want in each data level bucket. If you specify a value that is less
than the actual bucket size, the data buckets contain some amount of free space.
At run time, RMS uses the fill size specified when the file was created only if the
RAB$L_ROP (record-processing options) field RAB$V_LOA option is specified in
the RAB; otherwise, RMS fills the buckets.

When a XABKEY describes the primary key, the XAB$W_DFL field describes
the space in the buckets containing actual user data records. When a XABKEY
describes an alternate key, the XAB$W_DFL field describes the space in the
buckets containing pointers to the user data records.

It is advantageous to use the XAB$W_DFL field if you expect to execute
numerous random Put and Update services on the file after it has been initially
populated. You can minimize the movement of records (bucket splitting) by
specifying less than the maximum bucket fill size when you create the file. To
use the free space reserved in the buckets, programs that execute Put or Update
services on the file should not specify the RAB$L_ROP field RAB$V_LOA option.

This field corresponds to the FDL attribute KEY DATA_FILL (which is expressed
as a percentage).

14.10 XAB$B_DTP Field
The XAB$B_DTP field specifies the key data type and the key sort order,
ascending or descending.

In this keyword value field, each key data type option is defined by a symbolic
value. If the key sort order is descending, the letter D is prefixed to the symbolic
value; if the sort order is ascending, the prefix is omitted. For example, a
XAB$B_DTP field having the value XAB$C_DBN2 is an unsigned, 2-byte binary
number that is sorted in descending order. On the other hand, a XAB$B_DTP
field having the value XAB$C_BN2 is an unsigned, 2-byte binary number that is
sorted in ascending order.

Only one option can be specified. It is identified by a symbolic constant value; for
example, the STG (string) option has the constant value XAB$C_STG.

14–4 Key Definition XAB (XABKEY)

Key Definition XAB (XABKEY)
14.10 XAB$B_DTP Field

The options for the XAB$B_DTP field are listed in the following table:

Keyword Data Type Sort Order

XAB$C_BN2 Unsigned 2-byte binary Ascending

XAB$C_DBN2 Unsigned 2-byte binary Descending

XAB$C_BN4 Unsigned 4-byte binary Ascending

XAB$C_DBN4 Unsigned 4-byte binary Descending

XAB$C_BN8 Unsigned 8-byte binary Ascending

XAB$C_DBN8 Unsigned 8-byte binary Descending

XAB$C_IN2 Signed 2-byte integer Ascending

XAB$C_DIN2 Signed 2-byte integer Descending

XAB$C_IN4 Signed 4-byte integer Ascending

XAB$C_DIN4 Signed 4-byte integer Descending

XAB$C_IN8 Signed 8-byte integer Ascending

XAB$C_DIN8 Signed 8-byte integer Descending

XAB$C_COL Collating key Ascending

XAB$C_DCOL Collating key Descending

XAB$C_PAC Packed decimal string Ascending

XAB$C_DPAC Packed decimal string Descending

XAB$C_STG1 Left-justified string of
unsigned 8-bit bytes

Ascending

XAB$C_DSTG Left-justified string of
unsigned 8-bit bytes

Descending

1This is the default value.

The string data type may consist of from one to eight detached key field segments
that collectively make up the key. For more information about segmented keys,
see the descriptions of the XAB$W_POS0 through XAB$W_POS7 field and the
XAB$B_SIZ0 through XAB$B_SIZ7 field.

Integer, binary, and packed decimal key fields must be a contiguous set of bytes.

The formats of the binary and integer key field data types are presented in the
following table.

Key Type Format

XAB$C_BN2 LSB at A, MSB at A+1

XAB$C_DBN2 LSB at A, MSB at A+1

XAB$C_BN4 LSB at A, MSB at A+3

XAB$C_DBN4 LSB at A, MSB at A+3

XAB$C_BN8 LSB at A, MSB at A+7

XAB$C_DBN8 LSB at A, MSB at A+7

XAB$C_IN2 LSB at A, MSB and sign at A+1

XAB$C_DIN2 LSB at A, MSB and sign at A+1

Key Definition XAB (XABKEY) 14–5

Key Definition XAB (XABKEY)
14.10 XAB$B_DTP Field

Key Type Format

XAB$C_IN4 LSB at A, MSB and sign at A+3

XAB$C_IN4 LSB at A, MSB and sign at A+3

XAB$C_IN8 LSB at A, MSB and sign at A+7

XAB$C_DIN8 LSB at A, MSB and sign at A+7

The collating key data types are used in conjunction with collating sequences
located in the indexed file prolog. Collating sequences are used with
multinational characters and are specified for each key. Note that key
compression and index compression are not permitted with collating keys.

Note that although a collating key affects the stored order for records, the
collating value does not govern record lookups. For example, a collating sequence
may assign the same ordering for the keys ‘‘dog’’ and ‘‘DOG’’. However, both keys
do not have the same access (lookup) value. Therefore, when doing lookups, a
program should specify either the specific key value or a range of values that
include the uppercase and lowercase combinations of the key. See the Guide to
OpenVMS File Applications for more information about accessing indexed records.

A packed decimal string is a contiguous sequence of bytes specified by two
attributes: the address (A) of the first byte of the string and a length (L) that
is the number of digits in the packed decimal. The bytes of a packed decimal are
divided into two 4-bit fields that must contain decimal digits, except for the first
four bits (0 through 3) of the last (highest addressed) byte, which must contain a
sign. The representation for the digits and signs is shown in the following table.

Digit or Sign Decimal Value Hexadecimal Value

0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9

+ 10, 12, 14, or 15 A, C, E, or F

– 11 or 13 B or D

The preferred sign representation is 12 for plus (+) and 13 for minus (–). The
length (L) is the number of digits in the packed decimal string (not counting
the sign) and must be in the range 0 through 31. When the number of digits
is even, an extra 0 digit must appear in the last four bits (4 through 7) of the
first byte. Again the length in bytes of the packed decimal is L/2 + 1. The value
of a zero-length packed decimal is 0; it contains only the sign byte, which also
includes the extra 0 digit.

14–6 Key Definition XAB (XABKEY)

Key Definition XAB (XABKEY)
14.10 XAB$B_DTP Field

The address, A, of the packed decimal specifies the byte containing the most
significant digit in its high order. Digits of decreasing significance are assigned
to increasing byte addresses and from high to low within a byte. Thus, +123 has
length 3 and is represented as follows:

7 4 3 0

1 2

3 12

A

A+1

ZK−0873−GE

Similarly, –12 has length 2 and is represented as follows:

7 4 3 0

0 1

2 13

A

A+1

ZK−0874−GE

This field corresponds to the FDL attribute KEY TYPE.

14.11 XAB$L_DVB Field
After an Open or Display service, the DVB field contains the starting virtual
block number of the first data level bucket for the key described by the XAB.

14.12 XAB$B_FLG Field
The key options flag (FLG) field specifies the following conditions:

• Whether duplicate keys are permitted in the file

• Whether a key value can change

• Whether a null value has been defined for a key

• Whether data is compressed

• Whether string key options apply

Note

The string data-type keys include STRING, DSTRING, COLLATED, and
DCOLLATED keys.

Primary key values cannot change, but alternate key values may change,
depending on application requirements. Primary and alternate keys may be
duplicated depending on the key field and the application. An alternate key field
is more likely than a primary key field to use duplicates.

This field is a binary options field where each key characteristic has a
corresponding bit assignment. Multiple key characteristics can be associated
with each key (multiple bits can be set). Each option in the field has its own

Key Definition XAB (XABKEY) 14–7

Key Definition XAB (XABKEY)
14.12 XAB$B_FLG Field

symbolic offset and mask value. For example, the CHG key characteristic has a
symbolic offset of XAB$V_CHG and a mask value of XAB$M_CHG.

When you create an indexed file and are defining a string key, you can specify the
XAB$V_IDX_NCMPR and XAB$V_KEY_NCMPR options, which are described in
the following list.

Options
XAB$V_CHG
The key value within the record in the file can be changed by a program during
an Update service. This option can be specified only for alternate keys.

This option corresponds to the FDL attribute KEY CHANGES.

XAB$V_DAT_NCMPR
Do not compress data. This option can be specified to override compression of
data for Prolog 3 files for the primary key; that is, when XAB$_REF is 0. For
additional information, see Guide to OpenVMS File Applications, Section 3.5,
Tuning an Indexed File and Subsection 3.5.1.1, Prologs.

This option corresponds to the FDL attribute KEY DATA_RECORD_
COMPRESSION.

This option is not supported for DECnet for OpenVMS operations; it is ignored.

XAB$V_DUP
The key value within the record in the file may have the same key value as
another record (or other records) within the file.

This option corresponds to the FDL attribute KEY DUPLICATES.

XAB$V_IDX_NCMPR
Do not compress index. This option can be specified to override compression
of keys in the index for Prolog 3 files. This option is valid only if a string key
is being defined and the string is at least 6 bytes in length. For additional
information, see Guide to OpenVMS File Applications, Section 3.5, Tuning an
Indexed File and Subsection 3.5.1.1, Prologs.

This option corresponds to the FDL attribute KEY INDEX_COMPRESSION and
it is not supported for DECnet for OpenVMS operations.

XAB$V_KEY_NCMPR
Do not compress key. This option can be specified to override compression of each
key for Prolog 3 files. For a primary key (XAB$_REF is 0), the primary keys at
the data level are not compressed; for each alternate key (XAB$_REF is greater
than 0), the secondary index data records (SIDRs) that point to the data record
location are not compressed. This option is valid only if a string key is being
defined and the string is at least 6 bytes in length. For additional information,
see Guide to OpenVMS File Applications, Section 3.5, Tuning an Indexed File and
Subsections 3.5.1.1, Prologs.

This option corresponds to the FDL attribute KEY DATA_KEY_COMPRESSION
and it is not supported for DECnet for OpenVMS operations.

XAB$V_NUL
The null key option permits you to exclude records from an alternate index
by effectively removing the related key. Typically, you would use this in an
application where performance is more critical than the indexing capability. This

14–8 Key Definition XAB (XABKEY)

Key Definition XAB (XABKEY)
14.12 XAB$B_FLG Field

option can be specified only for alternate key indexes but it can be used with all
key types.

When you set the XAB$V_NUL bit for a string-type key (string, descending
string, collated, descending collated) RMS checks the XAB$B_NUL field to
determine the null character you have defined for the related key. When you use
the XAB$V_NUL option with the integer, binary, and packed decimal data types,
RMS assigns a default null value of 0 and does not check the XAB$B_NUL field
(see XAB$B_FLG and XAB$B_NUL).

The defaults and combinations of allowing changeable key values (XAB$V_
CHG option) and duplicate key values (XAB$V_DUP option) depend on whether
a primary or alternate key is being defined by this XABKEY. The allowed
combinations and defaults for duplicate and changeable key values are described
in the following table.

Combinations Primary Key Alternate Key

XAB$V_CHG and XAB$V_DUP both set Error Allowed

XAB$V_CHG set, XAB$V_DUP clear Error Allowed

XAB$V_CHG clear, XAB$V_DUP set Allowed Allowed

XAB$V_CHG and XAB$V_DUP both clear Default Default

By default, duplicate keys are not allowed for the primary key and its value
cannot change.

If the XABKEY control block is not initialized by the $XABKEY macro, then
the defaults for alternate keys are the same as for primary keys and null key
values are not used. However, if the XABKEY control block is initialized by the
$XABKEY macro, the following defaults apply to alternate keys:

• Duplicate key values are allowed.

• Key values can change.

• Null key values are not allowed.

These defaults are applied only if the entire XAB$B_FLG field is defaulted.

Note that RMS supports alternate indexes that do not allow duplicate key values
but do allow key values to change for Update services. Older versions of RMS-11
(in contrast to RMS) do not allow this particular combination of attributes for
alternate indexes. This factor should be considered when you create files with
RMS that may also be processed by RMS-11.

This option corresponds to the FDL attribute KEY NULL_KEY.

14.13 XAB$B_IAN Field
The index bucket area number (IAN) field contains a numeric value in the range
0 through 254, representing an area identification number contained in the
XAB$B_AID field of a XABALL present in the same chain. The default is 0 (that
is, area 0).

When you create an indexed file, you use this argument to specify the area of the
file that the index buckets are to reside in only when both of the following are
true:

• You are creating a new indexed file.

Key Definition XAB (XABKEY) 14–9

Key Definition XAB (XABKEY)
14.13 XAB$B_IAN Field

• You are using allocation XABs to define areas.

When the XABKEY describes the primary key, the index level of the index
consists of all levels of the tree-structured primary index down to and including
the level containing pointers to the user data records themselves. However,
when the key definition describes an alternate key, the index level of the index
comprises all levels of the tree-structured alternate index down to, but not
including, the level containing buckets with pointer arrays that describe the user
data records. For directions about how to place the lowest level of the index in a
location separate from the higher levels, see the description of the XAB$B_LAN
field.

This field corresponds to the FDL attribute KEY INDEX_AREA.

14.14 XAB$B_IBS Field
After an Open or Display service, the index bucket size (IBS) field contains the
size of the index level (level 1 to n buckets, in virtual blocks, for the key described
by the XAB).

14.15 XAB$W_IFL Field
The index bucket fill size (IFL) field contains a numeric value representing the
maximum number of bytes in an index bucket. The maximum possible fill size is
the bucket size, in blocks, multiplied by 512. The default value is 0, meaning the
maximum available space (that is, no unused space). If the specified size is not
0, but is less than one-half of the bucket size (in bytes), then the fill size used is
one-half of the bucket size.

When you create an indexed file, you use this argument to specify the number of
bytes you want in each index bucket. If you specify less than the total possible
bucket size, you indicate that the index buckets are to contain some amount of
free space. At run time, RMS uses the fill size specified at creation time if the
LOA option is specified in the RAB$L_ROP (record-processing options) field of the
RAB; otherwise, RMS fills the buckets.

When a XABKEY describes the primary key, the XAB$W_IFL field describes the
space in the buckets in all levels of the primary index down to and including the
level containing pointers to the user data records. When a XABKEY describes
an alternate key, the XAB$W_IFL field describes the space in the buckets in
all levels of the alternate index down to, but not including, the level containing
buckets with pointer arrays that describe the user data records.

It is advantageous to use the XAB$W_IFL field if you expect to perform numerous
random Put and Update services on the file after it has been initially populated.
You can minimize the movement of index records (bucket splitting) by specifying
less than the maximum bucket fill size when a file is created. To use the free
space thereby reserved in the buckets, programs that invoke the Put or Update
services for writing to the file should not specify the RAB$L_ROP field RAB$V_
LOA option.

This field corresponds to the FDL attribute KEY INDEX_FILL (which is
expressed as a percentage).

14–10 Key Definition XAB (XABKEY)

Key Definition XAB (XABKEY)
14.16 XAB$L_KNM Field

14.16 XAB$L_KNM Field
The key name buffer address (KNM) field contains the symbolic address of a
buffer that is available for assigning a user-specified name to the key being
defined. The name buffer must be at least 32 bytes in length and you may use
any 32-character string you choose to name the key field.

If the default value is taken (0), no name is to be assigned to the key. RMS
does not use this string but retains it in the file as part of the key definition
information for documentation purposes.

This field corresponds to the FDL attribute KEY NAME.

14.17 XAB$B_LAN Field
The lowest level of index area number (LAN) field contains a numeric value
(0 through 254) representing an area identification number contained in the
XAB$B_AID field of a XABALL present in the same XAB chain. If the XAB$B_
LAN field is not specified (that is, if the value is 0), the value in the XAB$B_IAN
field is used as a default; in other words, the lowest level of the index occupies
the same area of the file as the remainder of the index.

This field permits you to separate the lowest level (level 1) of the index from
all higher levels (levels 2+) of the index in an indexed file; you can use the
XAB$B_LAN field to specify an area of the index wherein the lowest level of the
index resides, separate from the area (or areas) specified by the XAB$B_IAN
field (wherein all other levels of the index reside). See XAB$B_IAN for additional
information.

You can specify the XAB$B_LAN field only when both of the following conditions
exist:

• You are creating a new indexed file.

• You are using allocation XABs to define areas.

Note that the area specified by the XAB$B_LAN field must have the same bucket
size as the area specified by the XAB$B_IAN field.

This field corresponds to the FDL attribute KEY LEVEL1_INDEX_AREA.

14.18 XAB$B_LVL Field
Following an Open or Display service, the level of root bucket (LVL) field contains
the level of the root bucket for the key described by the XAB.

14.19 XAB$W_MRL Field
Following an Open or Display service, the minimum record length (MRL) field
contains the minimum record length (in bytes) needed to contain the key field for
the key described by the XAB.

If the key described by the XAB is the primary key (XAB$_REF is 0), then a
record must be equal to or greater than the minimum record length returned in
XAB$W_MRL to be inserted or updated in the file.

If the key described by the XAB is an alternate key (XAB$_REF is greater than
0), then a record must be equal to or greater than the minimum record length
returned in the XAB$W_MRL field to be recorded in the associated index for that
alternate key.

Key Definition XAB (XABKEY) 14–11

Key Definition XAB (XABKEY)
14.20 XAB$B_NSG Field

14.20 XAB$B_NSG Field
Following an Open or Display service, the number of key segments (NSG) field
contains the number of key segments that make up the key field for the key
described by the XAB (see the XAB$W_POS0 through XAB$W_POS7 field).

14.21 XAB$B_NUL Field
Normally, RMS updates all indexes to reflect the values in the corresponding key
fields of the records written to an indexed file. The XAB$B_NUL field permits
you to instruct RMS not to make an entry in an alternate index if a record being
entered in an indexed file contains a specified null alternate key value. To specify
the XAB$B_NUL field, three conditions must be satisfied:

• The XABKEY must define an alternate key.

• The XAB$B_FLG field XAB$V_NUL option must be set when you create the
file (see XAB$B_FLG).

• The key data type must be string.

You can use any ASCII character in the null (NUL) field when you define a
string-type alternate key (string, descending string, collated, descending collated).
If you do not specify a null value, RMS assigns the key a default null value of 0.

This field corresponds to the FDL attribute KEY NULL_VALUE.

14.22 XAB$L_NXT Field
The next XAB address (NXT) field contains the symbolic address of the next XAB.
A value of 0 (the default) indicates that the current XAB is the last (or only) XAB
in the chain.

14.23 XAB$W_POS0 Through XAB$W_POS7 Field
There are two types of keys: simple keys and segmented keys.

A simple key is made up of one or more contiguous bytes and it may be used with
any data type, including the string data type. For simple keys, the first byte of
the key position field contains a byte offset relative to the beginning of the record
buffer that defines the starting position of the key. The remaining bytes contain
zeros.

Segmented keys include two through eight strings of key data (segments) and
can only be used with string data type key fields. The key segments need
not be contiguous nor must they be in a particular order. Key segments may
overlap except for primary keys used with Prolog 3 files. If your application
requires overlapping key segments in a Prolog 3 file, consider using an alternate
segmented key. If you must have a primary key with overlapping segments, RMS
requires you to use either a Prolog 2 or Prolog 1 structure (which it automatically
assigns if the XAB$B_PROLOG field is not specified).

For segmented keys, the first word of the key position field specifies the starting
position of the first segment and each succeeding byte specifies the starting
position of one of the remaining segments. When processing records that contain
segmented keys, RMS regards a segmented key field as a single, logically
contiguous string beginning with the first segment and ending with the last.

14–12 Key Definition XAB (XABKEY)

Key Definition XAB (XABKEY)
14.23 XAB$W_POS0 Through XAB$W_POS7 Field

You should note that the XAB$W_POS0 through XAB$W_POS7 and the XAB$B_
SIZ0 through XAB$B_SIZ7 (key size) fields must define the same number of key
position values and key size values.

This field corresponds to the FDL attributes KEY POSITION and SEGn_
LENGTH.

14.24 XAB$B_PROLOG Field
The prolog (PROLOG) field defines the version or structure level of the file index.
It contains a numeric value from 0 through 3.

The XAB$B_PROLOG field is input to the Create service, and it is returned by
the Display and Open services.

This field must only be used to define a primary key.

Prolog 3 is the default prolog level, unless the primary key contains overlapping
segments. RMS examines the key characteristics and determines the correct
prolog structure to apply to the file. If the XAB$B_PROLOG field is not specified
(that is, if the value is 0), the process default prolog level is examined, then the
system default prolog level is used. These default values are set by the DCL
command SET RMS_DEFAULT/PROLOG.

You should not specify a prolog level 1 because RMS decides whether a Prolog 1
or Prolog 2 file should be created, depending on the key type defined for the file.
If you want to select a prolog level other than Prolog 3, you should select either 0
or 2.

For more detailed information regarding the options for selecting a specific prolog
level, see the description of the Create service in Part III.

This field corresponds to the FDL attribute KEY PROLOG and it is not supported
for DECnet for OpenVMS operations; the default prolog in effect at the remote
node is used.

14.25 XAB$B_REF Field
The key of reference (REF) field defines a key as either the primary key or some
alternate key.

Note

For BLISS-32, this field is designated XAB$B_KREF.

This field contains a numeric value in the range 0 through 254. A value of 0
indicates that this is the primary key; a value of 1 indicates the first alternate
key; a value of 2 indicates the second alternate key, and so on. The order of the
XABKEYs is irrelevant.

Note that RMS can process an indexed file with 255 defined keys; each defined
key field, however, has an associated cost in processing and I/O time. The time
required to build and maintain the index for the key field and the disk storage
required to contain the index for each key field should be considered when you
decide whether the field should be an alternate key field. A file with six to
eight defined keys (the primary key and five to seven alternate keys) should be
considered as a maximum; a file with two or three defined keys is typical.

Key Definition XAB (XABKEY) 14–13

Key Definition XAB (XABKEY)
14.25 XAB$B_REF Field

This field corresponds to the FDL attribute KEY n, where n is the number of the
key being defined.

14.26 XAB$L_RVB Field
After an Open or Display service, the root index bucket virtual block number
(RVB) field contains the virtual block number for the root bucket of the index for
the key described by the XAB.

14.27 XAB$B_SIZ0 Through XAB$B_SIZ7 Field
The key size (SIZ) field defines the length of the key field within each record.
This field contains a numeric value representing the length, in bytes, of the key
within the record. Up to eight values can be assigned; maximum values depend
on the type of key.

The XAB$B_SIZ0 through XAB$B_SIZ7 field defines the length (in bytes) of
the key whose starting position is defined in the key position field of the XAB.
Two types of keys can be defined: simple and segmented (see the XAB$W_POS0
through XAB$W_POS7 field).

For a simple key, the XAB$B_SIZ0 through XAB$B_SIZ7 field contains only one
key size value (in XAB$B_SIZ0).

For a segmented key, the XAB$B_SIZ0 through XAB$B_SIZ7 field contains a key
size value for each segment of the key. You should note that the XAB$B_SIZ0
through XAB$B_SIZ7 field and the XAB$W_POS0 through XAB$W_POS7 field
must contain the same number of key size values and key position values. RMS
associates the first key position value with the first key size value to define the
location and length of the first segment of a segmented key, and so forth.

When the data type of the key is string, the total size (sum of all sizes) of the key
must be less than 256 bytes.

When the data type of the key is 2-byte integer or 2-byte binary, XAB$B_SIZ0
must equal 2 and XAB$B_SIZ1 through XAB$B_SIZ7 must contain 0. If the size
is 0, it defaults to 2.

When the data type of the key is 4-byte integer or 4-byte binary, XAB$B_SIZ0
must equal 4 and XAB$B_SIZ1 through XAB$B_SIZ7 must contain 0. If the size
is 0, it defaults to 4.

When the data type of the key is 8-byte integer or 8-byte binary, XAB$B_SIZ0
must equal 8 and XAB$B_SIZ1 through XAB$B_SIZ7 must contain 0. If the size
is 0, it defaults to 8.

When the data type of the key is packed decimal, the size specified by XAB$B_
SIZ0 must be from 1 through 16, and XAB$B_SIZ1 through XAB$B_SIZ7 must
contain 0.

This field corresponds to the FDL attribute KEY LENGTH or KEY SEG n_
LENGTH, where n is the number of the segment being defined.

14.28 XAB$B_TKS Field
After an Open or Display service, the total key size (TKS) field contains the total
key size (the sum [in bytes] of XAB$B_SIZ0 through XAB$B_SIZ7) for the key
described by the XAB.

14–14 Key Definition XAB (XABKEY)

15
Protection XAB (XABPRO)

The protection XAB (XABPRO) specifies the ownership, accessibility, and
protection for a file. Although an application program typically uses a XABPRO
as input to establish file protection when it creates a file, it can also use the
XABPRO to change file protection when it closes a file. The program that opened
the file can change file protection when it closes the file only if it accessed the
file to make modifications (FAC = PUT, UPDATE, DELETE, or TRUNCATE) and
has control access. Control access grants to the file accessor all of the file access
privileges of the file owner.

For more information about control access, see the OpenVMS Guide to System
Security.

RMS also uses the XABPRO to return file protection information to the
application program by way of the Display service and the Open service.

15.1 Summary of Fields
The symbolic offset, the FDL equivalent, and a brief description of each XABPRO
field are presented in Table 15–1.

Table 15–1 XABPRO Fields

Field Offset FDL Equivalent Description

XAB$L_ACLBUF3 None Address of buffer that contains ACL

XAB$L_ACLCTX3 None ACL positioning context

XAB$W_ACLLEN3 None Receives the length of an ACL during an
Open or Display service

XAB$W_ACLSIZ3 None Length of buffer containing binary ACEs

XAB$L_ACLSTS3 None System error status for ACL processing

XAB$B_BLN1 None Block length

XAB$B_COD1 None Type code

XAB$W_GRP2 FILE OWNER Group number of file owner

XAB$W_MBM2 FILE OWNER Member number of file owner

XAB$B_MTACC FILE MT_PROTECTION Magnetic tape accessibility

XAB$L_NXT None Next XAB address

1This field is statically initialized by the $XABPRO macro to identify this control block as a XABPRO.
2This field cannot be initialized by the $XABPRO macro.
3ACL operations apply only to Files–11 ODS-2 files.

(continued on next page)

Protection XAB (XABPRO) 15–1

Protection XAB (XABPRO)
15.1 Summary of Fields

Table 15–1 (Cont.) XABPRO Fields

Field Offset FDL Equivalent Description

XAB$W_PRO FILE PROTECTION File protection; contains four separate fields
denoting protection for system, owner, group,
and world

XAB$B_PROT_OPT None File protection options

XAB$L_UIC FILE OWNER User identification code; contains both the
group and member fields

Unless otherwise indicated, each field is supported for DECnet for OpenVMS
operations on files at remote OpenVMS systems. For information about the
support of RMS options for remote file access to other systems, see the DECnet
for OpenVMS Networking Manual.

15.2 XAB$L_ACLBUF Field
The ACL buffer field (ACLBUF) stores the address of a buffer area that contains
an access control list (ACL) for this file. The ACL buffer contains one or more
access control entries (ACE) in binary format. The system processes the ACL
until it encounters an ACE with a length byte value of 0 or until it reaches the
end of the buffer as indicated by XAB$W_ACLSIZ. The ACL buffer is used as
input to a Create service and as output from an Open or Display service. The
address in XAB$L_ACLBUF is used only as input to these services.

During a Create operation, if the XAB$L_ACLBUF field has a value other than
0, RMS attempts to create the file using the value in the ACL buffer. When the
XAB$L_ACLBUF field has a value of 0 during a Create operation, the file has an
ACL only if an ACL is specified by the systemwide defaults. Once a file has been
created, the ACL cannot be changed using RMS.

During an Open or a Display operation, if the XAB$L_ACLBUF field has a value
other than 0, RMS passes this address to the file system. The file system then
fills the user’s buffer with the file’s ACL (in binary format). If the entire ACL
does not fit into the user’s buffer, the file system puts only as many ACEs as
possible into the buffer. (See the XAB$L_ACLCTX field for more information.)

You can convert an ASCII ACL to binary format by using the $PARSE_ACL
system service, and you can convert an ACL from binary format to ASCII using
the $FORMAT_ACL system service. For information about using the $PARSE_
ACL and $FORMAT_ACL services, see the OpenVMS System Services Reference
Manual.

The use of this field for DECnet for OpenVMS remote file access is not
supported.

15.3 XAB$L_ACLCTX Field
The XAB$L_ACLCTX field is used as a placeholder by RMS, and it is used as
an input and output field by RMS during Open and Display operations when
the XAB$L_ACLBUF field has a value other than 0. In order to read an ACL
beginning with the first ACE, the XAB$L_ACLCTX field must have a value of 0.
When the initial Open or Display operation is complete, RMS fills the XAB$L_
ACLCTX field with a value that serves as a context field, allowing subsequent
Open or Display operations that read the remainder of the ACL (if the entire list
of ACEs did not fit into the user’s buffer).

15–2 Protection XAB (XABPRO)

Protection XAB (XABPRO)
15.3 XAB$L_ACLCTX Field

For example, suppose you perform an Open operation, find that the value of
XAB$W_ACLLEN is greater than the ACL buffer, and then perform Display
operations until all of the ACEs in the ACL have been returned. You can then
reread the entire ACL on subsequent Opens or Displays only if you set the value
of the XAB$L_ACLCTX field to 0.

The use of this field for DECnet for OpenVMS remote file access is not
supported.

15.4 XAB$W_ACLLEN Field
The ACL length (ACLLEN) field receives the length (in bytes) of the access
control list for the file during an Open or a Display operation. If the file has no
ACL, the XAB$W_ACLLEN field has a value of 0.

If the file has an ACL that fits in the user’s buffer, the value of the XAB$W_
ACLLEN field is equal to the number of bytes in the ACL. Even if the file’s ACL
does not fit into the user’s buffer, the value of the XAB$W_ACLLEN field is still
equal to the number of bytes in the ACL (not just the length of that portion that
fits into the buffer).

To determine the number of ACL entries that are in the user’s buffer, you must
process binary ACEs until you find an ACE with a value of 0 or until you come to
the end of the buffer.

The use of this field for DECnet for OpenVMS remote file access is not
supported.

15.5 XAB$W_ACLSIZ Field
The ACL buffer size (ACLSIZ) field specifies the length of the user buffer pointed
to by the XAB$L_ACLBUF field.

RMS passes all information, including the ACL buffer, to and from the file system
using buffered I/O operations. RMS limits buffered I/O transfers to 512 bytes,
excluding the ACL buffer. Therefore, the size of the ACL buffer plus 512 bytes
cannot exceed either the BYTLM quota for the process or the MAXBUF value for
the system.

The use of this field for DECnet for OpenVMS remote file access is not
supported.

15.6 XAB$L_ACLSTS Field
The ACL error status (ACLSTS) field contains a system error status relating to
the processing of ACLs. A value is returned to this field upon a successful return
from a Create, Open, or Display service.

Whenever you use the XABL_ACLBUF, XABL_ACLCTX, XAB$W_ACLLEN, or
XAB$W_ACLSIZ fields, be sure to use the following error-handling guidelines:

• If the FAB$L_STS field (R0) contains an error status, handle the error in the
usual manner.

• If the FAB$L_STS field (R0) contains a success status, then you must check
the value in XAB$L_ACLSTS. If XAB$L_ACLSTS contains a success status,
then the entire operation completed successfully and no further action is
required; if XAB$L_ACLSTS contains an error status, handle the error
appropriately. Note that a value is placed in the XAB$L_ACLSTS field only
when a success status is returned in FAB$L_STS (R0).

Protection XAB (XABPRO) 15–3

Protection XAB (XABPRO)
15.6 XAB$L_ACLSTS Field

This extra level of error checking is necessary because the success or failure of
reading and writing ACLs is independent of the success or failure of the whole
operation. Thus, in the absence of this additional error checking, it is possible to
create a file successfully even though an ACL error occurred.

This field is relevant only when an ACL is used with a Create service or when
an ACL is returned from an Open or Display service. The use of this field for
DECnet for OpenVMS remote file access is not supported.

15.7 XAB$B_BLN Field
The block length (BLN) field is a static field that defines the length of the
XABPRO, in bytes. Once set, this field must not be altered unless the control
block is no longer needed. This field must be initialized to the symbolic value
XAB$C_PROLEN (this is done by the $XABPRO macro).

15.8 XAB$B_COD Field
The type code (COD) field is a static field that identifies this control block as a
XABPRO. Once set, this field must not be altered unless the control block is no
longer needed. This field must be initialized to the symbolic value XAB$C_PRO
(this is done by the $XABPRO macro).

15.9 XAB$W_GRP Field
The file owner group number (GRP) field contains the half of the XAB$L_UIC
field that defines the group number. Refer to the XAB$L_UIC field description
for additional information. The contents of the XAB$L_UIC field, rather than the
$XABPRO macro, establish the initial value of the XAB$W_GRP field.

This field corresponds to the FDL attribute FILE OWNER.

15.10 XAB$W_MBM Field
The file owner member number (MBM) field contains the half of the XAB$L_UIC
field that defines the member number. Refer to the XAB$L_UIC field description
for additional information. The contents of the XAB$L_UIC field, rather than the
$XABPRO macro, establish the initial value of the XAB$W_MBM field.

This field corresponds to the FDL attribute FILE OWNER.

15.11 XAB$B_MTACC Field
The magnetic tape accessibility (MTACC) field enables you to access HDR1 labels
for ANSI-labeled magnetic tapes, in compliance with ANSI standards. The value
specified in the XAB$B_MTACC field is input to the Create service and output
from the Open and Display services for magnetic tape only.

The character to be inserted in the accessibility field of the HDR1 label must be
one of the following:

• An uppercase letter from A through Z

• A digit from 0 through 9

• One of the following special characters: (!), (%), (&), (’), ((), ()), (*), (+),
(,), (-), (.), (/), (:), (;), (<), (=), (>), (?)

Note that if this field is not specified or if the specification is invalid, a space
character is inserted into the HDR1 accessibility field.

15–4 Protection XAB (XABPRO)

Protection XAB (XABPRO)
15.11 XAB$B_MTACC Field

This field corresponds to the FDL attribute FILE MT_PROTECTION, and it is
not supported for DECnet for OpenVMS operations.

15.12 XAB$L_NXT Field
The next XAB address (NXT) field specifies the symbolic address of the next XAB
in the XAB chain. A value of 0 (the default) indicates that the current XAB is the
last (or only) XAB in the chain.

15.13 XAB$W_PRO Field
The file protection (PRO) field specifies the file access privileges that RMS grants
to the four classes of users: System, Owner, Group, and World.

This field consists of four 4-bit subfields, each of which specifies file access
privileges for one of the four user classes.

You can specify the user class using the $XABPRO macro or through the use of
symbolic offsets, if you do not have access to the VAX macro libraries. This is the
syntax for representing the four user classes as arguments to a $XABPRO macro:

<SYSTEM,OWNER,GROUP,WORLD>

Alternatively, you can specify the user class using the appropriate symbolic offset
from the following list:

• System—XAB$V_SYS

• Owner—XAB$V_OWN

• Group—XAB$V_GRP

• World—XAB$V_WLD

You can also specify access privileges for each user class using the $XABPRO
macro or through the use of symbolic mask values. Using a $XABPRO macro, you
insert the appropriate initial letters for each user class in the macro argument:

• R—read access

• W—write (modify) access

• E—execute access

• D—delete access

For example, to grant each user class read and write privileges, you would use
this line of code:

PRO = <RW,RW,RW,RW>

Alternatively, you can specify user class privileges using the appropriate symbolic
mask value from the following list:

• No read access—XAB$M_NOREAD

• No write access—XAB$M_NOWRITE

Protection XAB (XABPRO) 15–5

Protection XAB (XABPRO)
15.13 XAB$W_PRO Field

• No execute access—XAB$M_NOEXE

• No delete access—XAB$M_NODEL

If you do not specify access privileges for a file, by default RMS grants all access
privileges (read, write, execute, delete) to all user classes by zeroing all bits in the
XAB$W_PRO field.

Note

A logical 0 enables access; a logical 1 denies access.

You cannot deny all access to all user classes through the RMS interface. If you
set all bits in the XAB$W_PRO field to logical 1, RMS assigns the file process
default protection.

Users are granted the maximum number of types of access rights for each of the
classes to which they belong.

Figure 15–1 illustrates the organization of the subfields in the XAB$W_PRO
field.

Figure 15–1 File Protection Field

World Group Owner System

15 12 11 8 7 4 3 0

ZK−0872−GE

If you do not explicitly specify file protection when you invoke the Create service,
RMS attempts to determine file protection by default in the following order:

1. Using the protection assigned to an existing file of the same name

2. Using the default file protection of the directory

3. Using the process-default protection

The following table provides detailed descriptions of the four user classes.

User Class Description

System Specifies access rights for users executing under a system UIC, that
is, users whose group number is less than the value for a system
UIC, which is defined by the system manager (usually 10 or less).

Owner Specifies access rights for the owner of the file. A user is considered
the owner of the file only if both the group and member number
fields of the accessing process match the group and member number
fields of the file owner’s UIC stored with the file.

Group Specifies the access rights for users whose group number matches
the group number field of the file owner.

World Specifies access rights for all users. World access is used for
granting access to users who are not in the system, owner, or
group classifications.

This field corresponds to the FDL attribute FILE PROTECTION.

15–6 Protection XAB (XABPRO)

Protection XAB (XABPRO)
15.14 XAB$B_PROT_OPT Field

15.14 XAB$B_PROT_OPT Field
The ACL file protection (PROT_OPT) field provides a single option, the XAB$V_
PROPAGATE option, which is used as input during an Enter or a Rename
operation. (During a Rename operation, the protection XAB is assumed to be
attached to FAB2.)

The XAB$B_PROT_OPT field is a binary options field where each file protection
option has a corresponding bit assignment. Options are identified using
mnemonics, and each option has its own symbolic offset and mask value. For
example, the PROPAGATE option has a symbolic offset of XAB$V_PROPAGATE
and a mask value of XAB$M_PROPAGATE.

If the XAB$V_PROPAGATE bit is set in this field during either an Enter or
Rename operation, the file receives new security attributes when the new
directory entry is made. These security attributes follow the same rules as apply
during a Create operation. For example, if a lower version of a new file exists,
the new file inherits the security attributes of the next lower version of the file. If
the XAB$V_PROPAGATE bit is not set, the security attributes of the new file do
not change.

This field is not supported for DECnet for OpenVMS operations.

15.15 XAB$L_UIC Field
The user identification code (UIC) field combines the two XABPRO fields that
define the UIC of the owner of a file: the XAB$W_GRP (group number) and
XAB$W_MBM (member number) fields. Both numbers are octal numbers. The
valid range for a group number is 0 to 37777; the valid range for a member
number is 0 to 177777. Note that the maximum value in each case (37777 and
177777) is reserved for Compqy use only. This field corresponds to the FDL
attribute FILE OWNER.

The symbolic offsets for the group number field and the member number field
respectively are XAB$W_GRP and XAB$W_MBM.

The total user identification field, including both the group and member number
fields, has a symbolic offset of XAB$L_UIC.

Note that if no file protection XAB is provided or if the user identification field is
null for a Create service, RMS determines the owner’s UIC using the following
logical order:

1. The owner UIC of an existing version of the file if the creating process has
ownership rights to the previous version

2. The owner UIC of the parent directory, if the creating process has ownership
privileges to the parent directory

3. The UIC of the creating process

If you wish to create an output file with a UIC different from your own, you must
have system privilege (SYSPRV).

Protection XAB (XABPRO) 15–7

16
Revision Date and Time XAB (XABRDT)

The revision date and time XAB (XABRDT) complements the date and time
XAB (XABDAT) by providing revision time and date input to the Close service
when RMS closes a file that has been modified. Like the XABDAT, the XABRDT
can be used as input to the Create Service or can be used to store revision data
returned by the Open service or the Display service. The distinction is that
XABDAT cannot be used to modify the revision data. Only the XABRDT can be
used to update revision data when a file is closed after being modified. Typically,
a process would use the two data structures when it wants to sense and set
revision data within a single file operation.

To change the revision data, the process must have Control access to the file and
must have opened the file for modification using the Put, Update, Truncate, or
Delete service. Normally when RMS closes a file and these conditions prevail, it
uses the current date and time as the revision date and time and increments the
revision number. Thus, the previous revision values for the file are superseded.
(See the Security Guide for more information about CONTROL access.)

Using the XABRDT as an input to a Close service, you can specify a set of
revision values other than the current time and date and the next revision
number.

16.1 Summary of Fields
The two XABRDT fields that specify revision values are the XABQ_RDT (revision
date and time) field and the XAB$W_RVN (revision number) field.

• The 64-bit XAB$Q_RDT binary field indicates the date and time when the file
was last opened for modifications.

• The XAB$W_RVN field indicates how many times the file is opened for
modifications.

The following table indicates how RMS uses the XABRDT fields for various
file-processing services.

Service Input/Output

Close Input

Create Input

Display Output

Erase Not used

Extend Not used

Open Output

Revision Date and Time XAB (XABRDT) 16–1

Revision Date and Time XAB (XABRDT)
16.1 Summary of Fields

The Open service overwrites the XAB$Q_RDT and XAB$W_RVN fields with the
file’s existing revision values. If you do not change these values, the existing
values are subsequently input to the Close service and the file’s revision data is
not updated.

To change the revision data, you must set the fields between the time you open
the file and the time you close the file. If you specify a revision date and time of
0 or if you do not include a XABRDT as input to the Close service, RMS uses the
current date and time for the revision date and time and increments the revision
number.

To sense the contents of the XAB$Q_RDT and XAB$W_RVN fields before you
specify new values with the XABRDT, examine the XAB$Q_RDT field and the
XAB$W_RVN field in the XABDAT block.

The symbolic offset, size, FDL equivalent, and a brief description of each
XABRDT field are presented in Table 16–1.

Table 16–1 XABRDT Fields

Field Offset
Size
(Bytes) FDL Equivalent Description

XAB$B_BLN1 1 None Block length

XAB$B_COD1 1 None Type code

XAB$L_NXT 4 None Next XAB address

XAB$Q_RDT2 8 DATE REVISION Revision date and time

XAB$W_RVN2 2 FILE REVISION Revision number

1This field is statically initialized by the $XABRDT macro to identify this control block as a XABRDT.
2This field cannot be initialized by the $XABRDT macro; it must be specified before you invoke the
Close service to be used as input to the Close service.

Unless otherwise indicated, each field is supported for DECnet for OpenVMS
operations on files at remote OpenVMS systems. For information about the
support of RMS options for remote file access to other systems, see the DECnet
for OpenVMS Networking Manual.

16.2 XAB$B_BLN Field
The block length (BLN) field is a static field that defines the length of the
XABRDT, in bytes. Once set, this field must not be altered unless the control
block is no longer needed. This field is initialized to the symbolic value XAB$C_
RDTLEN by the $XABRDT macro.

16.3 XAB$B_COD Field
The type code (COD) field is a static field that identifies this control block as a
XABRDT. Once set, this field must not be altered unless the control block is no
longer needed. This field is initialized to the symbolic value XAB$C_RDT by the
$XABRDT macro.

16–2 Revision Date and Time XAB (XABRDT)

Revision Date and Time XAB (XABRDT)
16.4 XAB$L_NXT Field

16.4 XAB$L_NXT Field
The next XAB address (NXT) field contains the symbolic address of the next XAB
to be used. A value of 0 (the default) indicates that the current XAB is the last
(or only) XAB in the chain.

16.5 XAB$Q_RDT Field
The revision date and time (RDT) field contains a 64-bit binary value expressing
the date and time when the file was last opened for modifications. Note that this
field is limited to a granularity of 1 second for remote files.

This field corresponds to the FDL attribute DATE REVISION.

16.6 XAB$W_RVN Field
The revision number (RVN) field contains a numeric value that indicates the
number of times this file was opened for modifications.

This field corresponds to the FDL attribute FILE REVISION.

Revision Date and Time XAB (XABRDT) 16–3

17
Recovery Unit XAB (XABRU)

The recovery unit XAB (XABRU) control block supports the use of recovery units
to assure data file integrity. See the RMS Journaling for OpenVMS Manual for
details.

Recovery Unit XAB (XABRU) 17–1

18
Summary XAB (XABSUM)

The summary XAB (XABSUM) can be associated with a FAB at the time a
Create, Open, or Display service is invoked. The presence of this XAB during
these calls allows RMS to return to your program the total number of keys and
allocation areas defined and the version number when the file was created. Note
that a XABSUM is used only with indexed files.

18.1 Summary of Fields
The symbolic offset, the size, and a brief description of each XABSUM field are
presented in Table 18–1.

Table 18–1 XABSUM Fields

Field Offset Size Description

XAB$B_BLN1 Byte Block length

XAB$B_COD1 Byte Type code

XAB$B_NOA2 Byte Number of allocation areas defined for the file

XAB$B_NOK2 Byte Numbers of keys defined for the file

XAB$L_NXT Longword Next XAB address

XAB$W_PVN2 Word Prolog version number

1This field is statically initialized by the $XABSUM macro to identify this control block as a XABSUM.
2This field cannot be initialized by the $XABSUM macro.

Unless otherwise indicated, each field is supported for DECnet for OpenVMS
operations on files at remote OpenVMS systems. See the DECnet for OpenVMS
Networking Manual for information about the support of RMS options for remote
file access to other systems.

18.2 XAB$B_BLN Field
The block length (BLN) field is a static field that defines the length of the
XABSUM, in bytes. Once set, this field must not be altered unless the control
block is no longer needed. This field is initialized to the symbolic value XAB$C_
SUMLEN by the $XABSUM macro.

18.3 XAB$B_COD Field
The type code (COD) field is a static field that identifies this control block as a
XABSUM. Once set, this field must not be altered unless the control block is no
longer needed. This field is initialized to the symbolic value XAB$C_SUM by the
$XABSUM macro.

Summary XAB (XABSUM) 18–1

Summary XAB (XABSUM)
18.4 XAB$B_NOA Field

18.4 XAB$B_NOA Field
The number of allocation areas (NOA) field indicates the number of allocation
areas defined when the file was created. Refer to Chapter 9 for information about
multiple allocation areas.

18.5 XAB$B_NOK Field
The number of keys (NOK) field indicates the number of keys defined when the
file was created. Refer to Chapter 14 for more information.

18.6 XAB$L_NXT Field
The next XAB address (NXT) field contains the symbolic address of the next XAB.
A value of 0 (the default) indicates that the current XAB is the last (or only) XAB
in the chain.

18.7 XAB$W_PVN Field
The prolog version number (PVN) contains a numeric value that indicates the
prolog number defined when the file was created. For more information about
prolog numbers, refer to Chapter 14.

18–2 Summary XAB (XABSUM)

19
Terminal XAB (XABTRM)

The terminal XAB (XABTRM) allows extended terminal read operations to occur
when a Get service is used for a terminal device. Unlike most other XABs, the
XABTRM is associated with a RAB (record stream). The XABTRM provides
information that the terminal driver uses to process a user-defined item list that
defines the terminal read operation.

19.1 Summary of Fields
The symbolic offset, the size, and a brief description of each XABTRM field are
presented in Table 19–1.

Table 19–1 XABTRM Fields

Field Offset
Size
(Bytes) Description

XAB$B_BLN1 1 Block length

XAB$B_COD1 1 Type code

XAB$L_ITMLST 4 Item list address

XAB$W_ITMLST_LEN 2 Item list length

XAB$L_NXT 4 Next XAB address

1This field is statically initialized by the $XABTRM macro to identify this control block as a XABTRM.

To perform the extended terminal read operation, the following information is
required:

• In the RAB, the RAB$L_ROP field RAB$V_ETO option must be specified
(set).

• In the RAB, the RAB$L_XAB field must contain the address of the XABTRM.

• In the XABTRM, the XAB$L_ITMLST and XAB$W_ITMLST_LEN fields
must contain the starting address and length of a valid terminal driver read
function item list.

• The item list must be supplied according to the conventions described for
creating an item list for the terminal driver in the OpenVMS I/O User’s
Reference Manual.

An item list consists of one or more item list entries, where each item defines
an attribute of the terminal read operation. Instead of defining terminal read
arguments in the RAB, all such arguments (including certain arguments only
available with the item list method) are defined in the item list. The following
list shows the RAB$L_ROP options related to a terminal read operation and the
equivalent item codes:

Terminal XAB (XABTRM) 19–1

Terminal XAB (XABTRM)
19.1 Summary of Fields

Option Item Code

RAB$V_CVT TRM$_MODIFIERS, bit TRM$M_TM_CVTLOW

RAB$V_PMT TRM$_PROMPT

RAB$V_PTA TRM$_MODIFIERS, bit TRM$M_TM_PURGE

RAB$V_RNE TRM$_MODIFIERS, bit TRM$M_TM_NOECHO

RAB$V_RNF TRM$_MODIFIERS, bit TRM$M_TM_NOFILTR

RAB$V_TMO TRM$_TIMEOUT

Each item code required for the terminal read operation is placed in an item
list along with other required information. Each item code is made up of three
longwords. Note that RMS does not validate the item list. If the item list is
invalid, RMS returns RMS$_QIO status in the RAB$L_STS field and the specific
terminal driver QIO status in the RAB$L_STV field (see the OpenVMS I/O User’s
Reference Manual).

The XABTRM is not supported for DECnet for OpenVMS operations between two
OpenVMS systems. There are no equivalent FDL attributes for the XABTRM
fields.

19.2 XAB$B_BLN Field
The block length (BLN) field is a static field that defines the length of the
XABTRM, in bytes. Once set, this field must not be altered unless the control
block is no longer needed. This field is initialized to the symbolic value XAB$C_
TRMLEN by the $XABTRM macro.

19.3 XAB$B_COD Field
The type code (COD) field is a static field that identifies this control block as a
XABTRM. Once set, this field must not be altered unless the control block is no
longer needed. This field is initialized to the symbolic value XAB$C_TRM by the
$XABTRM macro.

19.4 XAB$L_ITMLST Field
The item list address (ITMLST) field contains the symbolic address of the item
list that defines the extended terminal read operation.

19.5 XAB$W_ITMLST_LEN Field
The item list length (ITMLST_LEN) field contains a numeric value that indicates
the length of the item list, in bytes.

19.6 XAB$L_NXT Field
The next XAB address (NXT) field contains the symbolic address of the next XAB
to be used. A value of 0 (the default) indicates that the current XAB is the last
(or only) XAB in the chain.

19–2 Terminal XAB (XABTRM)

Part III
OpenVMS RMS Services

Part III lists the format of each record management service and describes
each service in detail. Each service is documented in a structured format. See
OpenVMS Programming Concepts Manual, Volume II for a discussion of the
format and how it is used.

Note that the calling format for each service requires a placeholder (a comma)
if you omit the first optional argument (err) but include the second optional
argument (suc).

OpenVMS RMS Services
$CLOSE

$CLOSE

The Close service terminates file processing and closes the file. This service
performs an implicit Disconnect service for all record streams associated with the
file.

Format

SYS$CLOSE fab [,[err] [,suc]]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset FAB$L_STS. Symbolic offset FAB$L_STV
may contain additional status information.

Arguments

fab
OpenVMS usage: fab
type: longword (unsigned)
access: modify
mechanism: by reference

FAB control block whose contents are to be used as indirect arguments for the
Close service call. The fab argument is the address of the FAB control block.

err
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation
is unsuccessful. The err argument is the address of the entry mask of this
user-written completion routine.

suc
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation
is successful. The suc argument is the address of the entry mask of this user-
written completion routine.

RMS–3

OpenVMS RMS Services
$CLOSE

Description

You can invoke the Close service only when no operation is currently under way
(by your process) for the file being processed; that is, when no RMS requests for
the file are outstanding.

When the Close service is invoked properly, RMS disconnects all RABs for you,
performs the various cleanup procedures (including file option processing and
XAB processing), and closes the file. The only types of XABs that the Close
service processes are the file protection XAB (XABPRO) and revision date and
time XAB (XABRDT). It processes these XABs only if the file was opened or
created for write access.

On a $CLOSE, the EOF value written to the file header is ‘‘seen’’ only by
subsequent accessors. Any process that has the file open at the time of the
$CLOSE does not ‘‘see’’ the new EOF value without some explicit action.

If a process tries to implement the Truncate service when closing a sequential
file, it must have sole write access to the file. If other processes have write access
to the file, it remains accessible until all processes have completed. If other
processes have the file open for read access, RMS defers the truncation until the
final process having read access closes the file.

Table RMS–1 lists the control block fields read as input by the Close service.
Note that if the FABV_DLT, FABV_SCF, or the FAB$V_SPL bits are set by
the associated Open or Create service, RMS does not act on them for the Close
service. For example, if you open the file and specify that it be deleted on close
by setting the FAB$V_DLT bit, RMS deletes it when it is closed regardless of the
bit’s state when the Close service is invoked.

For additional information on the fields accessed by this service, see Part II.

Table RMS–1 Close Service FAB and XAB Input Fields

Field Name
Option or
XAB Type Description

FAB$W_IFI1 Internal file identifier.
FAB$L_FOP File-processing options.

FAB$V_ASY Asynchronous; indicates that the specified
task is to be done asynchronously.

FAB$V_DLT Deletes file on close.
FAB$V_RWC Rewinds a magnetic tape volume.
FAB$V_SCF2 Submits a file as a batch job (sequential

files only).
FAB$V_SPL2 Submits a file to the print queue

(sequential files only).
FAB$V_TEF Truncates data at the end of the file

(sequential files only).

1This field is required input to the FAB.
2This field is not supported for DECnet for OpenVMS operations.

(continued on next page)

RMS–4

OpenVMS RMS Services
$CLOSE

Table RMS–1 (Cont.) Close Service FAB and XAB Input Fields

Field Name
Option or
XAB Type Description

FAB$L_XAB Next XAB address.
XABPRO Modifies file protection and ownership.
XABRDT Modifies revision date and number.

Table RMS–2 lists the control block fields written as output by the Close service.

Table RMS–2 Close Service FAB and XAB Output Fields

Field Name
Option or
XAB Type Description

FAB$W_IFI Internal file identifier (cleared only when the
file is closed).

FAB$L_STS Completion status (also returned in register
0).

FAB$L_STV Status value.
FAB$L_XAB Next XAB address.

XABRDT New revision date and number returned.

Condition Values Returned

The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_ATR RMS$_ATW
RMS$_BLN RMS$_BUG_DAP RMS$_BUSY
RMS$_CCF RMS$_CDA RMS$_COD
RMS$_CRC RMS$_DAC RMS$_DME
RMS$_DNR RMS$_EXENQLM RMS$_FAB
RMS$_IFI RMS$_IMX RMS$_MKD
RMS$_NET RMS$_NETFAIL RMS$_NORMAL
RMS$_PRV RMS$_SPL RMS$_STR
RMS$_SUC RMS$_SUP RMS$_SUPPORT
RMS$_SYS RMS$_WBE RMS$_WER
RMS$_WLK RMS$_WPL RMS$_XAB

Note that even though a failure is indicated by the completion status code
value, the file is truly closed only if RMS clears the internal file identifier value
(FAB$W_IFI).

RMS–5

OpenVMS RMS Services
$CONNECT

$CONNECT

The Connect service establishes a record stream by associating and connecting
a RAB with a FAB. You can invoke the Connect service only for files that are
already open.

RAB64 Users

RAB64 can replace the RAB or RAB prefix wherever it is used with the
Connect service on OpenVMS Alpha systems.

Format

SYS$CONNECT rab [,[err] [,suc]]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_
STV may contain additional status information.

Arguments

rab
OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the
Connect service call. The rab argument is the address of the RAB control block.

err
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the Connect service invokes if the
operation is unsuccessful. The err argument is the address of the entry mask of
this user-written completion routine.

suc
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the Connect service invokes if the
operation is successful. The suc argument is the address of the entry mask of
this user-written completion routine.

RMS–6

OpenVMS RMS Services
$CONNECT

Description

Any number of RABs can be connected to a FAB if the multistream (FAB$V_MSE)
option is selected when the file is opened or created. Each RAB represents an
independent record stream.

When you issue a Connect service, RMS allocates an internal counterpart for the
RAB. This counterpart consists of the internal controls needed to support the
stream, such as record pointers and request status information. All required I/O
buffers are also allocated at this time.

The Connect service also initializes the next record pointer to the first record. In
indexed files, the key of reference establishes the index of the next record pointer.

If you set the end-of-file (RAB$V_EOF) option in the RAB$L_ROP field when
issuing a Connect service, RMS examines the organization of the file being
processed to determine the end-of-file positioning strategy.

For sequential or relative files, RMS goes to the next record beyond the last
currently existing record in the file. (The next record is inserted at the logical end
of the file, and the service returns RMS$_EOF status in response to a request for
sequential access.)

For indexed files, RMS verifies that the first record is inserted in the proper sort
order. If the record cannot be inserted in the proper sort order because of user
action, RMS returns a sequence error (RMS$_SEQ).

Get services that specify the sequential record access mode (RAB$B_RAC is
RAB$C_SEQ) return an RMS$_EOF status. Get services that specify the random
access mode (RAB$B_RAC is RAB$C_KEY) ignore (turn off) the end-of-file
positioning. Positioning to end-of-file is supported for all indexed files, regardless
of how many indexes the file contains. However, the EOF positioning is supported
only when you access a file by the primary key. If the specified key of reference is
a secondary key, an RMS$_ROP message is returned.

In most cases, setting the RAB$V_EOF bit guarantees that the next record is
inserted at the logical end of the file. However, if a relative file or an indexed file
is shared by two or more active processes, the following scenario may develop.

Assume that process A has invoked the Connect service after setting the RAB$V_
EOF bit and is positioned to the end of the file. Before process A can do a $PUT,
process B inserts a record into the file and changes the current record position.
When process A attempts to do a $PUT into the position that was formerly the
end of the file, the record may be inserted improperly. It may be inserted either
before or after the record inserted by process B, depending on the respective key
values. Or, the $PUT operation may even fail if the keys have the same value
and duplicates are not allowed.

Table RMS–3 lists the control block fields read as input by the Connect service.
For additional information about the fields accessed by this service, see Part II.

RMS–7

OpenVMS RMS Services
$CONNECT

Table RMS–3 Connect Service RAB Input Fields

Field Name
Option or
XAB Type Description

FAB$W_GBC Global buffer count.
RAB$L_FAB1 File access block address (required to

access the internal file identifier field,
FAB$W_IFI).

RAB$W_ISI1 Internal stream identifier (must be 0).
RAB$B_KRF Key of reference (applies only to indexed

files).
RAB$B_MBC2 Multiblock count (applies only to

sequential files residing on disk devices).
RAB$B_MBF2 Multibuffer count.4

RAB$L_ROP Record-processing options:
RAB$V_ASY Asynchronous: performs Connect service

asynchronously.
RAB$V_BIO Block I/O: specifies that only block I/O

operations are permitted. The FAB$B_
FAC field FAB$V_BRO or FAB$V_BIO
option must be specified to the Open or
Create service.

RAB$V_EOF3 End-of-file: positions to the end of the file
upon execution of the Connect service.

RAB$V_RAH2 Read ahead: allocates at least two
buffers for multibuffering (applies only
to sequential files on disk devices).

RAB$V_WBH2 Write behind: allocates at least two
buffers for multibuffering (applies only to
sequential files on disk devices).

1This field is a required input to the Connect service.
2This field is not supported for DECnet for OpenVMS operations.
3Refer to text for exceptions.
4Optionally, you can specify the multibuffer count using the XAB$_MULTIBUFFER_COUNT
XABITM.

Table RMS–4 lists the control block fields written as output by the Connect
service.

Table RMS–4 Connect Service RAB Output Fields

Field
Name Description

RAB$W_ISI Internal stream identifier
RAB$L_STS Completion status code (also returned in Register 0)
RAB$L_STV Status value

RMS–8

OpenVMS RMS Services
$CONNECT

Condition Values Returned

The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_BLN RMS$_BUG_DAP
RMS$_CCR RMS$_CDA RMS$_CRMP
RMS$_DME RMS$_EXT_ERR RMS$_EXTNOTFOU
RMS$_FAB RMS$_GBC RMS$_IAL
RMS$_IFA RMS$_IFI RMS$_KRF
RMS$_MBC RMS$_NET RMS$_NETFAIL
RMS$_NORMAL RMS$_OPNOTSUP RMS$_PENDING
RMS$_RAB RMS$_RFM RMS$_ROP
RMS$_RPL RMS$_STR RMS$_SUC
RMS$_SUP RMS$_SUPPORT

RMS–9

OpenVMS RMS Services
$CREATE

$CREATE

The Create service constructs a new file according to the attributes you specify in
the FAB. If any XABs are chained to the FAB, then the characteristics described
in the XABs are applied to the file. This service performs implicit Open and
Display services.

Format

SYS$CREATE fab [,[err] [,suc]]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset FAB$L_STS. Symbolic offset FAB$L_STV
may contain additional status information.

Arguments

fab
OpenVMS usage: fab
type: longword (unsigned)
access: modify
mechanism: by reference

FAB control block whose contents are to be used as indirect arguments for the
Create service call. The fab argument is the address of the FAB control block.

err
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation
is unsuccessful. The err argument is the address of the entry mask of this
user-written completion routine.

suc
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation
is successful. The suc argument is the address of the entry mask of this user-
written completion routine.

RMS–10

OpenVMS RMS Services
$CREATE

Description

The Create service first uses the information from the specified FAB. If an
allocation control XAB is present, however, its allocation quantity (XAB$L_ALQ),
allocation options (XAB$B_AOP, only for the XAB$V_CTG and XAB$V_CBT
options), bucket size (XAB$B_BKZ), and default extension quantity (XAB$W_
DEQ) fields are used instead of the corresponding fields of the FAB. When either
key definition or allocation XABs are present, they can be grouped in any order.
If a name block (NAM) or long name block (NAML) is also connected to the FAB,
RMS fills in its fields with information about the created file. The Create service
leaves the file opened.

When a search list logical name is used, the file is placed in the first resultant
search list file specification unless the create-if (FAB$V_CIF) option is
specified. If you select the FAB$V_CIF option, RMS searches all search list
file specifications to locate the file. If it finds the file, RMS opens it rather than
create a new file. If RMS does not find the file, it creates a new file using the first
resultant search list file specification.

You do not have to explicitly specify the FAB$V_PUT option when invoking a
Create service because write is the default access mode when you create a file.

Table RMS–5 lists the control block fields read as input by the Create service.
For additional information on the fields accessed by this service, see Chapter 4.

Table RMS–5 Create Service FAB and XAB Input Fields

Field Name
Option or
XAB Type Description

FAB$B_
ACMODES

File access modes.

FAB$V_CHAN_MODE1 Assigns the channel access mode
by setting either the FAB$V_
UFO or the FAB$V_NFS bit
in the FAB$L_FOP field (see
Section 4.17). If neither bit is set,
this field can be used to override
the access mode protection for
a specified I/O operation. See
Section 4.8.

FAB$V_LNM_MODE1 Specifies the logical name
translation access mode.

FAB$L_ALQ Allocation quantity; ignored if an
allocation XAB is present.

FAB$B_BKS Bucket size; ignored if an
allocation XAB is present.

FAB$W_BLS Block size (applies to magnetic
tape only).

1This field is not supported for DECnet for OpenVMS operations.

(continued on next page)

RMS–11

OpenVMS RMS Services
$CREATE

Table RMS–5 (Cont.) Create Service FAB and XAB Input Fields

Field Name
Option or
XAB Type Description

FAB$W_DEQ Default file extension quantity;
ignored if an allocation XAB is
present.

FAB$L_DNA Default file specification string
address.

FAB$B_DNS Default file specification string
size.

FAB$B_FAC File access.
FAB$V_BIO Block I/O access to file.
FAB$V_BRO Block or record I/O access to file.
FAB$V_DEL Delete access to file.
FAB$V_GET2 Read access to file.
FAB$V_PUT2 Write access to file and explicit file

extension.
FAB$V_TRN Truncate access to file.
FAB$V_UPD Update access to file and explicit

file extension.
FAB$L_FNA3 File specification string address.
FAB$B_FNS3 File specification string size.
FAB$L_FOP File-processing options.

FAB$V_ASY Asynchronous; indicates that
the specified task is to be done
asynchronously.

FAB$V_CBT Contiguous best try: indicates
that the file is to be allocated
contiguously on a ‘‘best effort’’
basis. To specify a single extent,
use the FAB$V_CTG option.

FAB$V_CIF Create-if: opens a file if it already
exists or creates a file if it does not
already exist.

FAB$V_CTG Contiguous: indicates that the
space for a file is to be allocated
contiguously.

FAB$V_DFW1 Deferred write: writing back to
the file from the modified buffer is
deferred. Applies to relative and
indexed files and sequential files
opened for shared access.

1This field is not supported for DECnet for OpenVMS operations.
2These are the default values supplied by RMS.
3These fields must be specified unless you select the FAB$V_TMD or the FAB$V_TMP option.

(continued on next page)

RMS–12

OpenVMS RMS Services
$CREATE

Table RMS–5 (Cont.) Create Service FAB and XAB Input Fields

Field Name
Option or
XAB Type Description

FAB$V_DLT Delete: indicates that the file is to
be deleted when closed.

FAB$V_MXV Maximize version: indicates
that the created file be given the
specific version number requested
or a version number that is one
greater than the highest version
number of an existing file.

FAB$V_NAM1 Name block inputs: indicates that
the NAM$W_DID and NAM$T_
DVI fields in the specified NAM
block are used as input.

FAB$V_NFS1 Non-file-structured: indicates
that the accessed volume is to be
processed in a non-file-structured
manner.

FAB$V_OFP Output file parse: specifies that
the resultant file specification
string of the related file, if used, is
to provide file name and file type
defaults only.

FAB$V_POS Current position (applies to
magnetic tapes only).

FAB$V_RCK Read-check: indicates that
transfers from disk are to be
followed by a read-compare
operation.

FAB$V_RWC Rewind on close (applies to
magnetic tape only).

FAB$V_RWO Rewind on open (applies to
magnetic tape only).

Note

If you specify the FAB$V_RWO option as input to the Create service, RMS
overwrites the tape beginning with the first file.

FAB$V_SCF Submit command file: indicates
that the file is to be submitted as a
batch-command file to the process
default batch queue (SYS$BATCH)
when the file is closed (applies to
sequential files only).

1This field is not supported for DECnet for OpenVMS operations.

(continued on next page)

RMS–13

OpenVMS RMS Services
$CREATE

Table RMS–5 (Cont.) Create Service FAB and XAB Input Fields

Field Name
Option or
XAB Type Description

FAB$V_SPL Spool: indicates that the file
is to be spooled to the process
default print queue (SYS$PRINT)
when the file is closed (applies to
sequential files only).

FAB$V_SQO Sequential only: indicates that
the file can be processed in a
sequential manner only, usually to
enable DECnet for OpenVMS file
transfer.

FAB$V_SUP Supersede: allows an existing file
to be superseded by a new file of
the same name, type, and version.

FAB$V_TEF Truncate at end of file: indicates
that the unused space allocated to
a file is deallocated when that file
is closed (applies to sequential files
only).

FAB$V_TMD Temporary marked for delete:
indicates that a temporary file is
to be created, and then deleted
when the file is closed.

FAB$V_TMP Temporary: indicates that a
temporary file is to be created
and retained, but no directory
entry is made for this file.

FAB$V_UFO1 User file open: indicates that the
file is to be created or opened only
(no further processing of that file
is allowed).

FAB$V_WCK Write-check: indicates that
transfers to disk are to be followed
by a read-compare operation.

FAB$B_FSZ Fixed control area size.
FAB$W_GBC1 Global buffer count for shared

files.
FAB$W_IFI Internal file identifier (must be 0).
FAB$L_MRN Maximum record number (applies

to relative files only).
FAB$W_MRS Maximum record size.
FAB$L_NAM4 NAM or NAML block address.

1This field is not supported for DECnet for OpenVMS operations.
4FAB$L_NAL is available as an alternative definition for C programmers to allow for appropriate type
checking of a NAML block.

(continued on next page)

RMS–14

OpenVMS RMS Services
$CREATE

Table RMS–5 (Cont.) Create Service FAB and XAB Input Fields

Field Name
Option or
XAB Type Description

FAB$B_ORG File organization: sequential
(FAB$C_SEQ2), relative (FAB$C_
REL), or indexed (FAB$C_IDX).

FAB$B_RAT Record attributes.
FAB$B_RFM Record format: fixed-length

(FAB$C_FIX), variable-length
(FAB$C_VAR), VFC (FAB$C_
VFC), stream (FAB$C_STM),
stream with line feed terminator
(FAB$C_STMLF), stream with
carriage return terminator
(FAB$C_STMCR), or unidentified
format (FAB$C_UDF2).

FAB$B_RTV1 Retrieval window size.
FAB$B_SHR File sharing.

FAB$V_SHRDEL Allows other users to delete
records from the file.

FAB$V_SHRGET Allows other users to read the file;
also used with the FAB$V_MSE
and FAB$V_GET bits to specify a
read-only global buffer cache when
global buffering is enabled.

FAB$V_MSE1 Allows multistream access.
FAB$V_NIL Prohibits any type of file sharing

by other users.
FAB$V_SHRPUT Allows other users to write records

to the file and extend it.
FAB$V_SHRUPD Allows other users to update

records in the file and extend it.
FAB$V_UPI Allows one or more users write

access to a shared file open for
block I/O (applies to sequential
files only).

FAB$L_XAB Extended attribute block address.
XABALL Allocation XAB; see Chapter 9.
XABDAT Date and time XAB; see

Chapter 10.
XABFHC File header characteristics XAB;

see Chapter 11.
XABITM Item list XAB; see Chapter 12.

1This field is not supported for DECnet for OpenVMS operations.
2These are the default values supplied by RMS.

(continued on next page)

RMS–15

OpenVMS RMS Services
$CREATE

Table RMS–5 (Cont.) Create Service FAB and XAB Input Fields

Field Name
Option or
XAB Type Description

XABKEY Key definition XAB; see
Chapter 14.

XABPRO Protection XAB; see Chapter 15.
XABRDT Revision date and time XAB; see

Chapter 16.
XABSUM Summary XAB; see Chapter 18.

Table RMS–6 lists the control block fields written as output by the Create service.

Table RMS–6 Create Service FAB and XAB Output Fields

Field Name
Option or
XAB Type Description

FAB$L_ALQ Allocation quantity: contains actual
number of blocks allocated.

FAB$B_BKS Bucket size: applies only to relative and
indexed files. When multiple areas are
defined for an indexed file, the largest
bucket size is returned.

FAB$W_BLS Device block size (applies to files of
sequential organization only).

FAB$W_DEQ Default file extension quantity.
FAB$L_DEV Device characteristics.
FAB$B_FAC File access.
FAB$B_FSZ Fixed-length control area size for VFC

format.
FAB$W_GBC Global buffer count.
FAB$W_IFI Internal file identifier.
FAB$L_MRN Maximum record number.
FAB$W_MRS Maximum record size.
FAB$B_ORG File organization.
FAB$B_RAT Record attributes.
FAB$B_RFM Record format.
FAB$L_SDC Secondary device characteristics.
FAB$B_SHR File sharing.
FAB$L_STS Completion status code (also returned in

register 0).
FAB$L_STV Status value: contains the I/O channel

number if the operation is successful.
FAB$L_XAB Next XAB field.

(continued on next page)

RMS–16

OpenVMS RMS Services
$CREATE

Table RMS–6 (Cont.) Create Service FAB and XAB Output Fields

Field Name
Option or
XAB Type Description

XABALL Allocation XAB; see Chapter 9.
XABDAT Date and time XAB; see Chapter 10.
XABFHC File header characteristics XAB; see

Chapter 11.
XABITM Item list XAB; see Chapter 12.
XABKEY Key definition XAB; see Chapter 14.
XABPRO Protection XAB; see Chapter 15.
XABRDT Revision date and time XAB; see

Chapter 16.
XABSUM Summary XAB; see Chapter 18.

Use of the NAM Block for Creating Files
Table RMS–7 and Table RMS–8 list the NAM block fields used as input and
output for the Create service (provided that the name block address field [FAB$L_
NAM] is specified).

Table RMS–7 Create Service NAM Input Fields

Field Name Option Description

NAM$W_DID1 Directory identification (input only
if the FAB$L_FOP FAB$V_NAM
option is set).

NAM$T_DVI1 Device identification (input only
if the FAB$L_FOP FAB$V_NAM
option is set).

NAM$L_ESA Expanded string area address.
NAM$B_ESS Expanded string area size.
NAM$B_NOP NAM block options.

NAM$V_PWD Password: indicates that a
password contained in a DECnet
for OpenVMS access control string,
if present in a file specification,
is to be left unaltered in the
expanded and resultant strings
(instead of being replaced by the
word ‘‘password’’).

1This field or option is not supported for DECnet for OpenVMS operations.

(continued on next page)

RMS–17

OpenVMS RMS Services
$CREATE

Table RMS–7 (Cont.) Create Service NAM Input Fields

Field Name Option Description

NAM$V_NOCONCEAL Do not conceal device name:
indicates that when a concealed
device logical name is present, the
concealed device logical name is to
be replaced by the actual physical
device name in the resultant
string.

NAM$V_NO_SHORT_
UPCASE1

Do not uppercase the directory and
file specification in the NAM$L_
ESA buffer.

NAM$L_RLF Related file NAM or NAML block
address.

NAM$L_RSA Resultant string address.
NAM$B_RSL Resultant string length.
NAM$L_FNB File name status bits.
NAM$B_RSS Resultant string area size.

1This field or option is not supported for DECnet for OpenVMS operations.

RMS–18

OpenVMS RMS Services
$CREATE

Table RMS–8 Create Service NAM Output Fields

Field Name Description

NAM$B_DEV Size of file specification device string.
NAM$L_DEV Address of file specification device string.
NAM$W_DID1 Directory identification.
NAM$B_DIR Size of file specification directory string.
NAM$L_DIR Address of file specification directory string.
NAM$T_DVI1 Device identification.
NAM$B_ESL Expanded string length. If the NAM$L_ESA field and

the NAM$B_ESS field are nonzero, and you do not select
the FAB$V_NAM option, or if the NAM$W_DID field is
clear when you invoke the Create service, RMS copies the
expanded file specification string to the buffer specified by
the NAM$L_ESA field.

NAM$W_FID1 File identification.
NAM$W_FIRST_
WILD_DIR1

First wild directory.

NAM$L_FNB File name status bits. This is an output field from the
Create service only if the NAM bit in FAB$L_FOP field is
clear, or if the NAM$W_DID field is clear when you invoke
the Create service.

NAM$W_LONG_
DIR_LEVELS1

Total number of directory levels.

NAM$B_NAME Size of file specification name string.
NAM$L_NAME Address of file specification name string.
NAM$B_NODE Size of file specification node string.
NAM$L_NODE Address of file specification node string.
NAM$B_RSL Resultant string length. If the NAM$L_RSA field and the

NAM$B_RSS field are both nonzero on input, the resultant
file specification is copied to the buffer specified by NAM$L_
RSA.

NAM$B_TYPE Size of file specification type string.
NAM$L_TYPE Address of file specification type string.
NAM$B_VER Size of file specification version string.
NAM$L_VER Address of file specification version string.

1This field is not supported for DECnet for OpenVMS operations.

Table RMS–9 and Table RMS–10 list the NAML block fields used as input and
output for the Create service.

RMS–19

OpenVMS RMS Services
$CREATE

Table RMS–9 Create Service NAML Input Fields (Alpha Only)

Field Name Option Description

NAML$W_DID1 Directory identification
(input only if the FAB$L_
FOP FAB$V_NAM option
is set).

NAML$T_DVI1 Device identification (input
only if the FAB$L_FOP
FAB$V_NAM option is set).

NAML$L_ESA Expanded string area
address.

NAML$B_ESS Expanded string area size.
NAML$L_FILESYS_NAME1 File system file name.
NAML$L_FILESYS_NAME_
ALLOC1

File system file name
buffer size.

NAML$L_FNB File name status bits.
NAML$L_INPUT_FLAGS Additional flags specified

as input.
NAML$L_LONG_DEFNAME Long default file

specification string address
(used if FAB$L_DNA
contains -1).

NAML$L_LONG_
DEFNAME_SIZE

Long default file
specification string size.

NAML$L_LONG_EXPAND Long expanded string area
address.

NAML$L_LONG_EXPAND_
ALLOC

Long expanded string area
size.

NAML$L_LONG_
FILENAME

Long file specification
string address (used if
FAB$L_FNA contains -1).

NAML$L_LONG_
FILENAME_SIZE

Long file specification
string size.

NAML$L_LONG_RESULT Long resultant string area
address.

NAML$L_LONG_RESULT_
ALLOC

Long resultant string area.

NAML$L_LONG_RESULT_
SIZE

Long resultant string
length.

NAML$B_NOP NAML block options.

1This field is not supported for DECnet for OpenVMS operations.

(continued on next page)

RMS–20

OpenVMS RMS Services
$CREATE

Table RMS–9 (Cont.) Create Service NAML Input Fields (Alpha Only)

Field Name Option Description

NAML$V_PWD Password: indicates that
a password contained in
a DECnet for OpenVMS
access control string,
if present in a file
specification, is to be left
unaltered in the expanded
and resultant strings
(instead of being replaced
by the word ‘‘password’’).

NAML$V_
NOCONCEAL

Do not conceal device
name: indicates that
when a concealed device
logical name is present,
the concealed device logical
name is to be replaced by
the actual physical device
name in the resultant
string.

NAML$V_NO_
SHORT_UPCASE1

Do not uppercase
the directory and file
specification in the
NAM$L_ESA buffer.

NAML$L_RLF Related file NAM or NAML
block address.

NAML$L_RSA Resultant string address.
NAML$B_RSL Resultant string length.
NAML$B_RSS Resultant string area size.

1This field is not supported for DECnet for OpenVMS operations.

Table RMS–10 Create Service NAML Output Fields (Alpha Only)

Field Name Description

NAML$B_DEV Size of file specification device string.
NAML$L_DEV Address of file specification device string.
NAML$W_DID1 Directory identification.
NAML$B_DIR Size of file specification directory string.
NAML$L_DIR Address of file specification directory string.
NAML$T_DVI1 Device identification.

1This field is not supported for DECnet for OpenVMS operations.

(continued on next page)

RMS–21

OpenVMS RMS Services
$CREATE

Table RMS–10 (Cont.) Create Service NAML Output Fields (Alpha Only)

Field Name Description

NAML$B_ESL Expanded string length. If the NAML$L_ESA
field and the NAML$B_ESS field are nonzero,
and you do not select the FAB$V_NAM option,
or if the NAML$W_DID field is clear when
you invoke the Create service, RMS copies the
expanded file specification string to the buffer
specified by the NAML$L_ESA field.

NAML$W_FID1 File identification.
NAM$W_FIRST_WILD_DIR1 First wild directory.
NAML$L_FILESYS_NAME_
SIZE1

File system name size.

NAML$L_FNB File name status bits. This is an output field
from the Create service only if the NAM bit in
FAB$L_FOP field is clear, or if the NAML$W_
DID field is clear when you invoke the Create
service.

NAML$L_LONG_DEV Long device string address.
NAML$L_LONG_DEV_SIZE Long device string size.
NAML$L_LONG_DIR Long directory string address.
NAML$W_LONG_DIR_
LEVELS1

Total number of directory levels.

NAML$L_LONG_DIR_SIZE Long directory string size.
NAML$L_LONG_EXPAND_
SIZE

Long expanded string length.

NAML$L_LONG_NAME Long file name string address.
NAML$L_LONG_NAME_SIZE Long file name string length.
NAML$L_LONG_NODE1 Long node name string address.
NAML$L_LONG_NODE_SIZE Long node name string length.
NAML$L_LONG_RESULT_
SIZE1

Long resultant string length.

NAML$L_LONG_TYPE Long file type string length.
NAML$L_LONG_TYPE_SIZE Long file type string address.
NAML$L_LONG_VER Long file version string address.
NAML$L_LONG_VER_SIZE Long file version string length.
NAML$B_NAME Size of file specification name string.
NAML$L_NAME Address of file specification name string.
NAML$B_NODE Size of file specification node string.
NAML$L_NODE Address of file specification node string.
NAML$L_OUTPUT_FLAGS Output flags.

1This field is not supported for DECnet for OpenVMS operations.

(continued on next page)

RMS–22

OpenVMS RMS Services
$CREATE

Table RMS–10 (Cont.) Create Service NAML Output Fields (Alpha Only)

Field Name Description

NAML$B_RSL Resultant string length. If the NAML$L_
RSA field and the NAML$B_RSS field are
both nonzero on input, the resultant file
specification is copied to the buffer specified
by NAML$L_RSA.

NAML$B_TYPE Size of file specification type string.
NAML$L_TYPE Address of file specification type string.
NAML$B_VER Size of file specification version string.
NAML$L_VER Address of file specification version string.

Creating Files with the Create-If Option
Note that setting the create-if (FAB$V_CIF) option in the FAB$L_FOP field
specifies that if a new file has the same file specification as an existing file, RMS
opens the existing file and no new file is created. Some fields in the FAB, such as
the file organization (FAB$B_ORG) and record format (FAB$B_RFM) fields, are
input to a Create service, but are output from an Open service. For example, the
indexed file organization could be specified in the FAB$B_ORG field on a create-if
operation. However, if an existing sequential file has the same file specification
as the indexed file that the user is attempting to create, then the existing file is
opened and the FAB$B_ORG field is set to sequential.

Creating Indexed Files
An indexed file consists of a prolog, with which it begins, and one or more index
structures. RMS supplies the prolog with certain information about the file,
including file attributes.

RMS supports two prolog levels, called Prolog 2 and Prolog 3. Unlike Prolog
2 files, Prolog 3 files allow for file compression and additional key types. For
compatibility with RMS-11 data files that are transported or copied (without
conversion) between systems, you may want to choose Prolog 2.

If you want to create a Prolog 3 file, you must be sure that records in the file
are not larger than 32,224 bytes and, if the primary key is segmented, that the
segments of the primary key do not overlap (one or more bytes of the record
are used in more than one segment). If the primary key contains overlapping
segments, you can consider using that key as an alternate key instead of a
primary key or you can either request, or let RMS assign you, a Prolog 2 indexed
file.

Prolog 3 is the default prolog for RMS, although RMS creates a Prolog 2 file
only if the key characteristics are not compatible with Prolog 3 files. You can,
however, override this default by requesting a specific prolog version. The option
you choose in requesting a specific prolog level affects the behavior of RMS with
regard to creating the file and returning error messages.

If you explicitly request a prolog version using the XABKEY XAB$B_PROLOG
field in an application program, and if other file characteristics are incompatible
with that prolog, then RMS returns an error message and does not attempt to
create the file. For example, if you explicitly specify Prolog 2 in the XAB$B_
PROLOG field and have requested a key type that is available only with Prolog
3 (such as an 8-byte integer key type), an error is returned and the file is not
created.

RMS–23

OpenVMS RMS Services
$CREATE

However, if a specific prolog version is not explicitly requested in the XAB$B_
PROLOG field, RMS selects the greatest prolog level that can support the
specified key characteristics and does not return an error completion code.

In summary, there are two ways in which you can specify a particular prolog
version:

• Specify the XAB$B_PROLOG field in a XABKEY block in an application
program, affecting only the file being created.

• Use the DCL command SET RMS_DEFAULT/PROLOG to change the process
default.

If you do not specify the XAB$B_PROLOG field in your application program,
RMS examines your process defaults to check for prolog information. If this
information is not specified in your process defaults, RMS examines the system
defaults. If no prolog information is specified at the system level, RMS attempts
to create a Prolog 3 file.

You need not be concerned with the distinctions between Prolog 2 and Prolog 1
files. To create an indexed file with a prolog version other than Prolog 3, specify
a Prolog 2 file. If all keys in the file are string keys, RMS provides a default of
Prolog 1; in all other cases, Prolog 2 is the default.

Note

String keys include the STRING, DSTRING, COLLATED, and
DCOLLATED data-type keys.

If the file contains all string keys and Prolog 2 is requested, RMS attempts to
create a Prolog 1 file only if no binary keys are present.

Note that RMS-11 and previous versions of RMS return error messages if
requested to process Prolog 3 files.

If a failure is indicated, the file may be created, but it may not be opened for
processing, depending on the nature of the failure.

Condition Values Returned

The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACS RMS$_ACT RMS$_AID
RMS$_ALN RMS$_ALQ RMS$_AOP
RMS$_ATR RMS$_ATW RMS$_BKS
RMS$_BKZ RMS$_BLN RMS$_BUG
RMS$_BUG_DAP RMS$_BUG_DDI RMS$_CDA
RMS$_CHN RMS$_COD RMS$_CRE
RMS$_CREATED RMS$_CRE_STM RMS$_CRMP
RMS$_DAN RMS$_DEV RMS$_DFL
RMS$_DIR RMS$_DME RMS$_DNA
RMS$_DNF RMS$_DNR RMS$_DTP

RMS–24

OpenVMS RMS Services
$CREATE

RMS$_DVI RMS$_ENQ RMS$_ENV
RMS$_ESA RMS$_ESS RMS$_EXENQLM
RMS$_EXP RMS$_EXTNOTFOU RMS$_FAB
RMS$_FEX RMS$_FLG RMS$_FLK
RMS$_FNA RMS$_FNF RMS$_FNM
RMS$_FOP RMS$_FSZ RMS$_FUL
RMS$_GBC RMS$_IAL RMS$_IAN
RMS$_IBK RMS$_IFA RMS$_IFI
RMS$_IFL RMS$_IMX RMS$_IOP
RMS$_KNM RMS$_KSI RMS$_LAN
RMS$_LNE RMS$_MRN RMS$_MRS
RMS$_NAM RMS$_NAML RMS$_NAMLESS
RMS$_NAMLFSINV RMS$_NAMLFSSIZ RMS$_NAMLRSS
RMS$_NET RMS$_NETFAIL RMS$_NOD
RMS$_NORMAL RMS$_NPK RMS$_ORG
RMS$_POS RMS$_PRV RMS$_QUO
RMS$_RAT RMS$_REF RMS$_RFM
RMS$_RLF RMS$_RPL RMS$_RSS
RMS$_RST RMS$_RUNDOWN RMS$_SEG
RMS$_SEMANTICS RMS$_SHR RMS$_SIZ
RMS$_STR RMS$_SUC RMS$_SUP
RMS$_SUPERSEDE RMS$_SUPPORT RMS$_SYN
RMS$_SYS RMS$_UPI RMS$_VER
RMS$_WLK RMS$_WPL RMS$_XAB

RMS–25

OpenVMS RMS Services
$DELETE

$DELETE

The Delete service removes an existing record from a relative or indexed file. You
cannot use this service when processing sequential files.

RAB64 Users (Alpha Only)

On Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it
is used with the Delete service on OpenVMS Alpha systems.

Format

SYS$DELETE rab [,[err] [,suc]]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_
STV may contain additional status information.

Arguments

rab
OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the
Delete service call. The rab argument is the address of the RAB control block.

err
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation
is unsuccessful. The err argument is the address of the entry mask of this
user-written completion routine.

suc
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation
is successful. The suc argument is the address of the entry mask of this user-
written completion routine.

RMS–26

OpenVMS RMS Services
$DELETE

Description

A Delete service always applies to the current record. Therefore, immediately
before invoking the Delete service, you must establish the current record by
issuing a Find or Get service.

Table RMS–11 lists the control block fields read as input by the Delete service.
For additional information on the fields accessed by this service, see Part II.

Table RMS–11 Delete Service RAB Input Fields

Field Name Option Description

RAB$W_ISI Internal stream identifier (required).
RAB$L_ROP Record-processing options.

RAB$V_ASY Asynchronous: performs Delete service
asynchronously.

RAB$V_FDL Fast delete (applies to indexed files).

Table RMS–12 lists the control block fields written as output by the Delete
service.

Table RMS–12 Delete Service RAB Output Fields

Field Name Description

RAB$L_STS Completion status code (also returned in register 0).
RAB$L_STV Status value.

Condition Values Returned

The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_BLN RMS$_BUG
RMS$_BUG_DAP RMS$_CDA RMS$_CHK
RMS$_CUR RMS$_DME RMS$_DNR
RMS$_EXT_ERR RMS$_FAC RMS$_FTM
RMS$_IAL RMS$_IBF RMS$_IOP
RMS$_IRC RMS$_ISI RMS$_NET
RMS$_NETFAIL RMS$_NORMAL RMS$_OPNOTSUP
RMS$_PENDING RMS$_RAB RMS$_RNL
RMS$_RPL RMS$_RRV RMS$_RSA
RMS$_STR RMS$_SUC RMS$_SUP
RMS$_SUPPORT RMS$_SYS RMS$_TRE
RMS$_WLK

RMS–27

OpenVMS RMS Services
$DISCONNECT

$DISCONNECT

The Disconnect service breaks the connection between a RAB and a FAB, thereby
terminating a record stream. All system resources, such as I/O buffers and data
structure space, are deallocated.

RAB64 Users (Alpha Only)

On Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it
is used with the Disconnect service on OpenVMS Alpha systems.

Format

SYS$DISCONNECT rab [,[err] [,suc]]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_
STV may contain additional status information.

Arguments

rab
OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the
Disconnect service call. The rab argument is the address of the RAB control
block.

err
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation
is unsuccessful. The err argument is the address of the entry mask of this
user-written completion routine.

suc
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

RMS–28

OpenVMS RMS Services
$DISCONNECT

AST-level success completion routine that the service invokes if the operation
is successful. The suc argument is the address of the entry mask of this user-
written completion routine.

Description

The Close service (see $CLOSE) performs an implied disconnect for all record
streams connected to the FAB. Thus, you need not explicitly issue a Disconnect
service prior to closing the file. However, if more than one RAB is connected to
a single FAB, then you must explicitly disconnect the desired RAB in order to
terminate a particular record stream and leave the others active.

Table RMS–13 lists the control block fields read as input by the Disconnect
service. For additional information on the fields accessed by this service, see
Part II.

Table RMS–13 Disconnect Service RAB Input Fields

Field Name Option Description

RAB$W_ISI Internal stream identifier (required).
RAB$L_ROP Record-processing option.

RAB$V_ASY Asynchronous. Performs Disconnect service
asynchronously.

Table RMS–14 lists the control block fields written as output by the Disconnect
service.

Table RMS–14 Disconnect Service RAB Output Fields

Field Name Description

RAB$W_ISI Internal stream identifier (zeroed).
RAB$L_STS Completion status code (also returned in register 0).
RAB$L_STV Status value.

Condition Values Returned

The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_ATR RMS$_ATW
RMS$_BLN RMS$_BUG_DAP RMS$_CDA
RMS$_CRC RMS$_DME RMS$_DNR
RMS$_EXT_ERR RMS$_ISI RMS$_NET
RMS$_NETFAIL RMS$_NORMAL RMS$_OPNOTSUP
RMS$_PENDING RMS$_RAB RMS$_RSA
RMS$_STR RMS$_SUC RMS$_SUP
RMS$_SUPPORT RMS$_SYS RMS$_WBE
RMS$_WER RMS$_WLK

RMS–29

OpenVMS RMS Services
$DISPLAY

$DISPLAY

The Display service retrieves file attribute information about a file and places
this information in fields in the FAB, in XABs chained to the FAB, and in a NAM
or NAML block (if one is requested).

Format

SYS$DISPLAY fab [,[err] [,suc]]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset FAB$L_STS. Symbolic offset FAB$L_STV
may contain additional status information.

Arguments

fab
OpenVMS usage: fab
type: longword (unsigned)
access: modify
mechanism: by reference

FAB control block whose contents are to be used as indirect arguments for the
Display service call. The fab argument is the address of the FAB control block.

err
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation
is unsuccessful. The err argument is the address of the entry mask of this
user-written completion routine.

suc
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation
is successful. The suc argument is the address of the entry mask of this user-
written completion routine.

RMS–30

OpenVMS RMS Services
$DISPLAY

Description

A file must be open for access by a Create or Open service before the Display
service can be invoked.

RMS places the file attribute information in the corresponding fields of the FAB
and specified XABs. If the FAB$L_NAM field contains a valid NAM or NAML
block address, certain NAM or NAML block fields are filled in, including the
resultant string, and the NAM$B_NOP options are examined.

Note that the Open and Create services automatically perform an implicit Display
service (see $OPEN and $CREATE).

Table RMS–15 lists the FAB control block fields read as input by the Display
service. For additional information on the fields accessed by this service, see
Part II.

Table RMS–15 Display Service FAB Input Fields

Field Name Description

FAB$W_IFI Internal file identifier.
FAB$L_NAM1 NAM or NAML block address.
FAB$L_XAB1 Extended attribute block address.

1 If you want information about a particular XAB, NAM, or NAML block, you must pass it to the
Display service as input.

Table RMS–16 lists the FAB and XAB control block fields written as output by
the Display service.

Table RMS–16 Display Service FAB and XAB Output Fields

Field Name XAB Type Description

FAB$L_ALQ Allocation quantity in blocks.
FAB$B_BKS Bucket size.
FAB$W_BLS Block size.
FAB$W_DEQ Default file extension quantity.
FAB$L_DEV Device characteristics.
FAB$B_FAC File access.
FAB$B_FSZ Fixed control area size.
FAB$W_GBC Global buffer count.
FAB$L_MRN Maximum record number.
FAB$W_MRS Maximum record size.
FAB$B_ORG File organization.
FAB$B_RAT Record attributes.
FAB$B_RFM Record format.
FAB$B_RTV Retrieval window size.
FAB$B_SHR File sharing.

(continued on next page)

RMS–31

OpenVMS RMS Services
$DISPLAY

Table RMS–16 (Cont.) Display Service FAB and XAB Output Fields

Field Name XAB Type Description

FAB$L_STS Completion status code (also returned in
register 0).

FAB$L_STV Status value.
FAB$L_XAB Next XAB address.

XABALL Allocation XAB; see Chapter 9.
XABDAT Date and time XAB; see Chapter 10.
XABFHC File header characteristics XAB; see

Chapter 11.
XABITM Item list XAB; see Chapter 12.
XABKEY Key definition XAB; see Chapter 14.
XABPRO Protection XAB; see Chapter 15.
XABRDT Revision date and time XAB; see Chapter 16.
XABSUM Summary XAB; see Chapter 18.

Table RMS–17 lists the NAM control block fields read as input by the Display
service. For additional information on the fields accessed by this service, see
Part II.

Table RMS–17 Display Service NAM Input Fields

Field Name Option Description

NAM$B_NOP NAM block options.
NAM$V_PWD Password: indicates that a

password contained in a DECnet
for OpenVMS access control string,
if present in a file specification, is
to be left unaltered in the expanded
and resultant strings (instead
of being replaced by the word
‘‘password’’).

NAM$V_NOCONCEAL Do not conceal device name:
indicates that when a concealed
device logical name is present,
the concealed device logical name
is to be replaced by the actual
physical device name (and directory,
if present) in the resultant string.

Table RMS–18 lists the NAM control block fields written as output by the Display
service.

RMS–32

OpenVMS RMS Services
$DISPLAY

Table RMS–18 Display Service NAM Output Fields

Field Name Description

NAM$W_DID1 Directory identification.
NAM$T_DVI1 Device identification.
NAM$W_FID1 File identification.
NAM$L_FNB File name status bits.
NAM$B_RSL Resultant string length: indicates the length of the resultant

string that is written into the buffer whose address is
contained in the NAM$L_RSA field (if the NAM$L_RSA
and NAM$B_RSS fields are nonzero).

1This field is not supported for DECnet for OpenVMS operations.

Table RMS–19 lists the NAML block fields used as input for the Display service.

Table RMS–19 Display Service NAML Input Fields (Alpha Only)

Field Name Option Description

NAML$L_
INPUT_FLAGS

Additional flags specified as input.

NAML$B_NOP NAML block options.
NAML$V_PWD Password: indicates that a

password contained in a DECnet
for OpenVMS access control string,
if present in a file specification, is
to be left unaltered in the expanded
and resultant strings (instead
of being replaced by the word
‘‘password’’).

NAML$V_
NOCONCEAL

Do not conceal device name:
indicates that when a concealed
device logical name is present,
the concealed device logical name
is to be replaced by the actual
physical device name (and directory,
if present) in the resultant string.

Table RMS–20 lists the NAML block fields used as output for the Display
service.

Table RMS–20 Display Service NAML Output Fields (Alpha Only)

Field Name Description

NAML$W_DID1 Directory identification.
NAML$T_DVI1 Device identification.

1This field is not supported for DECnet for OpenVMS operations.

(continued on next page)

RMS–33

OpenVMS RMS Services
$DISPLAY

Table RMS–20 (Cont.) Display Service NAML Output Fields (Alpha Only)

Field Name Description

NAML$W_FID1 File identification.
NAML$L_FNB File name status bits.
NAML$L_LONG_RESULT_
SIZE

Long resultant string length.

NAML$L_OUTPUT_FLAGS Additional status bits passed as output.
NAML$B_RSL Resultant string length: indicates the length

of the resultant string that is written into
the buffer whose address is contained in the
NAM$L_RSA field (if the NAML$L_RSA and
NAML$B_RSS fields are nonzero).

1This field is not supported for DECnet for OpenVMS operations.

Condition Values Returned

The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_AID RMS$_ATR
RMS$_BLN RMS$_BUG_DAP RMS$_CDA
RMS$_COD RMS$_DME RMS$_DNR
RMS$_ESA RMS$_ESL RMS$_ESS
RMS$_NAMLESS RMS$_NAMLFSINV RMS$_NAMLFSSIZ
RMS$_FAB RMS$_IFI RMS$_IMX
RMS$_NET RMS$_NETFAIL RMS$_NORMAL
RMS$_OK_NOP RMS$_PLG RMS$_PRV
RMS$_REF RMS$_RPL RMS$_STR
RMS$_SUC RMS$_SUP RMS$_SUPPORT
RMS$_XAB

RMS–34

OpenVMS RMS Services
$ENTER

$ENTER

The Enter service inserts a file name in a directory.

Note

The $ENTER service is not supported for DECnet.

Format

SYS$ENTER fab [,[err] [,suc]]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset FAB$L_STS. Symbolic offset FAB$L_STV
may contain additional status information.

Arguments

fab
OpenVMS usage: fab
type: longword (unsigned)
access: modify
mechanism: by reference

FAB control block whose contents are to be used as indirect arguments for the
Enter service call. The fab argument is the address of the FAB control block.

err
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation
is unsuccessful. The err argument is the address of the entry mask of this
user-written completion routine.

suc
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation
is successful. The suc argument is the address of the entry mask of this user-
written completion routine.

RMS–35

OpenVMS RMS Services
$ENTER

Description

The Enter service function is performed automatically by the Create service
unless you select the FAB$V_TMP option or the FAB$V_TMD option. The Enter
service, however, allows you to perform this step separately. Note that the file
must be closed before you invoke the Enter service (FAB$W_IFI must be 0).

When you enter a file name in a directory, no file associated with the FAB can be
open and no wildcard characters can be used.

The Enter service requires many NAM or NAML block fields as input. You
normally precede the Enter service with an Open, Create, or Parse service (see
$PARSE) and a Search service (see $SEARCH), specifying the same FAB and
NAM block for each service.

The optional resultant string is moved to the buffer described by the NAM$L_
RSA (or NAML$L_LONG_RESULT) and NAM$B_RSS (or NAML$L_LONG_
RESULT_ALLOC) fields (only if both these fields are nonzero). If the file version
number of the name string described by the expanded string length and address
fields of the NAM or NAML block is omitted or contains a 0, the Enter service
scans the entire directory. It assigns a version number that is one higher than
the highest found (or 1 if none is found).

Note

The Enter service is not supported for DECnet for OpenVMS operations
on remote files between two OpenVMS systems.

Table RMS–21 lists the FAB control block fields read as input by the Enter
service. For additional information on the fields accessed by this service, see
Part II.

Table RMS–21 Enter Service FAB Input Fields

Field Name Description

FAB$W_IFI Internal file identifier (must be 0).
FAB$L_NAM NAM or NAML block address.

Table RMS–22 lists the FAB control block fields read as output by the Enter
service. For additional information on the fields accessed by this service, see
Part II.

Table RMS–22 Enter Service FAB Output Fields

Field Name Description

FAB$L_STS Completion status code (also returned in register 0).
FAB$L_STV Status value.

Table RMS–23 lists the NAM control block fields read as input by the Enter
service. For additional information on the fields accessed by this service, see
Part II.

RMS–36

OpenVMS RMS Services
$ENTER

Table RMS–23 Enter Service NAM Input Fields

Field Name Description

NAM$W_DID Directory identification: identifies the directory in which the
file name is to be entered.

NAM$T_DVI Device identification: identifies the device containing the
directory in which the file name is to be entered.

NAM$L_ESA Expanded string area address: contains file name, type, and
version to be entered.

NAM$B_ESL Expanded string length.
NAM$W_FID File identification: identifies the file to be entered into the

directory.
NAM$L_RSA Resultant string area address.
NAM$B_RSS Resultant string size.

Table RMS–24 lists the NAM control block field read as output by the Enter
service. For additional information on the fields accessed by this service, see
Part II.

Table RMS–24 Enter Service NAM Output Field

Field Name Description

NAM$B_RSL Resultant string length.

Table RMS–25 lists the NAML block fields used as input for the Enter service.

Table RMS–25 Enter Service NAML Input Fields (Alpha Only)

Field Name Description

NAML$W_DID Directory identification: identifies the directory
in which the file name is to be entered.

NAML$T_DVI Device identification: identifies the device
containing the directory in which the file name is
to be entered.

NAML$L_ESA Expanded string area address: contains the file
name, type, and version to be entered.

NAML$B_ESL Expanded string length.
NAML$W_FID File identification: identifies the file to be entered

into the directory.
NAML$L_INPUT_FLAGS Additional flags specified as input.
NAML$L_LONG_EXPAND Long expanded string area address.
NAML$L_LONG_EXPAND_
ALLOC

Long expanded string area size.

NAML$L_LONG_RESULT Long resultant string area address.
NAML$L_LONG_RESULT_
ALLOC

Long resultant string area size.

NAML$L_RSA Resultant string area address.
NAML$B_RSS Resultant string size.

RMS–37

OpenVMS RMS Services
$ENTER

Table RMS–26 lists the NAML control block fields read as output by the Enter
service. For additional information on the fields accessed by this service, see
Part II.

Table RMS–26 Enter Service NAML Output Fields (Alpha Only)

Field Name Description

NAML$L_LONG_RESULT_
SIZE

Long resultant string length.

NAML$L_OUTPUT_FLAGS Additional status bits passed as output.
NAML$B_RSL Resultant string length.

Condition Values Returned

The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_BLN RMS$_CDA RMS$_CHN
RMS$_DEV RMS$_DME RMS$_DNF
RMS$_DNR RMS$_DVI RMS$_ENT
RMS$_ESA RMS$_ESL RMS$_FAB
RMS$_FNF RMS$_IFI RMS$_NAM
RMS$_NAML RMS$_NAMLFSINV RMS$_NAMLFSSIZ
RMS$_NAMLRSS RMS$_NORMAL RMS$_PRV
RMS$_RSL RMS$_RSS RMS$_RST
RMS$_STR RMS$_SUC RMS$_SUP
RMS$_SUPPORT RMS$_SYS RMS$_WLD
RMS$_WLK

RMS–38

OpenVMS RMS Services
$ERASE

$ERASE

The Erase service deletes a disk file and removes the file’s directory entry
specified in the path to the file. If additional directory entries have been created
for this file by the Enter service, you must use the Remove service to delete them.

Format

SYS$ERASE fab [,[err] [,suc]]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset FAB$L_STS. Symbolic offset FAB$L_STV
may contain additional status information.

Arguments

fab
OpenVMS usage: fab
type: longword (unsigned)
access: modify
mechanism: by reference

FAB control block whose contents are to be used as indirect arguments for the
Erase service call. The fab argument is the address of the FAB control block.

err
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation
is unsuccessful. The err argument is the address of the entry mask of this
user-written completion routine.

suc
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation
is successful. The suc argument is the address of the entry mask of this user-
written completion routine.

RMS–39

OpenVMS RMS Services
$ERASE

Description

Using the Erase service to delete a file releases the file’s allocated space for use
by another file. The Erase service does not physically remove the data (as does
overwriting or zeroing).

Note that the file must be closed before you invoke the Erase service (FAB$W_IFI
must be zero). You can, however, delete a file that is currently open, if you issue
a Close service and specify the FAB$L_FOP field FAB$V_DLT option. RMS
does not allow you to delete files from magnetic tape volumes; they must be
overwritten.

If a search list logical name is specified, the file is deleted only if it is found in the
first resulting search list file specification.

Table RMS–27 lists the FAB control block fields read as input by the Erase
service. For additional information on the fields accessed by this service, see
Part II.

Table RMS–27 Erase Service FAB Input Fields

Field Name Option Description

FAB$L_DNA Default file specification string address.
FAB$B_DNS Default file specification string size.
FAB$L_FNA File specification string address.
FAB$B_FNS File specification string size.
FAB$L_FOP File-processing options.

FAB$V_NAM1 NAM block inputs: allows use of
the NAMW_DID, NAMT_DVI, and
NAM$W_FID fields.

FAB$W_IFI Internal file identifier (must be 0).
FAB$L_NAM NAM or NAML block address.

1This field is not supported for DECnet for OpenVMS operations.

Table RMS–28 lists the FAB control block fields read as output by the Erase
service. For additional information on the fields accessed by this service, see
Part II.

Table RMS–28 Erase Service FAB Output Fields

Field Name Description

FAB$L_STS Completion status code (also returned in register 0).
FAB$L_STV Status value.

Table RMS–29 lists the NAM control block fields read as input by the Erase
service. For additional information on the fields accessed by this service, see
Part II.

RMS–40

OpenVMS RMS Services
$ERASE

Table RMS–29 Erase Service NAM Input Fields

Field Name Option Description

NAM$W_DID1 Directory identification (input only
if the FAB$L_FOP field FAB$V_
NAM bit is set).

NAM$T_DVI1 Device identification (input only
if the FAB$L_FOP field FAB$V_
NAM bit is set).

NAM$L_ESA Expanded string area address.
NAM$B_ESS Expanded string area size.
NAM$W_FID1 File identification (input only if

the FAB$L_FOP field FAB$V_
NAM bit is set).

NAM$B_NOP NAM block option.
NAM$V_NO_SHORT_
UPCASE

Do not uppercase the directory and
file specification in the NAM$L_
ESA buffer.

NAM$L_RLF Related file NAM or NAML block
address.

NAM$L_RSA Related file resultant string
address.

NAM$B_RSS Related file resultant string size.
NAM$L_FNB Related file file name status bits.

1This field is not supported for DECnet for OpenVMS operations.

Note that the NAM block fields are used for output only if the name block address
field is specified in the FAB.

Table RMS–30 lists the NAM control block fields read as output by the Erase
service. For additional information on the fields accessed by this service, see
Part II.

Table RMS–30 Erase Service NAM Output Fields

Field Name Description

NAM$W_DID1 Directory identification.
NAM$T_DVI1 Device identification.
NAM$B_ESL Expanded string length. If the NAM$L_ESA field and the

NAM$B_ESS field are nonzero, and if the FAB$V_NAM bit is
clear or the NAM$W_DID field contains a zero, RMS copies
the expanded file specification string to the buffer specified
by the input NAM$L_ESA field.

NAM$W_FIRST_
WILD_DIR1

The topmost directory level to contain a wildcard.

1This field is not supported for DECnet for OpenVMS operations.

(continued on next page)

RMS–41

OpenVMS RMS Services
$ERASE

Table RMS–30 (Cont.) Erase Service NAM Output Fields

Field Name Description

NAM$L_FNB File name status bits.
NAM$L_LONG_
DIR_LEVELS1

Total number of directories.

NAM$B_RSL Resultant string length (if NAM$L_RSA and NAM$B_RSS
are both nonzero on input, the resultant file specification is
copied to the buffer specified by NAM$L_RSA).

1This field is not supported for DECnet for OpenVMS operations.

Table RMS–31 lists the NAML block fields used as input for the Erase service.

Table RMS–31 Erase Service NAML Input Fields (Alpha Only)

Field Name Option Description

NAML$W_DID1 Directory identification
(input only if the
FAB$L_FOP field
FAB$V_NAM bit is
set).

NAML$T_DVI1 Device identification
(input only if the
FAB$L_FOP field
FAB$V_NAM bit is
set).

NAML$L_ESA Expanded string area
address.

NAML$B_ESS Expanded string area
size.

NAML$W_FID1 File identification
(input only if the
FAB$L_FOP field
FAB$V_NAM bit is
set).

NAML$L_FILESYS_NAME1 File system name
buffer address.

NAML$L_FILESYS_NAME_
ALLOC1

File system name
buffer size.

NAML$L_FNB Related file name
status bits.

NAML$L_INPUT_FLAGS Additional flags
specified as input.

1This field is not supported for DECnet for OpenVMS operations.

(continued on next page)

RMS–42

OpenVMS RMS Services
$ERASE

Table RMS–31 (Cont.) Erase Service NAML Input Fields (Alpha Only)

Field Name Option Description

NAML$L_LONG_DEFNAME Long default file
specification string
address (used if
FAB$L_DNA contains
-1).

NAML$L_LONG_DEFAME_
SIZE

Long default file
specification string
size.

NAML$L_LONG_EXPAND Long expanded string
area address.

NAML$L_LONG_EXPAND_
ALLOC

Long expanded string
area size.

NAML$L_LONG_
FILENAME

Long file specification
string address (used if
FAB$L_FNA contains
-1).

NAML$L_LONG_
FILENAME_SIZE

Long file specification
string size.

NAML$L_LONG_RESULT Long resultant string
area address.

NAML$L_LONG_RESULT_
ALLOC

Long resultant string
area size.

NAML$B_NOP NAML block option.
NAML$V_NO_SHORT_
UPCASE

Do not uppercase
the directory and file
specification in the
NAML$L_ESA buffer.

NAML$L_RLF Related file NAM or
NAML block address.

NAML$L_RSA Resultant string
address.

NAML$B_RSS Resultant string size.

Table RMS–32 lists the NAML control block fields read as output by the Erase
service. For additional information on the fields accessed by this service, see
Part II.

RMS–43

OpenVMS RMS Services
$ERASE

Table RMS–32 Erase Service NAML Output Fields (Alpha Only)

Field Name Description

NAML$W_DID1 Directory identification.
NAML$T_DVI1 Device identification.
NAML$B_ESL Expanded string length. If the NAML$L_ESA

field and the NAML$B_ESS field are nonzero,
and if the FAB$V_NAM bit is clear or the
NAML$W_DID field contains a zero, RMS copies
the expanded file specification string to the buffer
specified by the input NAML$L_ESA field.

NAML$L_FILESYS_NAME_
SIZE1

File system name length.

NAML$W_FIRST_WILD_
DIR1

First wild directory.

NAML$L_FNB File name status bits.
NAML$L_LONG_DIR_
LEVELS1

Total number of directories.

NAML$L_LONG_EXPAND_
SIZE

Long expanded string length.

NAML$L_LONG_RESULT_
SIZE

Long resultant string length.

NAML$L_OUTPUT_FLAGS Additional status bits passed as output.
NAML$B_RSL Resultant string length (if NAML$L_RSA and

NAML$B_RSS are both nonzero on input, the
resultant file specification is copied to the buffer
specified by NAML$L_RSA).

1This field is not supported for DECnet for OpenVMS operations.

Condition Values Returned

The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACS RMS$_BLN RMS$_BUG_DAP
RMS$_BUG_DDI RMS$_CDA RMS$_CHN
RMS$_DEV RMS$_DIR RMS$_DME
RMS$_DNA RMS$_DNF RMS$_DNR
RMS$_DVI RMS$_ESA RMS$_ESS
RMS$_FAB RMS$_FNF RMS$_FNM
RMS$_IFI RMS$_IOP RMS$_LNE
RMS$_MKD RMS$_NAM RMS$_NAML
RMS$_NAMLESS RMS$_NAMLFSINV RMS$_NAMLFSSIZ
RMS$_NAMLRSS RMS$_NET RMS$_NETFAIL
RMS$_NOD RMS$_NORMAL RMS$_PRV

RMS–44

OpenVMS RMS Services
$ERASE

RMS$_QUO RMS$_RLF RMS$_RSS
RMS$_RST RMS$_STR RMS$_SUC
RMS$_SUP RMS$_SUPERSEDE RMS$_SUPPORT
RMS$_SYN RMS$_TYP RMS$_VER
RMS$_WLK

RMS–45

OpenVMS RMS Services
$EXTEND

$EXTEND

The Extend service increases the amount of space allocated to a disk file. This
service is most useful for extending relative files and indexed files when you are
doing block I/O transfers using the Write service.

Format

SYS$EXTEND fab [,[err] [,suc]]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset FAB$L_STS. Symbolic offset FAB$L_STV
may contain additional status information.

Arguments

fab
OpenVMS usage: fab
type: longword (unsigned)
access: modify
mechanism: by reference

FAB control block whose contents are to be used as indirect arguments for the
Extend service call. The fab argument is the address of the FAB control block.

err
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation
is unsuccessful. The err argument is the address of the entry mask of this
user-written completion routine.

suc
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation
is successful. The suc argument is the address of the entry mask of this user-
written completion routine.

RMS–46

OpenVMS RMS Services
$EXTEND

Description

When a program adds data to a file using record I/O operations, RMS invokes the
Extend service to provide additional file space, if needed, regardless of the file
organization. But, when data is added using block I/O operations, RMS provides
additional file space for sequential files only. To obtain additional file space when
using block I/O, the program must invoke the Extend service.

You might also want to consider using the Extend service for all file organizations
when you want to extend a file for performance reasons, such as placing a large
file extent (an extended part of a file) contiguous with the file.

In order for a program to invoke the Extend service, it must open the file
(FAB$W_IFI must not be 0); otherwise, an error occurs. RMS also requires that
the file access field (FAB$B_FAC) specify either put access (FAB$V_PUT) or
update access (FAB$V_UPD) before permitting file extensions.

The program uses the appropriate allocation quantity field (FAB$L_ALQ or
XAB$L_ALQ) to specify the number of blocks that RMS uses to extend a file.

You can specify other attributes, such as how and where the additional space is
allocated. For example, you can specify whether you want the additional space
allocated contiguously. If you specify contiguous space and the additional space is
not available, the operation fails.

When the program uses an allocation control XAB, the XAB’s allocation quantity
(XAB$L_ALQ) and allocation options (XABB_AOP, XABV_CBT, and XAB$V_
CTG bits) are used instead of the corresponding options specified in the FAB. You
can specify multiple XABs to extend separate areas of indexed files.

If no XABALL is present on the extend of an indexed file that is opened for I/O
record access, RMS extends Area 0 of the file. If block I/O access is specified,
RMS extends the file but does not affect the area descriptor. If no XABALL is
present and you have not specified either of the contiguity options (FAB$V_CBT,
FAB$V_CGT), RMS requests placement control to position the extension as near
as possible to the last block allocated to the file.

Table RMS–33 lists the control block fields read as input by the Extend service.
For additional information on the fields accessed by this service, see Part II of
this manual.

Table RMS–33 Extend Service FAB Input Fields

Field Name Description

FAB$L_ALQ Allocation quantity. Ignored if an allocation XAB is present.
FAB$L_FOP File-processing options. Checked to see whether the FAB$V_

CTG or FAB$V_CBT bit is set to indicate contiguous allocation
(ignored for allocation XAB).

FAB$W_IFI Internal file identifier (must not be 0).
FAB$L_XAB Extended attribute block address. Only an allocation XAB

(XABALL) is processed.

RMS–47

OpenVMS RMS Services
$EXTEND

Table RMS–34 lists the control block fields written as output by the Extend
service.

Table RMS–34 Extend Service FAB Output Fields

Field Name Description

FAB$L_ALQ Allocation quantity. Contains the actual extension allocation
value if no allocation XAB is present.

FAB$L_STS Completion status code (also returned in register 0).
FAB$L_STV Status value. Contains the total number of blocks allocated,

totaled across all allocation XABs.

Condition Values Returned

The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_AID RMS$_ALN
RMS$_ALQ RMS$_AOP RMS$_ATR
RMS$_ATW RMS$_BLN RMS$_BUG_DAP
RMS$_CDA RMS$_COD RMS$_DME
RMS$_EXT RMS$_FAB RMS$_FAC
RMS$_FUL RMS$_IFI RMS$_IMX
RMS$_IOP RMS$_LEX RMS$_NET
RMS$_NETFAIL RMS$_NORMAL RMS$_PLG
RMS$_RPL RMS$_STR RMS$_SUC
RMS$_SUP RMS$_SUPPORT RMS$_SYS
RMS$_WBE RMS$_WER RMS$_WLK
RMS$_WPL RMS$_XAB

RMS–48

OpenVMS RMS Services
$FIND

$FIND

The Find service locates a specified record in a file and returns its record file
address in the RAB$W_RFA field of the RAB. The Find service can be used with
all file organizations.

RAB64 Users (Alpha Only)

On Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it
is used with the Find service on OpenVMS Alpha systems.

Format

SYS$FIND rab [,[err] [,suc]]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_
STV may contain additional status information.

Arguments

rab
OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the
Find service call. The rab argument is the address of the RAB control block.

err
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation
is unsuccessful. The err argument is the address of the entry mask of this
user-written completion routine.

suc
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation
is successful. The suc argument is the address of the entry mask of this user-
written completion routine.

RMS–49

OpenVMS RMS Services
$FIND

Description

The Find service gives you the following functional capabilities:

• You can skip records when you are accessing a file sequentially by making
successive invocations of the Find service.

• You can establish the current record context prior to invoking an Update,
Delete, or Truncate service.

• You can establish a random access starting point in a file for subsequent
sequential access operations such as the Get service.

When you follow the Find service with a sequential access operation, such as
the Get service, the current record context is established by the Find service
and the sequential access operation establishes a new sequential access context.
Conversely, when you follow the Find service with a nonsequential access
operation such as a Delete service or an Update service, the sequential access
context remains the same as it was prior to the Find service.

RAB Control Block Fields
Table RMS–35 lists the control block fields read as input by the Find service. For
additional information on the fields accessed by this service, see Part II.

Table RMS–35 Find Service RAB Input Fields

Field Name Option Description

RAB$W_ISI Internal stream identifier (required).
RAB$L_KBF Key buffer address (used only if the

RAB$B_RAC field contains RAB$C_KEY
or if RAB$B_RAC contains RAB$C_SEQ
and the RAB$L_ROP field RAB$V_LIM
option is set).

RAB$B_KRF Key of reference (used only with indexed
files and if RAB$B_RAC contains
RAB$C_KEY).

RAB$B_KSZ Key size (used only if the RAB$B_RAC
field contains RAB$C_KEY or if
RAB$B_RAC contains RAB$C_SEQ and
the RAB$L_ROP field RAB$V_LIM option
is set).

RAB$L_PBF1 Prompt buffer address (applies to terminal
devices only).

RAB$B_PSZ1 Prompt buffer size (applies to terminal
devices only).

RAB$B_RAC Record access mode (RAB$C_SEQ,
RABC_KEY, RABC_RFA)2.

RAB$W_RFA Record file address (used only if the
RAB$B_RAC field contains RAB$C_RFA).

1This field is not supported for DECnet for OpenVMS operations.
2The default for the RAB$B_RAC field is RAB$C_SEQ.

(continued on next page)

RMS–50

OpenVMS RMS Services
$FIND

Table RMS–35 (Cont.) Find Service RAB Input Fields

Field Name Option Description

RAB$L_ROP Record-processing options.
RAB$V_ASY Asynchronous: performs Find services

asynchronously.
RAB$V_CVT1 Convert: changes characters to uppercase

for a Find service to a terminal device.
RAB$V_KGE3 Key is greater than or equal to compared

value (applies only to indexed files).
RAB$V_KGT4 Key is greater than compared value

(applies only to indexed files). If neither
RAB$V_KGE nor RAB$V_KGT is
specified, a key equal match is made.

RAB$V_LIM Limit: the key value described by the
KBF and KSZ fields is compared to the
value in the sequentially-accessed record.

RAB$V_NLK No lock: specifies that the record accessed
through the Find service is not to be
locked.

RAB$V_NXR Nonexistent record processing: specifies
that if the record accessed directly
through a Find service does not exist,
the service is to be performed anyway.

RAB$V_PMT1 Prompt indicates that the contents of the
prompt buffer are to be used as a prompt
for a Find service to a terminal device.

RAB$V_PTA1 Purge type-ahead buffer: eliminates any
information that may be in the type-ahead
buffer for a Find service to a terminal
device.

RAB$V_RAH1 Read ahead: used with multiple buffers to
indicate read-ahead operations (sequential
files only).

RAB$V_REA Lock for read: allows other users read
access to the record.

RAB$V_REV Reverses search direction for random
keyed access operations when used with
either RAB$V_KGE or RAB$V_KGT
(applies only to indexed files).

RAB$V_RLK Read of locked record allowed: specifies
that a locked record can be read by other
users.

1This field is not supported for DECnet for OpenVMS operations.
3This symbolic offset is logically synonymous with RAB$V_EQNXT.
4This symbolic offset is logically synonymous with RAB$V_NXT.

(continued on next page)

RMS–51

OpenVMS RMS Services
$FIND

Table RMS–35 (Cont.) Find Service RAB Input Fields

Field Name Option Description

RAB$V_RNE1 Read no echo: indicates that input data
entered on the keyboard is not displayed
on the terminal device.

RAB$V_RNF1 Read no filter: indicates that Ctrl/U,
Ctrl/R, and DELETE are not to be
considered control commands on terminal
input, but are to be passed to the
application program.

RAB$V_RRL Read regardless of lock: read the record
even if another stream has locked the
record.

RAB$V_TMO1 Timeout: indicates that the contents of
the timeout period field (RAB$B_TMO) is
to be used on a Find request for a locked
record (when the RAB$V_WAT option is
also specified) or for a terminal or mailbox
device.

RAB$V_ULK Manual unlocking: specifies that a record
cannot be unlocked automatically.

RAB$V_WAT Wait: if record is locked, wait until it is
available.

RAB$W_ROP_21 Extended record-processing options.
RAB$V_NQL No query locking.
RAB$V_
NODLCKWT

No deadlock wait.

RAB$V_
NODLCKBLK

No deadlock blocking.

RAB$B_TMO1 Timeout period: indicates the maximum
number of seconds that RMS can spend to
complete a Find request.

1This field is not supported for DECnet for OpenVMS operations.

Table RMS–36 lists the control block fields written as output by the Find
service.

Table RMS–36 Find Service RAB Output Fields

Field Name Description

RAB$L_BKT Bucket code: set to the relative record number for
sequentially accessed relative files.

RAB$W_RFA Record file address.
RAB$L_STS Completion status code (also returned in register 0).

(continued on next page)

RMS–52

OpenVMS RMS Services
$FIND

Table RMS–36 (Cont.) Find Service RAB Output Fields

Field Name Description

RAB$L_STV Status value.

The record address (RAB$L_RBF) field and the record size (RAB$W_RSZ) field
are undefined after a Find service.

RAB64 Control Block Fields (Alpha Only)
Table RMS–37 lists the Alpha-only RAB64 control block fields read as input by
the Find service. These fields are comparable to the RAB fields described in
Table RMS–35. For additional information on the fields accessed by this service,
see Part II.

Table RMS–37 Find Service RAB64 Input Fields (Alpha Only)

Field Name Description

RAB64$B_BLN This field must be initialized to RAB64$C_BLN64 in
order for RAB64 fields to be used.

RAB64$W_ISI Internal stream identifier (required). Equates to
RAB$W_ISI.

RAB64$L_KBF Key buffer address. This field must contain �1 if you
want to use RAB64$PQ_KBF. For 32-bit addressing, this
field equates to RAB$L_KBF (see Table RMS–35).

RAB64$PQ_KBF Key buffer 64-bit address (used if RAB64$L_KBF
contains �1). This field can hold either a 64-bit address
or a 32-bit address sign-extended to 64 bits.

RAB64$B_KRF Key of reference. Equates to RAB$B_KRF (see
Table RMS–35).

RAB64$B_KSZ Key buffer size. Equates to RAB$B_KSZ (see
Table RMS–35).

RAB64$L_PBF1 Prompt buffer address. Equates to RAB$L_PBF (see
Table RMS–35).

RAB64$B_PSZ1 Prompt buffer size. Equates to RAB$B_PSZ (see
Table RMS–35).

RAB64$B_RAC Record access mode. Equates to RAB$B_RAC (see
Table RMS–35).

RAB64$W_RFA Record file address. Equates to RAB$W_RFA (see
Table RMS–35).

RAB64$L_ROP Record-processing options. Equates to RAB$L_ROP
and options described in Table RMS–35. Options are
identical except for the RAB64 prefix; for example,
option RAB64$V_ASY equates to RAB$V_ASY.

1This field is not supported for DECnet for OpenVMS operations.

(continued on next page)

RMS–53

OpenVMS RMS Services
$FIND

Table RMS–37 (Cont.) Find Service RAB64 Input Fields (Alpha Only)

Field Name Description

RAB64$W_ROP_21 Extended record-processing options. Equates
to RAB64$W_ROP_2 and options described in
Table RMS–35. Options are identical except for
the RAB64 prefix; for example, option RAB64$V_
NODLCKWT equates to RAB$V_NODLCKWT.

RAB64$B_TMO1 Timeout period. Equates to RAB$B_TMO (see
Table RMS–35).

1This field is not supported for DECnet for OpenVMS operations.

Table RMS–38 lists the Alpha-only RAB64 control block fields written as output
by the Find service. These fields are comparable to the RAB fields described in
Table RMS–36.

Table RMS–38 Find Service RAB64 Output Fields (Alpha Only)

Field Name Description

RAB64$L_BKT Bucket code. Equates to RAB$L_BKT (see Table RMS–36).
RAB64$W_RFA Record file address. Equates to RAB$W_RFA.
RAB64$L_STS Completion status code. Equates to RAB$L_STS (see

Table RMS–36).
RAB64$L_STV Status value. Equates to RAB$L_STV.

The record address (RAB64$L_RBF) field and the record size (RAB64$W_RSZ)
field are undefined after a Find service.

Condition Values Returned

The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_ANI RMS$_ATR
RMS$_ATW RMS$_BES RMS$_BLN
RMS$_BUG RMS$_BUG_DAP RMS$_CDA
RMS$_CHK RMS$_CONTROLC RMS$_CONTROLY
RMS$_DEADLOCK RMS$_DEL RMS$_DME
RMS$_DNR RMS$_EOF RMS$_EXENQLM
RMS$_EXT_ERR RMS$_FAC RMS$_FTM
RMS$_IBF RMS$_IDXSEARCH RMS$_IOP
RMS$_IRC RMS$_ISI RMS$_KBF
RMS$_KEY RMS$_KRF RMS$_KSZ
RMS$_MRN RMS$_NET RMS$_NETFAIL
RMS$_NORMAL RMS$_OK_ALK RMS$_OK_DEL
RMS$_OK_LIM RMS$_OK_RLK RMS$_OK_RNF

RMS–54

OpenVMS RMS Services
$FIND

RMS$_OK_RRL RMS$_OK_WAT RMS$_OPNOTSUP
RMS$_PBF RMS$_PENDING RMS$_PES
RMS$_PLG RMS$_RAB RMS$_RAC
RMS$_REF RMS$_RER RMS$_RFA
RMS$_RHB RMS$_RLK RMS$_RNF
RMS$_ROP RMS$_RPL RMS$_RRV
RMS$_RSA RMS$_SQO RMS$_STR
RMS$_SUC RMS$_SUP RMS$_SUPPORT
RMS$_SYS RMS$_TMO RMS$_TRE
RMS$_WBE RMS$_WER RMS$_WLK

RMS–55

OpenVMS RMS Services
$FLUSH

$FLUSH

The Flush service writes out all modified I/O buffers and file attributes associated
with the file. This ensures that all record activity up to the point at which the
Flush service executes is actually reflected in the file.

RAB64 Users (Alpha Only)

On Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it
is used with the Flush service on OpenVMS Alpha systems.

Format

SYS$FLUSH rab [,[err] [,suc]]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_
STV may contain additional status information.

Arguments

rab
OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the
Flush service call. The rab argument is the address of the RAB control block.

err
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation
is unsuccessful. The err argument is the address of the entry mask of this
user-written completion routine.

suc
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation
is successful. The suc argument is the address of the entry mask of this user-
written completion routine.

RMS–56

OpenVMS RMS Services
$FLUSH

Description

Explicit invocation of the Flush service is useful when an application program
must be certain that all file changes are represented on disk (as in protecting
against a crash).

The Close service includes an implicit Flush service, so an application program
need not invoke a Flush service prior to invoking a Close service.

On VAX systems with recovery unit journaling, no explicit call to the Flush
service is required because invoking the Commit service causes an implicit
flush.

During asynchronous operations, you must wait for any I/O activity to complete
before issuing a Flush service. You can also issue a Flush service after receiving
notification of completion through an asynchronous system trap (AST).

On a flush, the EOF value written to the file header is only accessible to
subsequent accessors. Any process that has the file open at the time of the
flush cannot access the new EOF value without some explicit action.

Table RMS–39 lists the control block fields read as input by the Flush service.
For additional information on the fields accessed by this service, see Part II.

Table RMS–39 Flush Service RAB Input Fields

Field Name Option Description

RAB$W_ISI Internal stream identifier (required).
RAB$L_ROP Record-processing option.

RAB$V_ASY Performs Flush services asynchronously.

Table RMS–40 lists the control block fields written as output by the Flush
service.

Table RMS–40 Flush Service RAB Output Fields

Field Name Description

RAB$L_STS Completion status code (also returned in register 0).
RAB$L_STV Additional status information.

Condition Values Returned

The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_ATR RMS$_ATW
RMS$_BLN RMS$_BUG_DAP RMS$_CDA
RMS$_DME RMS$_DNR RMS$_EXT_ERR
RMS$_ISI RMS$_NET RMS$_NETFAIL
RMS$_NORMAL RMS$_OPNOTSUP RMS$_PENDING
RMS$_RAB RMS$_RSA RMS$_STR

RMS–57

OpenVMS RMS Services
$FLUSH

RMS$_SUC RMS$_SUP RMS$_SUPPORT
RMS$_SYS RMS$_WBE RMS$_WER
RMS$_WLK

RMS–58

OpenVMS RMS Services
$FREE

$FREE

The Free service unlocks all records that were previously locked for the record
stream.

RAB64 Users (Alpha Only)

On Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it
is used with the Free service on OpenVMS Alpha systems.

Format

SYS$FREE rab [,[err] [,suc]]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_
STV may contain additional status information.

Arguments

rab
OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the
Free service call. The rab argument is the address of the RAB control block.

err
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation
is unsuccessful. The err argument is the address of the entry mask of this
user-written completion routine.

suc
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation
is successful. The suc argument is the address of the entry mask of this user-
written completion routine.

RMS–59

OpenVMS RMS Services
$FREE

Description

The Free service unlocks all records previously locked for the record stream (see
also $RELEASE). If no records are locked for the record stream, RMS returns a
status code of RMS$_RNL.

Table RMS–41 lists the control block fields used as input by the Free service. For
additional information on the fields accessed by this service, see Part II.

Table RMS–41 Free Service RAB Input Fields

Field Name Option Description

RAB$W_ISI Internal stream identifier (required).
RAB$L_ROP Record-processing option.

RAB$V_ASY Asynchronous: performs Free services
asynchronously.

Table RMS–42 lists the control block fields written as output by the Free
service.

Table RMS–42 Free Service RAB Output Fields

Field Name Description

RAB$L_STS Completion status code (also returned in register 0).
RAB$L_STV Additional status information.

Condition Values Returned

The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_BLN RMS$_BUG_DAP
RMS$_EXT_ERR RMS$_ISI RMS$_NET
RMS$_NETFAIL RMS$_NORMAL RMS$_OPNOTSUP
RMS$_PENDING RMS$_RAB RMS$_RNL
RMS$_RSA RMS$_STR RMS$_SUC
RMS$_SUP RMS$_SUPPORT

RMS–60

OpenVMS RMS Services
$GET

$GET

The Get service retrieves a record from a file.

Note

When you invoke the Get service, RMS takes control of the record buffer
and may modify it. RMS returns the record size and guarantees the
contents only from where it accessed the record to the completion of the
record.

RAB64 Users (Alpha Only)

On Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it
is used with the Get service on OpenVMS Alpha systems.

Format

SYS$GET rab [,[err] [,suc]]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_
STV may contain additional status information.

Arguments

rab
OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the
Get service call. The rab argument is the address of the RAB control block.

err
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation
is unsuccessful. The err argument is the address of the entry mask of this
user-written completion routine.

RMS–61

OpenVMS RMS Services
$GET

suc
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation
is successful. The suc argument is the address of the entry mask of this user-
written completion routine.

Description

The Get service uses one of three record access modes, as specified by the record
access (RAB$B_RAC) field. The three record access modes are sequential (SEQ),
which is the default, random by key (KEY), and random by record file address
(RFA).

Relevant Record Access Modes
The sequential access mode is relevant for all file organizations as well as for all
devices. It is the only access mode allowed for nondisk devices, such as terminals,
mailboxes, and magnetic tape devices. In this mode, records are retrieved from
a given file in the same order in which they were written to that file. This is
not the case, however, for records retrieved from indexed files. Sequential Get
services for indexed files return records by key value in the specified sort order,
ascending or descending. The next record’s key of reference for sequential access
to indexed files is established by one of the following services:

• Connect

• Rewind (see $REWIND)

• Find or Get using random access by key

• Find or Get using random access by RFA

When you use random access by key with any operations related to these services,
the key of reference is established by the key of reference field (RAB$B_KRF).
When you use random access by RFA in conjunction with a Find or Get service,
however, the key of reference is always set to the primary key.

You can use random access by key to retrieve records by key value. For relative
files and sequential files having fixed-length records, the key value is the relative
record number. For indexed files, the key value depends on the data type of
the specified key of reference. The key value is used to search the index of the
specified key of reference to locate the desired record. A random access by key
also establishes the next record for subsequent sequential retrieval. This type
of access may be used in this way to establish a starting point for sequential
retrieval of records at other than the beginning of the file.

You can use random access by RFA to retrieve records directly from files residing
on disk devices. However, a record’s address can be determined only if the record
has been accessed previously. The Find, Get, and Put services each return the
RFA value as output in the RAB$W_RFA field.

Random access of records in a file is prohibited when you open the file and select
the FAB$V_SQO option; that is, if you specify sequential operations only.

RMS–62

OpenVMS RMS Services
$GET

Input from Stream Format Files
For stream format files, RMS fills the user buffer with data until a terminator
is reached. If the buffer fills before a terminator is encountered, the remainder
of the data preceding the terminator is discarded, and an RMS$_RTB error is
returned. If the terminator for stream format (FAB$B_RFM contains FAB$C_
STM) is not CRLF (carriage return followed by line feed), the terminator is stored
in the buffer following the record and included in the size of the record.

Input from Terminal Devices
There are two methods of obtaining input from a terminal using RMS:

• Using the RAB$L_ROP field to define the terminal input operation. Certain
options applicable to the RAB$L_ROP field are used for terminal device input,
such as whether a prompt is to be displayed and whether a time limit between
characters is enforced. These options may require certain information to be
placed in other fields of the RAB (see Chapter 7). The maximum buffer size is
512 bytes.

• Using an item list to define the terminal input operation in conjunction with
a terminal XAB (XABTRM). The ETO option of the RAB$L_ROP field must be
set and the user must provide an item list in the calling program, which RMS
passes to the terminal driver using the item list address and length specified
in the XABTRM (see Chapter 19). This method allows use of any terminal
input option supported by the terminal driver, in contrast to the subset of
RAB$L_ROP options available using the other method. The maximum buffer
size is 512 bytes.

RMS uses the standard terminator set when performing input operations from
terminal devices. The second longword of the I/O status block used is returned in
the RAB$L_STV field. The terminating character is returned in the lower word of
the status value field (RAB$W_STV0); however, note that with extended terminal
operations, the terminating character is in the first byte of RAB$W_STV0, not in
the entire RAB$W_STV0 word. More information about the second longword of
the I/O status block is available in the OpenVMS I/O User’s Reference Manual.
The RAB$W_STV0 field is device dependent for terminal devices.

The Ctrl/Z character terminates the Get service and acts as an end-of-file
marker. If you enter a Ctrl/Z in response to a request for data, RMS returns
the completion status code for end-of-file (RMS$_EOF). RMS takes the data you
enter before the Ctrl/Z but the next Get service returns a single end-of-file error
(RMS$_EOF) without accepting any further input from the device. RMS resumes
taking input if you request a subsequent Get service.

RMS also supports the use of escape sequences from terminal devices that
are accessed locally and have escape sequences enabled. Escape sequences for
a terminal are enabled by the SET TERMINAL command (described in the
OpenVMS DCL Dictionary). Escape sequences are returned in the record buffer.
The record size (RAB$W_RSZ) is the offset within the buffer (RAB$L_RBF) to the
beginning of the escape sequence. The high-order word of the status value field
(RAB$W_STV2) contains the length of the escape sequence, except for extended
terminal operations. In this case, the escape sequence length is returned in
the first byte of RAB$W_STV2, not the entire RAB$W_STV2 word, and the
terminator position is returned in the second byte of the RAB$W_STV2 word.
When a partial escape sequence warning (RMS$_PES) is returned, the remaining
characters in the escape sequence are returned by the next read request from the
terminal.

RMS–63

OpenVMS RMS Services
$GET

Input from Mailbox Devices
Mailboxes may be used to synchronize activity across cooperating processes.
Normally, a Get service from a mailbox device is not completed until a record
is present in the mailbox. When the Get service is completed, the status value
field (RAB$L_STV) contains the process identification (PID) of the process that
put the record into the mailbox. However, if the timeout (TMO) record option is
specified with a value of 0 in the timeout field and if no messages are present in
the mailbox, then the Get service returns an end-of-file error (RMS$_EOF). This
technique assures your process of an immediate return, whether or not messages
are present in the mailbox.

Using the RAB$L_STV Field
The RAB$L_STV field contains additional status information for a number of
situations. When the completion status is a record-too-big warning (RMS$_RTB),
RAB$L_STV contains the total record size. For record-oriented devices such as
terminals and mailboxes, the second longword of the I/O status block is returned
in the RAB$L_STV field, whenever the completion status (RAB$L_STS) is a
success code. The alternate field definitions of RAB$W_STV0 and RAB$W_STV2
are provided to reference the respective low- and high-order words of the RAB$L_
STV field. The record size field (RAB$W_RSZ) always reports the amount of data
returned, regardless of the completion status (RAB$L_STS). The presence of valid
data on error conditions may then be detected by checking the record size field.

User Record Area
The Get service always requires the presence of a user record area, as specified
by the user record buffer address and user buffer area size fields in the RAB. The
traditional fields used are RAB$L_UBF and RAB$W_USZ. However, OpenVMS
Alpha users can code �1 in RAB64$L_UBF to direct the Get service to use the
alternative fields RAB64$PQ_UBF and RAB64$Q_USZ. RAB64$PQ_UBF can
hold either a 64-bit address or a 32-bit address sign-extended to 64 bits.

For undefined format files, the user buffer area size field (RAB$W_USZ or
RAB64$Q_USZ) defines the amount of data to be returned on each Get service.

RAB Control Block Fields
Table RMS–43 lists the RAB control block fields read as input by the Get service.
For additional information on the fields accessed by this service, see Part II.

Table RMS–43 Get Service RAB Input Fields

Field Name
Option or
XAB Type Description

RAB$W_ISI Internal stream identifier
(required).

RAB$L_KBF Key buffer address: used only if
the RAB$B_RAC field contains
RAB$C_KEY, or if the RAB$B_
RAC field contains RAB$C_SEQ
and you select the RAB$V_LIM
option.

(continued on next page)

RMS–64

OpenVMS RMS Services
$GET

Table RMS–43 (Cont.) Get Service RAB Input Fields

Field Name
Option or
XAB Type Description

RAB$B_KRF Key of reference: used only
with indexed files and only if
the RAB$B_RAC field contains
RAB$C_KEY.

RAB$B_KSZ Key buffer size: used only if
the RAB$B_RAC field contains
RAB$C_KEY, or if the RAB$B_
RAC field contains RAB$C_SEQ
and you select the RAB$V_LIM
option.

RAB$L_PBF1 Prompt buffer address (for
terminal devices only).

RAB$B_PSZ1 Prompt buffer size (for terminal
devices only).

RAB$B_RAC Record access mode (RAB$C_
SEQ, RABC_KEY, RABC_
RFA).2

RAB$W_RFA Record file address: used only if
the RAB$B_RAC field contains
RAB$C_RFA.

RAB$L_RHB Record header buffer: used for
the fixed-length control area of
VFC records.

RAB$L_ROP Record-processing options.
RAB$V_ASY Asynchronous: performs Get

services asynchronously.
RAB$V_CDK Allows applications to look ahead

for indexed file records with keys
that duplicate the current key of
reference.

RAB$V_CVT1 Convert: changes characters to
uppercase for a Get service to a
terminal device.

RAB$V_ETO1 Extended terminal operation:
specifies that a XABTRM and
an item list are used to define
the terminal input operation. If
this option is specified, no other
RAB$L_ROP options applicable
to terminal devices can be used.

1This field is not supported for DECnet for OpenVMS operations.
2The default for the RAB$B_RAC field is RAB$C_SEQ.

(continued on next page)

RMS–65

OpenVMS RMS Services
$GET

Table RMS–43 (Cont.) Get Service RAB Input Fields

Field Name
Option or
XAB Type Description

RAB$V_KGE3 Search for equal key value or
next key value according to sort
order (for indexed files only).

RAB$V_KGT4 Search for next key value
according to sort order; if
neither the RAB$V_KGE
(RAB$V_EQNXT) option nor
the RAB$V_KGT (RAB$V_NXT)
option is specified, RMS looks for
a key match.

RAB$V_LIM Limit: specifies that the key
value described by the RAB$L_
KBF field and the RAB$B_KSZ
field is to be compared with
the value in the sequentially
accessed record.

RAB$V_LOC1 Locate mode: specifies that Get
service record operations use
locate mode.

RAB$V_NLK No lock: specifies that the record
accessed through the Get service
is not to be locked.

RAB$V_NXR Nonexistent record processing:
specifies that if the record
directly accessed through a Get
service does not exist, the service
is to be performed anyway.

RAB$V_PMT1 Prompt: indicates that the
contents of the prompt buffer are
to be used as a prompt on a Get
service to a terminal device.

RAB$V_PTA1 Purge type ahead: eliminates
any information that may be in
the type-ahead buffer on a Get
service to a terminal device.

RAB$V_RAH1 Read ahead: used with multiple
buffers to indicate read-ahead
operations (sequential files only).

RAB$V_REA Lock for read: allows other users
read access to the record.

1This field is not supported for DECnet for OpenVMS operations.
3This symbolic offset is logically synonymous with RAB$V_EQNXT.
4This symbolic offset is logically synonymous with RAB$V_NXT.

(continued on next page)

RMS–66

OpenVMS RMS Services
$GET

Table RMS–43 (Cont.) Get Service RAB Input Fields

Field Name
Option or
XAB Type Description

RAB$V_REV Reverses search direction for
random keyed access operations
when used with either RAB$V_
KGE or RAB$V_KGT (for
indexed files only).

RAB$V_RLK Read of locked record allowed:
specifies that a record locked for
modification can be read by other
users.

RAB$V_RNE1 Read no echo indicates that input
data entered on the keyboard is
not displayed on the terminal
device.

RAB$V_RNF1 Read no filter: indicates that
Ctrl/U, Ctrl/R, and DELETE
are not to be considered control
commands on terminal input,
but are to be passed to the
application program.

RAB$V_RRL Read regardless of lock: read the
record even if another stream
has locked the record.

RAB$V_TMO1 Timeout: indicates that the
content of the timeout period
field (RAB$B_TMO) is to be
used.

RAB$V_ULK Manual unlocking: specifies
that records cannot be unlocked
automatically.

RAB$V_WAT Wait: if record is locked, wait
until it is available.

RAB$W_ROP_21 Extended record-processing
options.

RAB$V_NQL No query locking.
RAB$V_NODLCKWT No deadlock wait.
RAB$V_
NODLCKBLK

No deadlock blocking.

1This field is not supported for DECnet for OpenVMS operations.

(continued on next page)

RMS–67

OpenVMS RMS Services
$GET

Table RMS–43 (Cont.) Get Service RAB Input Fields

Field Name
Option or
XAB Type Description

RAB$B_TMO1 Timeout period: indicates the
maximum number of seconds
that RMS allows between
characters for a Get service to
terminal and mailbox devices, or
the maximum number of seconds
RMS waits for a locked record
if you specify the RAB$V_TMO
and RAB$V_WAT options in the
RAB$L_ROP field.

RAB$L_UBF User record buffer address
(required).

RAB$W_USZ User record buffer size
(required).

RAB$L_XAB XABTRM1 Next XAB address: indicates the
address of a XABTRM control
block (the RAB$L_ROP field
RAB$V_ETO option must be
set for an extended terminal
operation).

1This field is not supported for DECnet for OpenVMS operations.

Table RMS–44 lists the RAB control block fields written as output by the Get
service.

Table RMS–44 Get Service RAB Output Fields

Field Name Description

RAB$L_BKT Bucket code: set to the relative record number for relative
files when the record access mode is sequential.

RAB$L_RBF Record buffer address.
RAB$W_RFA Record file address.
RAB$W_RSZ Record size.
RAB$L_STS Completion status code (also returned in register 0).
RAB$L_STV Status value (contains a terminator character for terminal

input or the record length if the requested record is too
large for the user buffer area).

RAB64 Control Block Fields (Alpha Only)
Table RMS–45 lists the Alpha-only RAB64 control block fields read as input
by the Get service. These fields are comparable to the RAB fields described in
Table RMS–43. For additional information on the fields accessed by this service,
see Part II.

RMS–68

OpenVMS RMS Services
$GET

Table RMS–45 Get Service RAB64 Input Fields (Alpha Only)

Field Name Description

RAB64$B_BLN This field must be initialized to RAB64$C_BLN64 in order
for RAB64 fields to be used.

RAB64$W_ISI Internal stream identifier (required). Equates to
RAB$W_ISI.

RAB64$L_KBF Key buffer address. This field must contain �1 if you want
to use RAB64$PQ_KBF. For 32-bit addressing, this field
equates to RAB$L_KBF (see Table RMS–43).

RAB64$PQ_KBF Key buffer 64-bit address (used if RAB64$L_KBF contains
�1). This field can hold either a 64-bit address or a 32-bit
address sign-extended to 64 bits.

RAB64$B_KRF Key of reference. Equates to RAB$B_KRF (see
Table RMS–43).

RAB64$B_KSZ Key buffer size. Equates to RAB$B_KSZ (see
Table RMS–43).

RAB64$L_PBF1 Prompt buffer address. Equates to RAB$L_PBF (see
Table RMS–43).

RAB64$B_PSZ1 Prompt buffer size. Equates to RAB$B_PSZ (see
Table RMS–43).

RAB64$B_RAC Record access mode. Equates to RAB$B_RAC and constants
described in Table RMS–43. The constants are identical
except for the RAB64 prefix; for example, RAB64$C_KEY
equates to RAB$C_KEY.

RAB64$W_RFA Record file address. Equates to RAB$W_RFA (see
Table RMS–43).

RAB64$L_RHB Record header buffer. This field must contain �1 if you
want to use RAB64$PQ_RHB. For 32-bit addressing, this
field equates to RAB$L_RHB (see Table RMS–43).

RAB64$PQ_RHB Record header buffer 64-bit address (used if RAB64$L_RHB
contains �1). This field can hold either a 64-bit address or
a 32-bit address sign-extended to 64 bits.

RAB64$L_ROP Record-processing options. Equates to RAB$L_ROP
and options described in Table RMS–43. Options are
identical except for the RAB64 prefix; for example, option
RAB64$V_ASY equates to RAB$V_ASY.

RAB64$W_ROP_21 Extended record-processing options. Equates to RAB$W_
ROP_2 and options described in Table RMS–43. Options
are identical except for the RAB64 prefix; for example,
option RAB64$V_NODLCKWT equates to RAB$V_
NODLCKWT.

RAB64$B_TMO1 Timeout period. Equates to RAB$B_TMO (see
Table RMS–43).

1This field is not supported for DECnet for OpenVMS operations.

(continued on next page)

RMS–69

OpenVMS RMS Services
$GET

Table RMS–45 (Cont.) Get Service RAB64 Input Fields (Alpha Only)

Field Name Description

RAB64$L_UBF2 User record buffer address. This field must contain �1 if
you want to use RAB64$PQ_UBF. For 32-bit addressing,
this field equates to RAB$L_UBF (see Table RMS–43).

RAB64$PQ_UBF2 User record buffer 64-bit address (used if RAB64$L_UBF
contains �1). This field can hold either a 64-bit address or
a 32-bit address sign-extended to 64 bits.

RAB64$W_USZ2 User record buffer size. This field is ignored in favor of
RAB64$Q_USZ if RAB64$L_UBF contains �1. Otherwise,
this field equates to RAB$W_USZ (see Table RMS–43).

RAB64$Q_USZ2 User record buffer size. This field must be used when
RAB64$L_UBF contains �1 and a value is specified in
RAB64$PQ_UBF.

RAB64$L_XAB Next XAB address. Equates to RAB$L_XAB and its
XABTRM option (see Table RMS–43).

2One of the UBF fields must contain an address and the USZ field associated with it must contain a
size.

Table RMS–46 lists the Alpha-only RAB64 control block fields written as output
by the Get service. These fields are comparable to the RAB fields described in
Table RMS–44.

Table RMS–46 Get Service RAB64 Output Fields (Alpha Only)

Field Name Description

RAB64$L_BKT Bucket code. Equates to RAB$L_BKT (see Table RMS–44).
RAB64$L_RBF Record buffer address is returned to this field if

RAB64$L_UBF does not contain �1. Equates to
RAB$L_RBF.

RAB64$PQ_RBF Record buffer address is returned to this field if
RAB64$L_UBF contains �1.

RAB64$W_RFA Record file address. Equates to RAB$W_RFA.
RAB64$W_RSZ Record buffer size is returned to this field if RAB64$L_UBF

does not contain �1. Equates to RAB$W_RSZ.
RAB64$Q_RSZ Record buffer size is returned to this field if RAB64$L_UBF

contains �1.
RAB64$L_STS Completion status code. Equates to RAB$L_STS (see

Table RMS–44).
RAB64$L_STV Status value. Equates to RAB$L_STV (see Table RMS–44).

Condition Values Returned

The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS–70

OpenVMS RMS Services
$GET

RMS$_ACT RMS$_ANI RMS$_BES
RMS$_BLN RMS$_BUG RMS$_BUG_DAP
RMS$_CDA RMS$_CHK RMS$_CONTROLC
RMS$_CONTROLY RMS$_DEADLOCK RMS$_DEL
RMS$_DME RMS$_DNR RMS$_EOF
RMS$_ENQ RMS$_EXENQLM RMS$_EXP
RMS$_EXT_ERR RMS$_FAC RMS$_FTM
RMS$_IBF RMS$_IDXSEARCH RMS$_IOP
RMS$_IRC RMS$_ISI RMS$_KBF
RMS$_KEY RMS$_KRF RMS$_KSZ
RMS$_MRN RMS$_NET RMS$_NETBTS
RMS$_NETFAIL RMS$_NORMAL RMS$_OK_ALK
RMS$_OK_DEL RMS$_OK_LIM RMS$_OK_RLK
RMS$_OK_RNF RMS$_OK_RRL RMS$_OK_WAT
RMS$_OPNOTSUP RMS$_PBF RMS$_PENDING
RMS$_PES RMS$_PLG RMS$_RAB
RMS$_RAC RMS$_RER RMS$_RFA
RMS$_RHB RMS$_RLK RMS$_RNF
RMS$_ROP RMS$_RPL RMS$_RRV
RMS$_RSA RMS$_RTB RMS$_SQO
RMS$_STR RMS$_SUC RMS$_SUP
RMS$_SUPPORT RMS$_SYS RMS$_TMO
RMS$_TNS RMS$_TRE RMS$_UBF
RMS$_WBE RMS$_WER RMS$_WLK
RMS$_XAB

RMS–71

OpenVMS RMS Services
$NXTVOL

$NXTVOL

The Next Volume service allows you to process the next tape volume in a multiple
volume set. This service applies only to files on magnetic tape volumes.

RAB64 Users (Alpha Only)

On Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it
is used with the Next Volume service on OpenVMS Alpha systems.

Format

SYS$NXTVOL rab [,[err] [,suc]]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_
STV may contain additional status information.

Arguments

rab
OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the
Next Volume service call. The rab argument is the address of the RAB control
block.

err
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation
is unsuccessful. The err argument is the address of the entry mask of this
user-written completion routine.

suc
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation
is successful. The suc argument is the address of the entry mask of this user-
written completion routine.

RMS–72

OpenVMS RMS Services
$NXTVOL

Description

You use the Next Volume service when you want to proceed to the next volume
in the set before the end of the current volume (EOV label) is reached on input,
or before the end-of-tape (EOT) mark is reached on output. RMS positions your
process to the first file section on the next volume. File sections occur when a file
is written on more than one volume, the portion of the file on each of the volumes
constituting a file section.

When you perform a Next Volume service for input files, RMS responds as follows:

• If the current volume is the last volume of the set, RMS reports end-of-file
information.

• If another file section exists, the next volume is mounted. When necessary,
the current volume is rewound and a request to mount the next volume is
issued to the operator.

• The header label (HDR1) of the file section on the newly mounted volume
is read. If this is not the volume being sought, the operator is requested to
mount the correct volume.

When you perform a Next Volume service for output files, the following sequence
occurs:

1. The file section on the current volume is closed with the appropriate end-of-
volume labels, and the volume is rewound.

2. The next volume is mounted.

3. A file with the same file name and the next higher file section number is
opened for output, and processing continues.

If your program is operating asynchronously, it must wait for any I/O activity on
this volume to complete before issuing a Next Volume service.

The Next Volume service performs a Flush service for write-accessed volumes (see
$FLUSH), thus writing the I/O buffers on the current volume before creating the
next file section. If this is an input-only file, then all records currently contained
in the I/O buffers are lost, and the next Get service returns the first record on the
next volume.

The Next Volume service is not supported for DECnet for OpenVMS operations
on files between two OpenVMS systems.

Table RMS–47 lists the control block fields read as input and written as output
by the Next Volume service. For additional information on the fields accessed by
this service, see Part II.

Table RMS–47 Next Volume Service RAB Input Fields

Field Name Option Description

RAB$W_ISI Internal stream identifier (required).
RAB$L_ROP Record-processing options.

RAB$V_ASY Asynchronous: performs Next Volume service
asynchronously.

RMS–73

OpenVMS RMS Services
$NXTVOL

Table RMS–48 lists the control block fields written as output by the Next Volume
service.

Table RMS–48 Delete Service RAB Output Fields

Field Name Description

RAB$L_STS Completion status code (also returned in register 0).
RAB$L_STV Status value.

Condition Values Returned

The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_BLN RMS$_CDA
RMS$_DME RMS$_DNR RMS$_DPE
RMS$_EXT_ERR RMS$_IOP RMS$_ISI
RMS$_NORMAL RMS$_OPNOTSUP RMS$_PENDING
RMS$_RAB RMS$_RSA RMS$_STR
RMS$_SUC RMS$_SUP RMS$_SUPPORT
RMS$_SYS

RMS–74

OpenVMS RMS Services
$OPEN

$OPEN

The Open service makes an existing file available for processing by your program.
The Open service specifies the type of record access to be used and determines
whether the file can be shared. The Open service also performs an implicit
Display service.

Format

SYS$OPEN fab [,[err] [,suc]]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset FAB$L_STS. Symbolic offset FAB$L_STV
may contain additional status information.

Arguments

fab
OpenVMS usage: fab
type: longword (unsigned)
access: modify
mechanism: by reference

FAB control block whose contents are to be used as indirect arguments for the
Open service call. The fab argument is the address of the FAB control block.

err
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation
is unsuccessful. The err argument is the address of the entry mask of this
user-written completion routine.

suc
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation
is successful. The suc argument is the address of the entry mask of this user-
written completion routine.

RMS–75

OpenVMS RMS Services
$OPEN

Description

You must open a file to perform any record operations and most file operations. If
any XABs are chained to the FAB, RMS places the attribute values in the fields
of the appropriate XAB. If you specify a NAM or NAML block in the FAB, the
contents of the device, directory, and file identification fields can be used with the
open-by-NAM-block option to open the file. The NAM or NAML block fields are
filled in with auxiliary file specification information.

Table RMS–49 lists the FAB and XAB control block fields read as input by the
Open service. For additional information on the fields accessed by this service,
see Part II.

Table RMS–49 Open Service FAB and XAB Input Fields

Field Name
Option or
XAB Type Description

FAB$B_ACMODES File access modes.
FAB$V_CHAN_
MODE1

Assigns the channel access mode
by setting either the FAB$V_
UFO or the FAB$V_NFS bit
in the FAB$L_FOP field (see
Section 4.17). If neither bit
is set, this field can be used
to override the access mode
protection for a specified I/O
operation. See Section 4.8.

FAB$V_LNM_
MODE1

Specifies the logical name
translation access mode.

FAB$W_DEQ Default file extension quantity: if
a nonzero value is present in this
field, it applies only to this open
of the file.

FAB$L_DNA Default file specification string
address.

FAB$B_DNS Default file specification string
size.

FAB$B_FAC File access field.
FAB$V_BIO Block I/O access.
FAB$V_BRO Block or record I/O.
FAB$V_DEL Delete access.
FAB$V_GET2 Read access.
FAB$V_PUT Write access.
FAB$V_TRN Truncate access.
FAB$V_UPD Update access.

1This field is not supported for DECnet for OpenVMS operations.
2This is the default value supplied by RMS.

(continued on next page)

RMS–76

OpenVMS RMS Services
$OPEN

Table RMS–49 (Cont.) Open Service FAB and XAB Input Fields

Field Name
Option or
XAB Type Description

FAB$L_FNA3 File specification string address.
FAB$B_FNS3 File specification string size.
FAB$L_FOP File-processing options.

FAB$V_ASY Asynchronous; indicates that
the specified task is to be done
asynchronously.

FAB$V_DFW1 Deferred write: indicates that
writing back to the file from
the modified buffer is deferred
(applies to relative and indexed
files only).

FAB$V_DLT Delete: indicates the file is to be
deleted when it is closed.

FAB$V_NAM1 Name block inputs: indicates
that the NAMW_FID, NAMW_
DID, and NAM$T_DVI fields
in the specified NAM or NAML
block are to be used to describe
the file.

FAB$V_NFS1 Non-file-structured: indicates
that the accessed volume is to be
processed in a non-file-structured
manner.

FAB$V_OFP Output file parse: specifies that
the related file resultant file
specification string, if used, is to
provide file name and file type
defaults only.

FAB$V_RCK Read-check: indicates that
transfers from disk are to be
checked by a followup, read-
compare operation.

FAB$V_RWC Rewind on close (applies to
magnetic tapes only).

FAB$V_RWO Rewind on open (applies to
magnetic tapes only).

1This field is not supported for DECnet for OpenVMS operations.
3These fields must be supplied by the user.

(continued on next page)

RMS–77

OpenVMS RMS Services
$OPEN

Table RMS–49 (Cont.) Open Service FAB and XAB Input Fields

Field Name
Option or
XAB Type Description

FAB$V_SCF1 Submit command file: indicates
that the file is to be submitted
as a batch-command file to the
process default batch queue
(SYS$BATCH) when the file is
closed (applies to sequential files
only).

FAB$V_SPL1 Spool: indicates that the file is to
be spooled to the process default
print queue (SYS$PRINT) when
the file is closed (applies to
sequential files only).

FAB$V_SQO Sequential only: indicates that
the file can be processed in a
sequential manner only.

FAB$V_TEF Truncate at end of file: indicates
that unused space allocated to
a file is to be deallocated when
that file is closed (applies to
sequential files only).

FAB$V_UFO1 User file open: indicates the file
is to be opened only (no further
processing of that file is allowed).

FAB$V_WCK Write-check: indicates that
transfers to disk are to be
followed by a read-compare
operation.

FAB$B_FSZ Fixed control area size: unit
record devices only.

FAB$W_IFI Internal file identifier (must be
0).

FAB$L_NAM NAM or NAML block address.
FAB$B_RAT Record attributes; only for

process permanent files with
print file format.

FAB$B_RFM Record format; unit record
devices only.

FAB$B_RTV1 Retrieval window size.
FAB$B_SHR File-sharing field.

FAB$V_SHRDEL Shared delete access.
FAB$V_SHRGET Shared read access.

1This field is not supported for DECnet for OpenVMS operations.

(continued on next page)

RMS–78

OpenVMS RMS Services
$OPEN

Table RMS–49 (Cont.) Open Service FAB and XAB Input Fields

Field Name
Option or
XAB Type Description

FAB$V_MSE1 Multistream access; also used
with the FAB$V_MSE and
FAB$V_GET bits to specify a
read-only global buffer cache
when global buffering is enabled.

FAB$V_NIL No shared access.
FAB$V_SHRPUT Shared write access.
FAB$V_SHRUPD Shared update access.
FAB$V_UPI Shared write access for block I/O

(applies to sequential files only).
FAB$V_NQL No query record locking.

FAB$L_XAB4 Extended attribute block
address.

XABITM Item list XAB; see Chapter 12.

1This field is not supported for DECnet for OpenVMS operations.
4The appropriate XAB must be specified as input if you desire information about that particular XAB
on output from the Open service.

Table RMS–50 lists the FAB amd XAB control block fields written as output by
the Open service.

Table RMS–50 Open Service FAB and XAB Output Fields

Field Name
Option or
XAB Type Description

FAB$L_ALQ Allocation quantity: contains the highest
numbered block allocated to the file.

FAB$B_BKS Bucket size (does not apply to sequential
files).

FAB$W_BLS Device block size (applies only to sequential
files).

FAB$W_DEQ Default file extension quantity.
FAB$L_DEV Device characteristics.
FAB$B_FAC File access.
FAB$L_FOP File-processing options.

FAB$V_CBT Contiguous best try: indicates that the file
is allocated contiguously on a ‘‘best effort’’
basis.

FAB$V_CTG Contiguous: indicates that space for the file
is allocated contiguously.

(continued on next page)

RMS–79

OpenVMS RMS Services
$OPEN

Table RMS–50 (Cont.) Open Service FAB and XAB Output Fields

Field Name
Option or
XAB Type Description

FAB$V_RCK Read-check: transfers are followed up by a
read-compare operation.

FAB$V_WCK Write-check: transfers are followed up by a
read-compare operation.

FAB$B_FSZ Fixed-length control area size (applies only
to VFC records).

FAB$W_GBC Global buffer count.
FAB$W_IFI Internal file identifier.
FAB$L_MRN Maximum record number (for relative files

only).
FAB$W_MRS Maximum record size.
FAB$B_ORG File organization.
FAB$B_RAT Record attributes; used as output field

except for process-permanent files with
print file format.

FAB$B_RFM Record format.
FAB$L_SDC Spooling device characteristics.
FAB$B_SHR File sharing.
FAB$L_STS Completion status code (also returned in

register 0).
FAB$L_STV Status value (contains the I/O channel

number if the operation is successful).
FAB$L_XAB Next XAB address.

XABALL Allocation XAB; see Chapter 9.
XABDAT Date and time XAB; see Chapter 10.
XABFHC File header characteristics XAB; see

Chapter 11.
XABITM Item list XAB; see Chapter 12.
XABKEY Key definition XAB; see Chapter 14.
XABPRO Protection XAB; see Chapter 15.
XABRDT Revision date and time XAB; see

Chapter 16.
XABSUM Summary XAB; see Chapter 18.

Using the Name Block for Opening Files
Table RMS–51 and Table RMS–52 list the NAM block fields (further described in
Chapter 5) used as input and output for the Open service (provided that the NAM
block address field is specified in the FAB).

RMS–80

OpenVMS RMS Services
$OPEN

Table RMS–51 Open Service NAM Input Fields

Field Name Option Description

NAM$W_DID1 Directory identification (input only
if the FAB$L_FOP field FAB$V_
NAM option is set).

NAM$T_DVI1 Device identification (input only
if the FAB$L_FOP field FAB$V_
NAM option is set).

NAM$L_ESA Expanded string area address.
NAM$B_ESS Expanded string area size.
NAM$W_FID1 File identification (input only if

the FAB$L_FOP field FAB$V_
NAM option is set).

NAM$B_NOP NAM block options.
NAM$V_PWD Password: indicates that a

password contained in a DECnet
for OpenVMS access control string,
if present in a file specification,
is to be left unaltered in the
expanded and resultant strings
(instead of being replaced by the
word ‘‘password’’).

NAM$V_NOCONCEAL Do not conceal device name:
indicates that when a concealed
device logical name is present, the
concealed device logical name is to
be replaced by the actual physical
device name in the resultant
string.

NAM$V_NO_SHORT_
UPCASE1

Do not uppercase the directory and
file specification in the NAM$L_
ESA buffer.

NAM$L_RLF Related file NAM or NAML block
address.

NAM$B_RSL Resultant string length.
NAM$L_RSA Resultant string address.
NAM$L_FNB File name status bits.
NAM$B_RSS Resultant string area size.

1This field or option is not supported for DECnet for OpenVMS operations.

Table RMS–52 Open Service NAM Output Fields

Field Name Description

NAM$B_DEV Size of file specification device string.
(continued on next page)

RMS–81

OpenVMS RMS Services
$OPEN

Table RMS–52 (Cont.) Open Service NAM Output Fields

Field Name Description

NAM$L_DEV Address of file specification device string.
NAM$W_DID1 Directory identification.
NAM$B_DIR Size of file specification directory string.
NAM$L_DIR Address of file specification directory string.
NAM$T_DVI1 Device identification.
NAM$B_ESL Expanded string length. If the NAM$L_ESA and NAM$B_

ESS fields are nonzero, and if the FAB$L_FOP field FAB$V_
NAM option is clear or the NAM$W_DID and NAM$W_FID
fields are 0 on input, the expanded file specification string is
copied to the buffer specified by the NAM$L_ESA field.

NAM$W_FID1 File identification.
NAM$W_FIRST_
WILD_DIR1

The topmost directory level to contain a wildcard.

NAM$L_FNB File name status bits.
NAM$W_LONG_
DIR_LEVELS1

Total number of directories.

NAM$B_NAME Size of file specification name string.
NAM$L_NAME Address of file specification name string.
NAM$B_NODE Size of file specification node string.
NAM$L_NODE Address of file specification node string.
NAM$B_RSL Resultant string length. If the NAM$L_RSA field and the

NAM$B_RSS field are nonzero, and if the FAB$V_NAM bit is
clear or the NAM$W_FID field is zero when you invoke the
Open service, the resultant file specification is copied to the
buffer specified by the NAM$L_RSA field.

NAM$B_TYPE Size of file specification type string.
NAM$L_TYPE Address of file specification type string.
NAM$B_VER Size of file specification version string.
NAM$L_VER Address of file specification version string.

1This field is not supported for DECnet for OpenVMS operations.

Table RMS–53 lists the NAML block fields used as input for the Open service.

Table RMS–53 Open Service NAML Input Fields (Alpha Only)

Field Name Option Description

NAML$W_DID1 Directory identification (input
only if the FAB$L_FOP field
FAB$V_NAM option is set).

1This field or option is not supported for DECnet for OpenVMS operations.

(continued on next page)

RMS–82

OpenVMS RMS Services
$OPEN

Table RMS–53 (Cont.) Open Service NAML Input Fields (Alpha Only)

Field Name Option Description

NAML$T_DVI1 Device identification (input
only if the FAB$L_FOP field
FAB$V_NAM option is set).

NAML$L_ESA Expanded string area address.
NAML$B_ESS Expanded string area size.
NAML$W_FID1 File identification (input

only if the FAB$L_FOP field
FAB$V_NAM option is set).

NAML$L_FILESYS_NAME1 File system name buffer
address.

NAML$L_FILESYS_NAME_
ALLOC1

File system name buffer size.

NAML$L_FNB Related file NAM or NAML
block file name status bits.

NAML$L_INPUT_FLAGS Additional flags specified as
input.

NAML$L_LONG_DEFNAME Long default file specification
string address (used if
FAB$L_DNA contains -1).

NAML$L_LONG_
DEFNAME_SIZE

Long default file specification
string size.

NAML$L_LONG_EXPAND Long expanded string area
address.

NAML$L_LONG_EXPAND_
ALLOC

Long expanded string area
size.

NAML$L_LONG_
FILENAME

Long file specification string
address (used if FAB$L_FNA
contains -1).

NAML$L_LONG_
FILENAME_SIZE

Long file specification string
size.

NAML$L_LONG_RESULT Long resultant name string
address.

NAML$L_LONG_RESULT_
ALLOC

Long resultant string size.

NAML$B_NOP NAM or NAML block options.

1This field or option is not supported for DECnet for OpenVMS operations.

(continued on next page)

RMS–83

OpenVMS RMS Services
$OPEN

Table RMS–53 (Cont.) Open Service NAML Input Fields (Alpha Only)

Field Name Option Description

NAM$V_PWD Password: indicates that
a password contained in a
DECnet for OpenVMS access
control string, if present in a
file specification, is to be left
unaltered in the expanded
and resultant strings (instead
of being replaced by the word
‘‘password’’).

NAM$V_
NOCONCEAL

Do not conceal device name:
indicates that when a
concealed device logical name
is present, the concealed
device logical name is to
be replaced by the actual
physical device name in the
resultant string.

NAM$V_
NO_SHORT_
UPCASE1

Do not uppercase the
directory and file specification
in the NAML$L_ESA buffer.

NAML$L_RLF Related file NAM or NAML
block address.

NAML$L_RSA Resultant string address.
NAML$B_RSL Resultant string length.
NAML$B_RSS Resultant string area size.

1This field or option is not supported for DECnet for OpenVMS operations.

Table RMS–54 lists the NAML block fields used as output for the Open service.

Table RMS–54 Open Service NAML Output Fields

Field Name Description

NAML$B_DEV Size of file specification device string.
NAML$L_DEV Address of file specification device string.
NAML$W_DID1 Directory identification.
NAML$B_DIR Size of file specification directory string.
NAML$L_DIR Address of file specification directory string.
NAML$T_DVI1 Device identification.

1This field is not supported for DECnet for OpenVMS operations.

(continued on next page)

RMS–84

OpenVMS RMS Services
$OPEN

Table RMS–54 (Cont.) Open Service NAML Output Fields

Field Name Description

NAML$B_ESL Expanded string length. If the NAM$L_ESA
and NAML$B_ESS fields are nonzero, and if the
FAB$L_FOP field FAB$V_NAM option is clear or
the NAML$W_DID and NAML$W_FID fields are
0 on input, the expanded file specification string
is copied to the buffer specified by the NAML$L_
ESA field.

NAML$W_FID1 File identification.
NAML$L_FILESYS_NAME_
SIZE1

File system name length.

NAML$W_FIRST_WILD_
DIR1

First wild directory.

NAML$L_FNB File name status bits.
NAML$L_LONG_DEV Long device string address.
NAML$L_LONG_DEV_SIZE Long device string length.
NAML$L_LONG_DIR Long directory string address.
NAML$L_LONG_DIR_SIZE Long directory string length.
NAML$W_LONG_DIR_
LEVELS1

Total number of directories.

NAML$L_LONG_EXPAND_
SIZE

Long expanded string length.

NAML$L_LONG_NAME Long file name string address.
NAML$L_LONG_NAME_
SIZE

Long file name string length.

NAML$L_LONG_NODE Long node name string address.
NAML$L_LONG_NODE_
SIZE

Long node name string length.

NAML$L_LONG_RESULT_
SIZE1

Long resultant string length.

NAML$L_LONG_TYPE Long file type string length.
NAML$L_LONG_TYPE_
SIZE

Long file type string address.

NAML$L_LONG_VER Long file version string address.
NAML$L_LONG_VER_SIZE Long file version string length.
NAML$B_NAME Size of file specification name string.
NAML$L_NAME Address of file specification name string.
NAML$B_NODE Size of file specification node string.
NAML$L_NODE Address of file specification node string.
NAML$L_OUTPUT_FLAGS Additional status bits passed as output.

1This field is not supported for DECnet for OpenVMS operations.

(continued on next page)

RMS–85

OpenVMS RMS Services
$OPEN

Table RMS–54 (Cont.) Open Service NAML Output Fields

Field Name Description

NAML$B_RSL Resultant string length. If the NAML$L_RSA
field and the NAML$B_RSS field are nonzero,
and if the FAB$V_NAM bit is clear or the
NAML$W_FID field is zero when you invoke
the Open service, the resultant file specification
is copied to the buffer specified by the NAML$L_
RSA field.

NAML$B_TYPE Size of file specification type string.
NAML$L_TYPE Address of file specification type string.
NAML$B_VER Size of file specification version string.
NAML$L_VER Address of file specification version string.

Condition Values Returned

The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACC RMS$_ACS RMS$_ACT
RMS$_AID RMS$_ATR RMS$_BLN
RMS$_BUG_DAP RMS$_BUG_DDI RMS$_CHN
RMS$_COD RMS$_CRMP RMS$_DEV
RMS$_DIR RMS$_DME RMS$_DNA
RMS$_DNF RMS$_DNR RMS$_DVI
RMS$_ENQ RMS$_ENV RMS$_ESA
RMS$_ESS RMS$_EXP RMS$_EXTNOTFOU
RMS$_FAB RMS$_FLK RMS$_FNA
RMS$_FNF RMS$_FNM RMS$_FOP
RMS$_IFA RMS$_IFI RMS$_IMX
RMS$_IRC RMS$_KNM RMS$_KSI
RMS$_LNE RMS$_NAM RMS$_NAML
RMS$_NAMLESS RMS$_NAMLFSINV RMS$_NAMLFSSIZ
RMS$_NAMLRSS RMS$_NET RMS$_NETFAIL
RMS$_NOD RMS$_NORMAL RMS$_OK_NOP
RMS$_ORG RMS$_PLG RMS$_PLV
RMS$_PRV RMS$_QUO RMS$_RAT
RMS$_REF RMS$_RLF RMS$_RPL

RMS–86

OpenVMS RMS Services
$OPEN

RMS$_RSS RMS$_RST RMS$_RUNDOWN
RMS$_SHR RMS$_STR RMS$_SUC
RMS$_SUP RMS$_SUPERSEDE RMS$_SUPPORT
RMS$_SYN RMS$_SYS RMS$_TYP
RMS$_UPI RMS$_VER RMS$_WLK
RMS$_XAB

RMS–87

OpenVMS RMS Services
$PARSE

$PARSE

The Parse service analyzes the file specification string and fills in various NAM
or NAML block fields.

Format

SYS$PARSE fab [,[err] [,suc]]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset FAB$L_STS. Symbolic offset FAB$L_STV
may contain additional status information.

Arguments

fab
OpenVMS usage: fab
type: longword (unsigned)
access: modify
mechanism: by reference

FAB control block whose contents are to be used as indirect arguments for the
Parse service call. The fab argument is the address of the FAB control block.

err
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation
is unsuccessful. The err argument is the address of the entry mask of this
user-written completion routine.

suc
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation
is successful. The suc argument is the address of the entry mask of this user-
written completion routine.

RMS–88

OpenVMS RMS Services
$PARSE

Description

The functions of the Parse service are performed automatically as part of the
Open, Create, and Erase services. One special purpose of the Parse service is to
prepare the FAB and NAM or NAML blocks for wildcard character processing to
be used in the Search service. If wildcard characters, search list logical names,
or a node name are present in the file specification, RMS allocates internal
data structures (including a device channel) to store the context for subsequent
searches. This space is released when the Search service encounters a no-more-
files condition (in which case an RMS$_NMF error status is returned) or when
another Parse service is performed using the same FAB and NAM or NAML
blocks. To release this space, use a Parse service that specifies the NAM$B_NOP
field NAM$V_SYNCHK option and sets the FAB$B_DNS and NAM$L_RLF fields
to zero. If you are using the NAML$L_LONG_DEFNAME and NAM$L_LONG_
DEFNAME_SIZE fields, set the NAML$L_LONG_DEFNAME_SIZE field to zero
in place of FAB$B_DNS.

Note that the file must be closed before you invoke the Parse service (FAB$W_IFI
must be 0).

By default, the Parse service assigns a channel to the device and does a lookup
of the directory in addition to analyzing the file specification and filling in the
NAM or NAML block fields. To request a Parse service without I/O, specify
the NAM$B_NOP field NAM$V_SYNCHK option. The result of a Parse service
without I/O cannot be used as input to subsequent Search services.

The following tables list the fields in both the FAB and NAM or NAML blocks
that the Parse service uses as input and output. In addition, RMS fills in the
string component descriptors from the expanded string (see Chapter 5).

The expanded file specification string is moved to the buffer described by the
expanded string area address (NAM$L_ESA) and size (NAM$B_ESS) fields of
the NAM or NAML block (only if both fields are nonzero). The NAM$L_ESA and
NAM$B_ESS fields must be specified (nonzero) for wildcard character processing.

Table RMS–55 lists the FAB control block fields read as input by the Parse
service. For additional information on the fields accessed by this service, see
Part II.

Table RMS–55 Parse Service FAB Input Fields

Field Name Option Description

FAB$B_
ACMODES

File access modes.

FAB$V_CHAN_
MODE1

This field can be used to override the
access mode protection for a specified
I/O operation (see Section 4.8).

FAB$L_DNA Default file specification string.
FAB$B_DNS Default file specification string size.
FAB$L_FNA File specification string address.
FAB$B_FNS File specification string size.

1This field or option is not supported for DECnet for OpenVMS operations

(continued on next page)

RMS–89

OpenVMS RMS Services
$PARSE

Table RMS–55 (Cont.) Parse Service FAB Input Fields

Field Name Option Description

FAB$L_FOP File-processing option, FAB$V_OFP.
Output file parse: indicates that RMS
uses only the file name and file type
fields of a related file resultant string
whose address is contained in the
NAM$L_RSA field.

FAB$W_IFI Internal file identifier (must be zero).
FAB$L_NAM NAM or NAML block address.

Table RMS–56 lists the FAB control block fields written as output by the Parse
service.

Table RMS–56 Parse Service FAB Output Fields

Field Name Description

FAB$L_DEV Device characteristics (unless you select the NAM$V_
SYNCHK option).

FAB$L_SDC Secondary device characteristics (unless you select the
NAM$V_SYNCHK option).

FAB$L_STS Completion status code (also returned in register 0).
FAB$L_STV Status value.

Table RMS–57 lists the NAM control block fields read as input by the Parse
service. For additional information on the fields accessed by this service, see
Part II.

Table RMS–57 Parse Service NAM Input Fields

Field Name Option Description

NAM$L_ESA Expanded string area address.
NAM$B_ESS Expanded string area size.
NAM$L_FNB Related file NAM block file name

status bits.
NAM$B_NOP NAM block options.

NAM$V_
NOCONCEAL

Do not conceal device name: indicates
that when a concealed device logical
name is present, the concealed device
logical name is to be replaced by the
actual physical device name in the
expanded string.

(continued on next page)

RMS–90

OpenVMS RMS Services
$PARSE

Table RMS–57 (Cont.) Parse Service NAM Input Fields

Field Name Option Description

NAM$V_PWD Password: indicates that a password
contained in a DECnet for OpenVMS
access control string, if present in
a file specification, is to be left
unaltered in the expanded and
resultant strings (instead of being
replaced by the word ‘‘password’’).

NAM$V_NO_SHORT_
UPCASE 1

Do not uppercase the directory and
file specification in the NAM$L_ESA
buffer.

NAM$V_SYNCHK Performs Parse service with no I/O.
NAM$L_RLF Related file NAM or NAML block

address.
NAM$L_RSA Resultant string area address.
NAM$B_RSL Resultant string length.

1This field or option is not supported for DECnet for OpenVMS operations

Table RMS–58 lists the NAM control block fields written as output by the Parse
service.

Table RMS–58 Parse Service NAM Output Fields

Field Name Description

NAM$L_DEV Address of file specification device string.
NAM$B_DEV Size of file specification device string.
NAM$W_DID1 Directory identification (unless you select the

NAM$V_SYNCHK option).
NAM$L_DIR Address of file specification directory string.
NAM$B_DIR Size of file specification directory string.
NAM$T_DVI1 Device identification (unless you select the

NAM$V_SYNCHK option).
NAM$B_ESL Expanded string length.
NAM$W_FID1 File identification (zeroed).
NAM$W_FIRST_WILD_DIR1 The topmost directory level to contain a

wildcard.
NAM$L_FNB File name status bits: contains information

about the parse results.
NAM$L_LONG_DIR_LEVELS1 Total number of directories.
NAM$L_NAME Address of file specification name string.
NAM$B_NAME Size of file specification name string.

1This field or option is not supported for DECnet for OpenVMS operations.

(continued on next page)

RMS–91

OpenVMS RMS Services
$PARSE

Table RMS–58 (Cont.) Parse Service NAM Output Fields

Field Name Description

NAM$L_NODE Address of file specification node string.
NAM$B_NODE Size of file specification node string.
NAM$B_RSL Resultant string length (zeroed).
NAM$L_TYPE Address of file specification type string.
NAM$B_TYPE Size of file specification type string.
NAM$L_VER Address of file specification version string.
NAM$B_VER Size of file specification version string.
NAM$L_WCC Wildcard context.

Table RMS–59 lists the NAML block fields used as input for the Parse service.

Table RMS–59 Parse Service NAML Input Fields (Alpha Only)

Field Name Option Description

NAML$L_ESA Expanded string area
address.

NAML$B_ESS Expanded string area size.
NAML$L_FILESYS_NAME1 File system name buffer

address.
NAML$L_FILESYS_NAME_
ALLOC1

File system name buffer
size.

NAML$L_FNB Related file NAM or NAML
block file name status bits.

NAML$L_INPUT_FLAGS Additional flags specified as
input.

NAML$L_LONG_DEFNAME Long default file
specification string address
(used if FAB$L_DNA
contains -1).

NAML$L_LONG_DEFNAME_
SIZE

Long default file
specification string size.

NAML$L_LONG_EXPAND Long expanded string area
address.

NAML$L_LONG_EXPAND_
ALLOC1

Long expanded string area
size.

NAML$L_LONG_FILENAME Long file specification string
address (used if FAB$L_FNA
contains -1).

NAML$L_LONG_FILENAME_
SIZE1

Long file specification string
size.

1This field or option is not supported for DECnet for OpenVMS operations

(continued on next page)

RMS–92

OpenVMS RMS Services
$PARSE

Table RMS–59 (Cont.) Parse Service NAML Input Fields (Alpha Only)

Field Name Option Description

NAML$L_LONG_RESULT Long resultant string area
address.

NAML$L_LONG_RESULT_
ALLOC

Long resultant string size.

NAML$B_NOP NAM or NAML block
options.

NAML$V_
NOCONCEAL

Do not conceal device
name: indicates that
when a concealed device
logical name is present,
the concealed device logical
name is to be replaced by the
actual physical device name
in the expanded string.

NAML$V_
PWD

Password: indicates that
a password contained in a
DECnet for OpenVMS access
control string, if present in a
file specification, is to be left
unaltered in the expanded
and resultant strings
(instead of being replaced
by the word ‘‘password’’).

NAML$V_
NO_SHORT_
UPCASE1

Do not uppercase
the directory and file
specification in the
NAML$L_ESA buffer.

NAML$V_
SYNCHK

Performs Parse service with
no I/O.

NAML$L_RLF Related file NAM or NAML
block address.

NAML$L_RSA Resultant string area
address.

NAML$B_RSL Resultant string length.

1This field or option is not supported for DECnet for OpenVMS operations

Table RMS–60 lists the NAML block fields used as output for the Parse service.

Table RMS–60 Parse Service NAML Output Fields (Alpha Only)

Field Name Description

NAML$L_DEV Address of file specification device string.
NAML$B_DEV Size of file specification device string.

(continued on next page)

RMS–93

OpenVMS RMS Services
$PARSE

Table RMS–60 (Cont.) Parse Service NAML Output Fields (Alpha Only)

Field Name Description

NAML$W_DID1 Directory identification (unless you select
the NAML$V_SYNCHK option).

NAML$L_DIR Address of file specification directory
string.

NAML$B_DIR Size of file specification directory string.
NAML$T_DVI1 Device identification (unless you select the

NAML$V_SYNCHK option).
NAML$B_ESL Expanded string length.
NAML$W_FID1 File identification (zeroed).
NAML$L_FILESYS_NAME_SIZE1 File system name length.
NAML$W_FIRST_WILD_DIR1 First wild directory.
NAML$L_FNB File name status bits: contains information

about the parse results.
NAML$L_LONG_DEV Long device string address.
NAML$L_LONG_DEV_SIZE Long device string length.
NAML$L_LONG_DIR Long directory string address.
NAML$W_LONG_DIR_LEVELS Total number of directories.
NAML$L_LONG_DIR_SIZE Long directory string length.
NAML$L_LONG_EXPAND_SIZE Long expanded string length.
NAML$L_LONG_NAME Long file name string address.
NAML$L_LONG_NAME_SIZE Long file name string length.
NAML$L_LONG_NODE Long node name string address.
NAML$L_LONG_NODE_SIZE Long node name string length.
NAML$L_LONG_RESULT_SIZE Long resultant string length.
NAML$L_LONG_TYPE Long file type string length.
NAML$L_LONG_TYPE_SIZE Long file type string address.
NAML$L_LONG_VER Long file version string address.
NAML$L_LONG_VER_SIZE Long file version string length.
NAML$L_NAME Address of file specification name string.
NAML$B_NAME Size of file specification name string.
NAML$L_NODE Address of file specification node string.
NAML$B_NODE Size of file specification node string.
NAML$L_OUTPUT_FLAGS Additional status bits passed as output.
NAML$B_RSL Resultant string length (zeroed).
NAML$L_TYPE Address of file specification type string.
NAML$B_TYPE Size of file specification type string.
NAML$L_VER Address of file specification version string.
NAML$B_VER Size of file specification version string.

1This field or option is not supported for DECnet for OpenVMS operations.

(continued on next page)

RMS–94

OpenVMS RMS Services
$PARSE

Table RMS–60 (Cont.) Parse Service NAML Output Fields (Alpha Only)

Field Name Description

NAML$L_WCC Wildcard context.

Condition Values Returned

The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACS RMS$_BLN RMS$_BUG_DDI
RMS$_CDA RMS$_CHN RMS$_DEV
RMS$_DIR RMS$_DME RMS$_DNA
RMS$_DNF RMS$_DNR RMS$_ESA
RMS$_ESS RMS$_FAB RMS$_FNA
RMS$_FNM RMS$_IFI RMS$_LNE
RMS$_NAM RMS$_NAML RMS$_NAMLESS
RMS$_NAMLFSINV RMS$_NAMLFSSIZ RMS$_NOD
RMS$_NORMAL RMS$_QUO RMS$_RLF
RMS$_RUNDOWN RMS$_STR RMS$_SUC
RMS$_SYN RMS$_TYP RMS$_VER
RMS$_WCC

RMS–95

OpenVMS RMS Services
$PUT

$PUT

The Put service inserts a record into a file.

RAB64 Users

RAB64 can replace the RAB or RAB prefix wherever it is used with the
Put service on OpenVMS Alpha systems.

Format

SYS$PUT rab [,[err] [,suc]]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_
STV may contain additional status information.

Arguments

rab
OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the
Put service call. The rab argument is the address of the RAB control block.

err
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation
is unsuccessful. The err argument is the address of the entry mask of this
user-written completion routine.

suc
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation
is successful. The suc argument is the address of the entry mask of this user-
written completion routine.

RMS–96

OpenVMS RMS Services
$PUT

Description

The Put service usually adds records to the logical end of a sequential file. For
relative files, it may add records to the logical end of the file or it may insert new
records in cells formerly occupied by deleted records. RMS directs the Put service
where to insert the record using the contents of the record’s primary key field.

Inserting Records into Sequential Files
When using sequential record access mode to process sequential files, you usually
insert records at the end of the file only. The records to be inserted cannot be
larger than the maximum length that was specified when the file was created.

You can use random access by relative record number mode and the update-
if record-processing option (RAB$V_UIF) to insert fixed-length records into a
sequential file residing on a disk device.

RMS also provides for establishing the logical end of the file when two or more
processes are doing shared write operations. For example, assume that processes
A and B are sharing a sequential file and each process is putting data into the
file. Process A puts a record at the end of the file and intends to put another
record at the new end-of-file location. However, before process A can put the
next record in the file, process B gains access to the file and puts a record at the
end of the file. In order to ensure that the next record from process A does not
overwrite the record just inserted by process B, RMS updates process A’s write
pointer to the new end-of-file position; that is, the location immediately following
the location of process B’s record.

The truncate-on-put option (RAB$V_TPT) can be used with sequential files. This
option lets you add records at locations other than the logical end of the file.
When you add a record using the truncate-on-put option, the file is automatically
truncated, effectively deleting all data between the new record (logical end of
the file) and the physical end of the file. If you try to use this option without
having truncate access, RMS rejects the operation and issues a file access error
(RMS$_FAC).

For stream format files, RMS writes the contents of the user’s buffer into the
file beginning at the current entry position. If the last byte in the buffer is not
a terminator, RMS adds the appropriate terminator. For stream format, the
terminator is CRLF (carriage return character followed immediately by a line
feed character).

Mailboxes may be used to synchronize activity between processes. Usually, a Put
service to a mailbox does not conclude until another accessor reads the record. If
you select the timeout option (RAB$V_TMO) and specify a timeout period of 0,
the Put service does not wait for another accessor to read the record.

At the conclusion of the Put service, the RAB$L_STV field contains the process
identification (PID) of the process that read the record.

Inserting Records into Relative Files
When processing relative files, you can use either sequential or random access by
key mode. Records cannot be larger than the size specified at file creation time,
and the record’s relative record number must not exceed the maximum record
number established for the file. Usually, if the target record cell for a Put service
contains a record, a record-already-exists error (RMS$_REX) is returned as the
completion status (RAB$L_STS). If you specify the update-if (RAB$V_UIF) record
option, RMS overwrites the existing record instead of returning an error message.

RMS–97

OpenVMS RMS Services
$PUT

If you try to use the update-if option but do not have update access, RMS rejects
the operation and issues a file access error (RMS$_FAC).

Inserting Records into Indexed Files
In an indexed file, you can use sequential access or random access by key mode.
When sequential access is used to insert records, the primary key value of the
record to be inserted must be consistent with the specified sort order of the
file. That is, the key must be greater than or equal to the primary value of the
previous record if ascending sort order is specified. If descending sort order is
specified, the key must be less than or equal to the primary key value of the
previous record.

The records cannot be larger than the size established when the file was created
if a maximum length was specified. Each record written must contain a primary
key, but the records do not have to contain alternate keys. If alternate keys are
partially or completely missing because of the record length limitation, RMS does
not make an entry for the record in the associated alternate index. Put services
to an indexed file do not require a separate key value or key of reference. By
examining the contents of the primary key in the record, RMS determines where
to insert the record.

When inserting a record into an indexed file, RMS compares the key values in the
record with the key values of records previously inserted into the file to determine
whether the new record’s key value duplicates any existing key values. If the
record duplicates a key value in an index where duplication is not allowed, RMS
rejects the operation with an RMS$_DUP error code. Where duplicate keys are
allowed, RMS inserts the record.

Records with duplicate keys are inserted in chronological order; that is, RMS
inserts each record having duplicate keys at the end of a ‘‘chain’’ of identically
keyed records so that newer records are stored closer to the end of the file
regardless of sort order.

If you specify the update-if (RAB$V_UIF) option when duplicates are not allowed
on the primary key, RMS overwrites the existing record with the same primary
key value, rather than returning a duplicate record error (RMS$_DUP). This
gives the appearance of an Update service being performed on the existing record.
Alternate key values are modified to reflect the newly inserted record.

To use the RAB$V_UIF option, you must have update access to the file. If update
access to the file is not permitted, the Put service (which becomes an Update
service when this option is selected) fails, and RMS returns a file access error
(RMS$_FAC).

Be careful when invoking the Put service with the RAB$V_UIF option and
automatic record locking for a shared file. The Put service, unlike the Update
service, momentarily releases record locks previously applied by a Get or Find
service, until the Put service is converted into an Update service. This could allow
another record stream to delete or update the record between the invocation of the
Put service and the conversion to an Update service. To avoid this complication,
you should use the Update service instead of the Put service with the update-if
option to update an existing record in a file-sharing situation.

The record address field and the record size field are required inputs to the Put
service. Some Put service options may require additional fields. The traditional
address and size fields are RAB$L_RBF and RAB$W_RSZ. However, OpenVMS
Alpha users have the option to code �1 in the RAB64$L_RBF field to direct
the Put service to use the values in the alternative fields, RAB64$PQ_RBF and

RMS–98

OpenVMS RMS Services
$PUT

RAB64$Q_RSZ. The RAB64$PQ_RBF field can hold either a 64-bit address or a
32-bit address sign-extended to 64 bits.

A successful Put service returns the record file address (RFA) in the RAB$W_RFA
field.

RAB Control Block Fields
Table RMS–61 lists the control block fields read as input by the Put service. For
additional information on the fields accessed by this service, see Part II.

Table RMS–61 Put Service RAB Input Fields

Field Name
Option or
XAB Type Description

RAB$W_ISI Internal stream identifier (required).
RAB$L_KBF Key buffer address (used as input only

with random access by relative record
number mode).

RAB$B_KSZ Key size (used only if RAB$B_RAC is
KEY and the file is a relative file).

RAB$B_RAC Record access mode (SEQ, KEY)1.
RAB$L_RBF Record buffer address.
RAB$L_RHB Record header buffer (for variable with

fixed control records only).
RAB$W_RSZ Record size.
RAB$L_ROP Record-processing options.

RAB$V_ASY Asynchronous: performs Put services
asynchronously.

RAB$V_CCO2 Cancel Ctrl/O: guarantees that terminal
output is not discarded if the operator
enters Ctrl/O.

RAB$V_LOA Load: specifies that buckets are to be
loaded according to the fill size established
at file creation time.

RAB$V_REA3 Lock for read: allows other users read
access to the record. This is not valid for
relative files.

RAB$V_RLK3 Read of locked record allowed: specifies
that a record locked for modification can
be read by other users.

RAB$V_TMO2 Timeout: indicates that the content of the
timeout period field (RAB$B_TMO) is to
be used.

1The default for the RAB$B_RAC field is RAB$C_SEQ.
2This field is not supported for DECnet for OpenVMS operations.
3This option is meaningless unless you specify manual unlocking.

(continued on next page)

RMS–99

OpenVMS RMS Services
$PUT

Table RMS–61 (Cont.) Put Service RAB Input Fields

Field Name
Option or
XAB Type Description

RAB$V_TPT Truncate-on-put: specifies that a Put
service with a sequentially-accessed
record can occur at any point in the file,
truncating the file at that point.

RAB$V_UIF Update-if: converts a Put service to a
record that already exists to an Update
service.

RAB$V_ULK Manual unlocking: specifies that records
cannot be unlocked automatically.

RAB$V_WBH Write behind: two buffers are allocated to
allow multibuffering.

RAB$V_WAT Wait: if the record is locked, wait until it
is available (for relative files only).

RAB$B_TMO2 Timeout period: a value of 0 indicates
that RMS should not wait to complete a
Put service (for mailbox devices only).

2This field is not supported for DECnet for OpenVMS operations.

Table RMS–62 lists the control block fields written as output by the Put service.

Table RMS–62 Put Service RAB Output Fields

Field Name Description

RAB$L_BKT Bucket code: set to the relative record number for sequential
access to relative files.

RAB$W_RFA Record file address.
RAB$L_STS Completion status code (also returned in register 0).
RAB$L_STV Status value1.

1On the successful completion of a Put service to a record-oriented device, the RAB$L_STV field
contains the second longword of the I/O status block. See the OpenVMS I/O User’s Reference Manual
for details on specific devices.

RAB64 Control Block Fields (Alpha Only)
Table RMS–63 lists the Alpha-only RAB64 control block fields read as input
by the Put service. These fields are comparable to the RAB fields described in
Table RMS–61. For additional information on the fields accessed by this service,
see Part II.

RMS–100

OpenVMS RMS Services
$PUT

Table RMS–63 Put Service RAB64 Input Fields (Alpha Only)

Field Name Description

RAB64$B_BLN This field must be initialized to RAB64$C_BLN64 in order
for RAB64 fields to be used.

RAB64$W_ISI Internal stream identifier (required). Equates to RAB$W_
ISI.

RAB64$L_KBF Key buffer address. This field must contain �1 if you want
to use RAB64$PQ_KBF. For 32-bit addressing, this field
equates to RAB$L_KBF (see Table RMS–61).

RAB64$PQ_KBF Key buffer 64-bit address (used if RAB64$L_KBF contains
�1). This field can hold either a 64-bit address or a 32-bit
address sign-extended to 64 bits.

RAB64$B_KSZ Key buffer size. Equates to RAB$B_KSZ (see
Table RMS–61).

RAB64$B_RAC Record access mode. Equates to RAB$B_RAC (see
Table RMS–61).

RAB64$L_RBF1 Record buffer address. This field must contain �1 if you
want to use RAB64$PQ_RBF. For 32-bit addressing, this
field equates to RAB$L_RBF.

RAB64$PQ_RBF1 Record buffer 64-bit address (used if RAB64$L_RBF contains
�1). This field can hold either a 64-bit address or a 32-bit
address sign-extended to 64 bits.

RAB64$L_RHB Record header buffer. This field must contain �1 if you want
to use RAB64$PQ_RHB. For 32-bit addressing, this field
equates to RAB$L_RHB (see Table RMS–61).

RAB64$PQ_RHB Record header buffer 64-bit address (used if RAB64$L_RHB
contains �1). This field can hold either a 64-bit address or a
32-bit address sign-extended to 64 bits.

RAB64$W_RSZ1 Record buffer size. This field is ignored in favor of
RAB64$Q_RSZ if RAB64$L_RBF contains �1. Otherwise,
this field equates to RAB$W_RSZ.

RAB64$Q_RSZ1 Record buffer size. This field must be used when
RAB64$L_RBF contains �1 and a value is specified in
RAB64$PQ_RBF.

RAB64$L_ROP Record-processing options. Equates to RAB$L_ROP
and options described in Table RMS–61. Options are
identical except for the RAB64 prefix; for example, option
RAB64$V_ASY equates to RAB$V_ASY.

RAB64$B_TMO2 Timeout period. Equates to RAB$B_TMO (see
Table RMS–61).

1One of the RBF fields must contain an address and the RSZ field associated with it must contain a
size.
2This field is not supported for DECnet for OpenVMS operations.

RMS–101

OpenVMS RMS Services
$PUT

Table RMS–64 lists the Alpha-only RAB64 control block fields written as output
by the Put service. These fields are comparable to the RAB fields described in
Table RMS–62.

Table RMS–64 Put Service RAB64 Output Fields (Alpha Only)

Field Name Description

RAB64$L_BKT Bucket code. Equates to RAB$L_BKT (see Table RMS–62).
RAB64$W_RFA Record file address. Equates to RAB$W_RFA.
RAB64$L_STS Completion status code. Equates to RAB$L_STS (see

Table RMS–62).
RAB64$L_STV Status value. Equates to RAB$L_STV (see Table RMS–62).

Condition Values Returned

The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_BLN RMS$_BUG
RMS$_BUG_DAP RMS$_CDA RMS$_CHK
RMS$_CONTROLC RMS$_CONTROLO RMS$_CONTROLY
RMS$_DME RMS$_DNR RMS$_DUP
RMS$_ENQ RMS$_EXT RMS$_EXT_ERR
RMS$_FAC RMS$_FTM RMS$_FUL
RMS$_IBF RMS$_IDX RMS$_IOP
RMS$_IRC RMS$_ISI RMS$_KBF
RMS$_KEY RMS$_KSZ RMS$_MRN
RMS$_NEF RMS$_NET RMS$NETBTS
RMS$_NETFAIL RMS$_NORMAL RMS$_OK_ALK
RMS$_OK_DUP RMS$_OK_IDX RMS$_OPNOTSUP
RMS$_PENDING RMS$_PLG RMS$_RAB
RMS$_RAC RMS$_RBF RMS$_RER
RMS$_REX RMS$_RHB RMS$_RLK
RMS$_RPL RMS$_RRV RMS$_RSA
RMS$_RSZ RMS$_RVU RMS$_SEQ
RMS$_SQO RMS$_STR RMS$_SUC
RMS$_SUP RMS$_SUPPORT RMS$_SYS
RMS$_TRE RMS$_WBE RMS$_WER
RMS$_WLK RMS$_WPL

RMS–102

OpenVMS RMS Services
$READ

$READ

The Read service retrieves a specified number of bytes from a file (beginning on
a block boundary) and transfers them to memory. A Read service using block I/O
can be performed on any file organization.

RAB64 Users (Alpha Only)

On Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it
is used with the Read service on OpenVMS Alpha systems.

Format

SYS$READ rab [,[err] [,suc]]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_
STV may contain additional status information.

Arguments

rab
OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the
Read service call. The rab argument is the address of the RAB control block.

err
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation
is unsuccessful. The err argument is the address of the entry mask of this
user-written completion routine.

suc
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation
is successful. The suc argument is the address of the entry mask of this user-
written completion routine.

RMS–103

OpenVMS RMS Services
$READ

Description

To use the Read service, you must do the following:

1. Supply a buffer area for transferring data (user record area address field) and
specify the buffer size:

• To supply a 32-bit buffer address and a buffer size no greater than 65,535
bytes, use these fields:

User Buffer Address Field User Buffer Size Field

RAB$L_UBF RAB$W_USZ

• On OpenVMS Alpha systems, you can supply a 64-bit buffer address (or a
32-bit address sign-extended to 64 bits) and a buffer size up to 2 � �31 � 1

bytes. To do so, code �1 in RAB64$L_UBF and use these fields:

User Buffer Address Field User Buffer Size Field

RAB64$PQ_UBF RAB64$Q_USZ

2. Indicate the first virtual block number (VBN) for the transfer (bucket number
field). This field is RAB$L_BKT or RAB64$L_BKT (available only on Alpha
to accommodate 64-bit addressing). If the value for the VBN is 0, the transfer
starts with the block indicated by the next block pointer (NBP).

RAB Control Block Fields
Table RMS–65 lists the control block fields read as input by the Read service. For
additional information on the fields accessed by this service, see Part II.

Table RMS–65 Read Service RAB Input Fields

Field Name Option Description

RAB$L_BKT Bucket number: must contain the virtual
block number of the first block to read.
When this field has a value of 0, then the
next block is read.

RAB$W_ISI Internal stream identifier (required).
RAB$L_ROP Record-processing option.

RAB$V_ASY Asynchronous: performs Delete service
asynchronously.

RAB$L_UBF User record buffer address. For block I/O,
alignment of the user’s record buffer on a
page or at least a quadword boundary may
improve performance.

RAB$W_USZ User record area size: indicates the length of
the transfer, in bytes1.

1Certain devices require that an even number of bytes be transferred. For further details, see the
OpenVMS I/O User’s Reference Manual.

Table RMS–66 lists the control block fields written as output by the Read
service.

RMS–104

OpenVMS RMS Services
$READ

Table RMS–66 Read Service RAB Output Fields

Field Name Description

RAB$L_RBF Record address.
RAB$W_RFA Record file address.
RAB$W_RSZ Record size: indicates the actual number of bytes

transferred.
RAB$L_STS Completion status code (also returned in register 0).
RAB$L_STV Status value.

RAB64 Control Block Fields (Alpha Only)
Table RMS–67 lists the Alpha-only RAB64 control block fields read as input by
the Read service. These fields are comparable to the RAB fields described in
Table RMS–65. For additional information on the fields accessed by this service,
see Part II.

Table RMS–67 Read Service RAB64 Input Fields (Alpha Only)

Field Name Description

RAB64$B_BLN This field must be initialized to RAB64$C_BLN64 in order
for RAB64 fields to be used.

RAB64$L_BKT Bucket number. Equates to RAB$L_BKT (see
Table RMS–65).

RAB64$W_ISI Internal stream identifier (required). Equates to
RAB$W_ISI.

RAB64$L_ROP Record-processing option. Equates to RAB$L_ROP (see
Table RMS–65). The RAB64$V_ASY option is identical to
RAB$V_ASY.

RAB64$L_UBF1 User record buffer address. This field must contain �1 if
you want to use RAB64$PQ_UBF. For 32-bit addressing,
this field equates to RAB$L_UBF (see Table RMS–65).

RAB64$PQ_UBF1 User record buffer 64-bit address (used if RAB64$L_UBF
contains �1). This field can hold either a 64-bit address or
a 32-bit address sign-extended to 64 bits.

RAB64$W_USZ1 User record buffer size. This field is ignored in favor of
RAB64$Q_USZ if RAB64$L_UBF contains �1. Otherwise,
this field equates to RAB$W_USZ (see Table RMS–65).

RAB64$Q_USZ1 User record buffer size. This field must be used when
RAB64$L_UBF contains �1 and a value is specified in
RAB64$PQ_UBF. (See Section 8.8 for more information.)

1One of the UBF fields must contain an address and the USZ field associated with it must contain a
size.

RMS–105

OpenVMS RMS Services
$READ

Table RMS–68 lists the Alpha-only RAB64 control block fields written as output
by the Read service. These fields are comparable to the RAB fields described in
Table RMS–66.

Table RMS–68 Read Service RAB64 Output Fields (Alpha Only)

Field Name Description

RAB64$L_RBF Record buffer address is returned to this field if
RAB64$L_UBF does not contain �1. Equates to
RAB$L_RBF.

RAB64$PQ_RBF Record buffer address is returned to this field if
RAB64$L_UBF contains �1.

RAB64$W_RFA Record file address. Equates to RAB$W_RFA.
RAB64$W_RSZ Record buffer size is returned to this field if RAB64$L_UBF

does not contain �1. Equates to RAB$W_RSZ (see
Table RMS–66).

RAB64$Q_RSZ Record buffer size is returned to this field if RAB64$L_UBF
contains �1.

RAB64$L_STS Completion status code. Equates to RAB$L_STS (see
Table RMS–66).

RAB64$L_STV Status value. Equates to RAB$L_STV.

Condition Values Returned

The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_BLN RMS$_BUG_DAP
RMS$_CDA RMS$_CONTROLC RMS$_CONTROLY
RMS$_DME RMS$_DNR RMS$_EOF
RMS$_FAC RMS$_FTM RMS$_IOP
RMS$_ISI RMS$_NET RMS$_NETFAIL
RMS$_NORMAL RMS$_PBF RMS$_PENDING
RMS$_RAB RMS$_RER RMS$_RSA
RMS$_STR RMS$_SUC RMS$_SUP
RMS$_SUPPORT RMS$_SYS RMS$_TMO
RMS$_UBF RMS$_USZ RMS$_WBE

RMS–106

OpenVMS RMS Services
$RELEASE

$RELEASE

The Release service unlocks the record specified by the contents of the record file
address (RAB$W_RFA) field of the RAB.

RAB64 Users

RAB64 can replace the RAB or RAB prefix wherever it is used with the
Release service on OpenVMS Alpha systems.

Format

SYS$RELEASE rab [,[err] [,suc]]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_
STV may contain additional status information.

Arguments

rab
OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the
Release service call. The rab argument is the address of the RAB control block.

err
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation
is unsuccessful. The err argument is the address of the entry mask of this
user-written completion routine.

suc
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation
is successful. The suc argument is the address of the entry mask of this user-
written completion routine.

RMS–107

OpenVMS RMS Services
$RELEASE

Description

The Release service unlocks a specified record (see also the discussion of the
Free service). If the named record is not locked, RMS returns a status code of
RMS$_RNL.

Table RMS–69 lists the control block fields used as input by the Release service.
For additional information on the fields accessed by this service, see Part II.

Table RMS–69 Release Service RAB Input Fields

Field Name Option Description

RAB$W_ISI Internal stream identifier (required).
RAB$L_ROP Record-processing options.

RAB$V_ASY Asynchronous: performs Release service
asynchronously.

Table RMS–70 lists the control block fields written as output by the Release
service.

Table RMS–70 Release Service RAB Output Fields

Field Name Description

RAB$L_STS Completion status code (also returned in register 0).
RAB$L_STV Additional status information.

Condition Values Returned

The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_BLN RMS$_BUG_DAP
RMS$_CDA RMS$_EXT_ERR RMS$_ISI
RMS$_NET RMS$_NETFAIL RMS$_NORMAL
RMS$_OPNOTSUP RMS$_PENDING RMS$_RAB
RMS$_RNL RMS$_RSA RMS$_STR
RMS$_SUC RMS$_SUP RMS$_SUPPORT

RMS–108

OpenVMS RMS Services
$REMOVE

$REMOVE

The Remove service deletes a file name from a directory. It is the reverse of the
Enter service.

Note

The $REMOVE service is not supported for DECnet.

Format

SYS$REMOVE fab [,[err] [,suc]]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset FAB$L_STS. Symbolic offset FAB$L_STV
may contain additional status information.

Arguments

fab
OpenVMS usage: fab
type: longword (unsigned)
access: modify
mechanism: by reference

FAB control block whose contents are to be used as indirect arguments for the
Remove service call. The fab argument is the address of the FAB control block.

err
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation
is unsuccessful. The err argument is the address of the entry mask of this
user-written completion routine.

suc
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation
is successful. The suc argument is the address of the entry mask of this user-
written completion routine.

RMS–109

OpenVMS RMS Services
$REMOVE

Description

The Remove service searches for the first file name that matches the expanded
name string and directory ID in the user’s NAM or NAML block, and then it
deletes the file name without deleting the actual file. The Remove service is
similar to the Erase service, except that the Erase service also deletes the file
after performing an implicit Remove. Note that you must close the file before
invoking the Remove service (that is, the value of FAB$W_IFI must be 0).

The Remove service accepts wildcard characters and search lists, and it is usually
preceded by a call to the Parse service in order to fill in the appropriate fields
of the NAM or NAML block. Because the Remove service returns the wildcard
context field of the NAM or NAML block (NAM$L_WCC or NAML$L_WCC), the
Remove service can be used on multiple successive calls to remove successive file
names that match a wildcard file specification.

Be careful when you mix calls to the Search and Remove services. For example,
assume you invoke the following service sequence:

1. PARSE

2. SEARCH

3. REMOVE

4. SEARCH

5. REMOVE

RMS responds by doing the following:

1. Searches for the first file specification that matches the expanded name string

2. Searches for and removes the second file specification

3. Searches for the third file specification

4. Searches for and removes the fourth file specification

If you want to remove the directory entry of a file and you have that file’s ID,
then you can improve the speed of the Remove service by specifying the NAM bit
in the FAB$L_FOP field. To do this properly, you must first parse the name of
the file specification (to clear the NAM$W_FID or NAML$W_FID field), place the
correct FID in the NAM or NAML block, and then perform the Remove service.

Note

The Remove service is not supported for DECnet for OpenVMS operations
on files at remote OpenVMS systems.

Table RMS–71 lists the FAB control block fields read as input by the Remove
service. For additional information on the fields accessed by this service, see
Part II.

RMS–110

OpenVMS RMS Services
$REMOVE

Table RMS–71 Remove Service FAB Input Fields

Field Name Description

FAB$L_FOP File-processing option, FAB$V_NAM only. NAM or NAML
block inputs: indicates that the NAM$W_FID field is used as
input.

FAB$W_IFI Internal file identifier (must be zero).
FAB$L_NAM NAM or NAML block address.

Table RMS–72 lists the FAB control block fields written as output by the Remove
service.

Table RMS–72 Remove Service FAB Output Fields

Field Name Description

FAB$L_STS Completion status code (also returned in register 0).
FAB$L_STV Status value.

Table RMS–73 lists the NAM control block fields read as input by the Remove
service.

Table RMS–73 Remove Service NAM Input Fields

Field Name Description

NAM$W_DID Directory identification; identifies the directory from which
the file is to be removed.

NAM$T_DVI Device identification; identifies the device containing the
directory from which the file is to be removed.

NAM$L_ESA Expanded string area address specifying the name, type, and
version of the file to be removed.

NAM$B_ESL Expanded string length.
NAM$W_FID File identification: if nonzero and FAB$L_FOP field FAB$V_

NAM bit is set in the input FAB, the first file in the directory
with this file identification is removed.

NAM$L_FNB File name status bits (wildcard character bits only).
NAM$L_RSA Resultant string area address: specifies the name, type, and

version number of the last file removed (required for wildcard
character processing).

NAM$B_RSL Resultant string length.
NAM$B_RSS Resultant string area size.
NAM$L_WCC Wildcard character context value.

Table RMS–74 lists the NAM control block fields written as output by the Remove
service.

RMS–111

OpenVMS RMS Services
$REMOVE

Table RMS–74 Remove Service NAM Output Fields

Field Name Description

NAM$B_RSL Resultant string length.
NAM$L_WCC Wildcard context value.

The resultant string is moved to the buffer described by the NAM$L_RSA and
NAM$B_RSS fields (only if both fields are nonzero on input).

Table RMS–75 lists the NAML block fields used as input for the Remove
service.

Table RMS–75 Remove Service NAML Input Fields (Alpha Only)

Field Name Description

NAML$W_DID Directory identification; identifies the
directory from which the file is to be removed.

NAML$T_DVI Device identification; identifies the device
containing the directory from which the file is
to be removed.

NAML$L_ESA Expanded string area address specifying
the name, type, and version of the file to be
removed.

NAML$B_ESL Expanded string length.
NAML$W_FID File identification: if nonzero and FAB$L_

FOP field FAB$V_NAM bit is set in the input
FAB, the first file in the directory with this
file identification is removed.

NAML$L_FILESYS_NAME File system name buffer address.
NAML$L_FILESYS_NAME_
ALLOC

File system name buffer size.

NAML$L_FNB File name status bits (wildcard character bits
only).

NAML$L_INPUT_FLAGS Additional flags specified as input.
NAML$L_LONG_EXPAND Long expanded string area address.
NAML$L_LONG_EXPAND_
ALLOC

Long expanded string area size.

NAML$L_LONG_RESULT Long resultant string area address.
NAML$L_LONG_RESULT_
ALLOC

Long resultant string area size.

NAML$L_RSA Resultant string area address: specifies the
name, type, and version number of the last
file removed (required for wildcard character
processing).

NAML$B_RSL Resultant string length.
NAML$B_RSS Resultant string area size.
NAML$L_WCC Wildcard character context value.

RMS–112

OpenVMS RMS Services
$REMOVE

Table RMS–76 lists the NAML control block fields read as output by the Remove
service.

Table RMS–76 Remove Service NAML Block Output Fields (Alpha Only)

Field Name Description

NAML$L_FILESYS_NAME_
SIZE

File system name length.

NAML$L_LONG_RESULT_
SIZE

Long resultant string length.

NAML$L_OUTPUT_FLAGS Additional status bits passed as output.
NAML$B_RSL Resultant string length.
NAML$L_WCC Wildcard context value.

Condition Values Returned

The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_BLN RMS$_CDA RMS$_CHN
RMS$_DEV RMS$_DME RMS$_DNF
RMS$_DNR RMS$_DVI RMS$_ESA
RMS$_ESL RMS$_FAB RMS$_FNF
RMS$_IFI RMS$_NAM RMS$_NAML
RMS$_NAMLFSINV RMS$_NAMLFSSIZ RMS$_NAMLRSS
RMS$_NMF RMS$_NORMAL RMS$_PRV
RMS$_RMV RMS$_RSL RMS$_RSS
RMS$_RST RMS$_STR RMS$_SUC
RMS$_SUP RMS$_SUPPORT RMS$_SYS
RMS$_WCC RMS$_WLD RMS$_WLK

RMS–113

OpenVMS RMS Services
$RENAME

$RENAME

You can use this service to change the name, type, or version of a file, or to move
a file to another directory by changing its directory specification. However, note
that you cannot use this service to move a file to another device.

Format

SYS$RENAME old-fab ,[err] ,[suc] ,new-fab

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset FAB$L_STS. Symbolic offset FAB$L_STV
may contain additional status information.

Arguments

old-fab
OpenVMS usage: fab
type: longword (unsigned)
access: modify
mechanism: by reference

FAB control block whose contents are to be used as indirect arguments for the
Rename service call. The old-fab argument is the address of the FAB control
block that specifies the old file name.

err
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation
is unsuccessful. The err argument is the address of the entry mask of this
user-written completion routine.

suc
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation
is successful. The suc argument is the address of the entry mask of this user-
written completion routine.

RMS–114

OpenVMS RMS Services
$RENAME

new-fab
OpenVMS usage: fab
type: longword (unsigned)
access: modify
mechanism: by reference

The new-fab argument is the address of the FAB control block that specifies the
new file name.

Note

If you invoke the Rename service using the $RENAME macro and if
you do not specify arguments, you must construct an additional field
within your argument list to contain the address of the FAB that specifies
the new file name. This additional field is placed in the argument list
following the field for the success completion routine (see Part I), and the
argument count is set to 4.

Description

The Rename service performs the equivalent of two Parse services (old and new
name), a Search service for the old directory, an Enter service to insert the new
file name into the new directory, and a Remove service to delete the old file name
from the old directory.

No wildcard character specifications are allowed. You can move a file from one
directory to another using this service, but both directories must be on the same
disk device.

If the Rename service is successful, the new directory entry is created and the old
entry is deleted. If the service fails, the old entry remains and the new entry is
deleted.

The following tables list the fields in FAB, NAM, and NAML blocks that the
Rename service uses as input and output. In these tables, these blocks are called
FAB1 and NAM1 for the old entry, and FAB2 and NAM2 for the new entry. For
output, FAB2 is not used, although it must be in writable memory. To check or
signal the completion codes in FAB$L_STS and FAB$L_STV, use the first FAB
(FAB1).

The resultant file specification string for each of the names (old and new) is placed
in the buffer described by the NAM$L_RSA (or NAML$L_LONG_RESULT) and
NAM$B_RSS (or NAML$_LONG_RESULT_ALLOC) fields of the separate NAM
or NAML blocks (only if both fields are nonzero).

Table RMS–77 lists the FAB control block fields read as input by the Rename
service. For additional information on the fields accessed by this service, see
Part II.

Table RMS–77 Rename Service FAB Input Fields

Control Block Field Name Description

FAB1 and FAB2 FAB$L_DNA Default file specification string address.
(continued on next page)

RMS–115

OpenVMS RMS Services
$RENAME

Table RMS–77 (Cont.) Rename Service FAB Input Fields

Control Block Field Name Description

FAB$B_DNS Default file specification string size.
FAB$L_FNA File specification string address.
FAB$B_FNS File specification string size.
FAB$W_IFI Internal file identifier (must be zero).
FAB$L_NAM NAM or NAML block address.

Table RMS–78 lists the FAB control block fields written as output by the Rename
service.

Table RMS–78 Rename Service FAB Output Fields

Control Block Field Name Description

FAB1 FAB$L_STS Completion status code (also
returned in register 0).

FAB$L_STV Status value.

Table RMS–79 lists the NAM control block fields read as input by the Rename
service. For additional information on the fields accessed by this service, see
Part II.

Table RMS–79 Rename Service NAM Input Fields

Control Block Field Name Option Description

NAM1 and
NAM2

NAM$L_ESA Expanded string area address
(must be nonzero).

NAM$B_ESS Expanded string area size
(must be nonzero).

NAM$B_NOP NAM block options.
NAM$V_NO_SHORT_
UPCASE1

Do not uppercase the
directory and file specification
in the NAM$L_ESA buffer.

NAM$L_RLF Related file NAM or NAML
block address.

NAM$L_RSA Resultant string area
address.

NAM$B_RSS Resultant string area size.
Related file NAM
blocks

NAM$L_RSA Related file resultant string
area address.

NAM$B_RSL Related file resultant string
length.

NAM$L_FNB Related file name status bits.

1This field or option is not supported for DECnet for OpenVMS operations.

RMS–116

OpenVMS RMS Services
$RENAME

Table RMS–80 lists the NAM control block fields written as output by the Rename
service.

Table RMS–80 Rename Service NAM Output Fields

Control Block Field Name Description

NAM1 and
NAM2

NAM$W_DID1 Directory identification.

NAM$T_DVI1 Device identification.
NAM$B_ESL Expanded string length.
NAM$W_FID1 File identification.
NAM$L_FNB File name status bits.
NAM$B_RSL Resultant string length.
NAM$L_WCC Wildcard context.
NAM$W_FIRST_WILD_DIR1 The topmost directory level

to contain a wildcard.
NAM$W_LONG_DIR_
LEVELS1

Total number of directories.

1This field is not supported for DECnet for OpenVMS operations.

Table RMS–81 lists the NAML block fields used as input for the Rename
service.

Table RMS–81 Rename Service NAML Input Fields (Alpha Only)

Control Block Field Name Option Description

NAML1 and
NAML2

NAML$L_ESA Expanded string area
address
(must be nonzero).

NAML$B_ESS Expanded string area size
(must be nonzero).

NAML$B_NOP NAM block options.
NAML$V_
NO_SHORT_
UPCASE1

Do not uppercase
the directory and file
specification in the
NAML$L_ESA buffer.

NAML$L_FILESYS_
NAME1

File system name buffer
address.

NAML$L_FILESYS_
NAME_ALLOC1

File system name size.

NAML$L_INPUT_
FLAGS1

Additional flags specified as
input.

NAML$L_LONG_
DEFNAME1

Long default file
specification string address.

1This field or option is not supported for DECnet for OpenVMS operations.

(continued on next page)

RMS–117

OpenVMS RMS Services
$RENAME

Table RMS–81 (Cont.) Rename Service NAML Input Fields (Alpha Only)

Control Block Field Name Option Description

NAML$L_LONG_
DEFNAME_SIZE1

Long default file name size.

NAML$L_LONG_
EXPAND1

Long expanded string area
address.

NAML$L_LONG_
EXPAND_ALLOC1

Long expanded string area
size.

NAML$L_LONG_
FILENAME1

Long file specification string
address (used if FAB$L_
FNA contains -1).

NAML$L_LONG_
FILENAME_SIZE1

Long file specification string
size.

NAML$L_LONG_
RESULT1

Long resultant string area
address.

NAML$L_LONG_
RESULT_ALLOC1

Long resultant string area
size. (used if FAB$L_DNA
contains -1).

NAML$L_RLF Related file NAM or NAML
block address.

NAML$L_RSA Resultant string area
address.

NAML$B_RSS Resultant string area size.
Related file NAML
blocks

NAML$L_RSA Related file resultant string
area address.

NAML$B_RSL Related file resultant string
length.

NAML$L_FNB Related file name status
bits.

1This field or option is not supported for DECnet for OpenVMS operations.

Table RMS–82 lists the NAML control block fields written as output by the
Rename service.

Table RMS–82 Rename Service NAML Output Fields (Alpha Only)

Control Block Field Name Description

NAML1 and NAML2 NAML$W_DID1 Directory
identification.

NAML$T_DVI1 Device identification.
NAML$B_ESL Expanded string

length.
NAML$W_FID1 File identification.

1This field is not supported for DECnet for OpenVMS operations.

(continued on next page)

RMS–118

OpenVMS RMS Services
$RENAME

Table RMS–82 (Cont.) Rename Service NAML Output Fields (Alpha Only)

Control Block Field Name Description

NAML$L_FILESYS_NAME_
SIZE1

File system name
length.

NAML$W_FIRST_WILD_DIR1 First wild directory.
NAML$L_FNB File name status

bits.
NAML$W_LONG_DIR_
LEVELS1

Total number of
directories.

NAML$L_LONG_EXPAND_
SIZE1

Long expanded
string length.

NAML$L_LONG_RESULT_
SIZE1

Long resultant string
length.

NAML$L_OUTPUT_FLAGS1 Additional status bits
passed as output.

NAML$B_RSL Resultant string
length.

NAML$L_WCC Wildcard context.

1This field is not supported for DECnet for OpenVMS operations.

RMS–119

OpenVMS RMS Services
$RENAME

Condition Values Returned

The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACC RMS$_BLN RMS$_BUG_DDI
RMS$_CDA RMS$_CHN RMS$_DEV
RMS$_DIR RMS$_DME RMS$_DNA
RMS$_DNF RMS$_DNR RMS$_DVI
RMS$_ENT RMS$_ESA RMS$_ESS
RMS$_FAB RMS$FNA RMS$_FNM
RMS$_IDR RMS$_IFI RMS$_LNE
RMS$_NAM RMS$_NAML RMS$_NAMLESS
RMS$_NAMLFSINV RMS$_NAMLFSSIZ RMS$_NAMLRSS
RMS$_NET RMS$_NETFAIL RMS$_NMF
RMS$_NORMAL RMS$_PRV RMS$_QUO
RMS$_REENT RMS$_RLF RMS$_RMV
RMS$_RSS RMS$_RST RMS$_RUNDOWN
RMS$_STR RMS$_SUC RMS$_SUPPORT
RMS$_SYN RMS$_SYS RMS$_TYP
RMS$_VER RMS$_WLD

RMS–120

OpenVMS RMS Services
$REWIND

$REWIND

The Rewind service sets the context of a record stream to the first record in the
file. RMS alters the context of the next record to indicate the first record as being
the next record.

RAB64 Users (Alpha Only)

On Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it
is used with the Rewind service on OpenVMS Alpha systems.

Format

SYS$REWIND rab [,[err] [,suc]]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_
STV may contain additional status information.

Arguments

rab
OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the
Rewind service call. The rab argument is the address of the RAB control block.

err
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation
is unsuccessful. The err argument is the address of the entry mask of this
user-written completion routine.

suc
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation
is successful. The suc argument is the address of the entry mask of this user-
written completion routine.

RMS–121

OpenVMS RMS Services
$REWIND

Description

The Rewind service implicitly performs the Flush and Free services, writing
out all I/O buffers and releasing all locked records. This service is valid for
all file organizations on disk volumes and for sequential files on tape volumes.
For indexed files, the key of reference field establishes the index to be used for
subsequent sequential accesses. You cannot rewind a unit record device (such
as a card reader), indirectly accessed process-permanent files, or a file that was
opened with the FAB$V_SQO option set.

Table RMS–83 lists the control block fields read as input by the Rewind service.
For additional information on the fields accessed by this service, see Part II.

Table RMS–83 Rewind Service RAB Input Fields

Field Name Option Description

RAB$W_ISI Internal stream identifier (required).
RAB$B_KRF Key of reference (used only with indexed

files).
RAB$L_ROP Record-processing options.

RAB$V_ASY Asynchronous: performs Rewind service
asynchronously.

Table RMS–84 lists the control block fields written as output by the Rewind
service.

Table RMS–84 Rewind Service RAB Output Fields

Field Name Description

RAB$L_STS Completion status code (also returned in register 0).
RAB$L_STV Status value.

Condition Values Returned

The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_ATR RMS$_ATW
RMS$_BLN RMS$_BOF RMS$_BUG_DAP
RMS$_CDA RMS$_DME RMS$_DNR
RMS$_DPE RMS$_EXT_ERR RMS$_IOP
RMS$_ISI RMS$_KRF RMS$_NET
RMS$_NETFAIL RMS$_NORMAL RMS$_OPNOTSUP
RMS$_PENDING RMS$_QUO RMS$_RAB
RMS$_RSA RMS$_STR RMS$_SUC
RMS$_SUP RMS$_SUPPORT RMS$_SYS
RMS$_WBE RMS$_WER RMS$_WLK

RMS–122

OpenVMS RMS Services
$SEARCH

$SEARCH

The Search service scans a directory file and fills in various NAM or NAML block
fields. This service should be preceded by the Parse service, in order to initialize
the NAM or NAML block appropriately.

Format

SYS$SEARCH fab [,[err] [,suc]]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset FAB$L_STS. Symbolic offset FAB$L_STV
may contain additional status information.

Arguments

fab
OpenVMS usage: fab
type: longword (unsigned)
access: modify
mechanism: by reference

FAB control block whose contents are to be used as indirect arguments for the
Search service call. The fab argument is the address of the FAB control block.

err
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation
is unsuccessful. The err argument is the address of the entry mask of this
user-written completion routine.

suc
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation
is successful. The suc argument is the address of the entry mask of this user-
written completion routine.

RMS–123

OpenVMS RMS Services
$SEARCH

Description

The basic functions of the Search service and the Parse service are performed
automatically as part of the Open, Create, and Erase services. Note that you
must close the file before invoking the Search service (FAB$W_IFI must be 0).

When called, the Search service scans the directory file specified by the directory
identification (NAM$W_DID or NAML$W_DID) field of the NAM or NAML
block. It looks for an entry that matches the file name, type, and version number
specified by the expanded string area address and expanded string length fields.
Upon finding a match, RMS returns the file name, type, and version number in
the buffer described by the resultant string area address and size fields. RMS
also fills in the file identification field to enable a subsequent open-by-NAM-
block operation. You can also use the Search service to obtain a series of file
specifications whose names match a file specification that contains wildcard
characters or search lists.

The resultant file specification string is placed in the buffer described by NAM$L_
RSA (or NAML$L_LONG_RESULT) and NAM$B_RSS (or NAML$L_LONG_
RESULT_ALLOC) fields of the NAM or NAML block (only if both fields are
nonzero). The NAM$L_RSA and NAM$B_RSS fields must be specified (nonzero)
for wildcard character processing.

Table RMS–85 lists the FAB control block fields read as input by the Search
service. For additional information on the fields accessed by this service, see
Part II.

Table RMS–85 Search Service FAB Input Fields

Field Name Option Description

FAB$B_ACMODES File access modes.
FAB$V_CHAN_
MODE1

This field can be used to
override the access mode
protection for a specified I/O
operation (see Section 4.8).

FAB$W_IFI Internal file identifier (must
be zero).

FAB$L_NAM NAM or NAML block address.

1This field or option is not supported for DECnet for OpenVMS operations.

Table RMS–86 lists the FAB control block fields read as output by the Search
service. For additional information on the fields accessed by this service, see
Part II.

Table RMS–86 Search Service FAB Block Output Fields

Field Name Description

FAB$L_STS Completion status code (also returned in register 0).
FAB$L_STV Status value.

Table RMS–87 lists the NAM control block fields read as input by the Search
service.

RMS–124

OpenVMS RMS Services
$SEARCH

Table RMS–87 Search Service NAM Input Fields

Field Name Option Description

NAM$W_DID1 Directory identification of the
directory to be searched.

NAM$T_DVI1 Device identification of device
containing directory to be searched.

NAM$L_ESA Expanded string area address:
specifies file name, type, and version
of file.

NAM$B_ESL Expanded string length.
NAM$L_FNB File name status bits (wildcard

character options only).
NAM$B_NOP NAM block options.

NAM$V_NO_SHORT_
UPCASE1

Do not uppercase the directory and
file specification in the NAM$L_ESA
buffer.

NAM$V_PWD Password: indicates that a
password contained in a DECnet
for OpenVMS access control string,
if present in a file specification, is
to be left unaltered in the expanded
and resultant strings (instead
of being replaced by the word
‘‘password’’).

NAM$V_
NOCONCEAL

Do not conceal device name:
indicates that when a concealed
device logical name is present, the
concealed device logical name is to
be replaced by the actual physical
device name in the resultant string.

NAM$V_SRCHXABS Performs Display service on
remote files (for output fields, see
description of Display service).

NAM$L_RSA Resultant string area address:
specifies name, type, and version of
last file found (required for wildcard
character processing).

NAM$B_RSL Resultant string length.
NAM$B_RSS Resultant string area size.
NAM$L_WCC Wildcard character context value.

1This field or option is not supported for DECnet for OpenVMS operations.

Table RMS–88 lists the NAM control block fields written as output by the Search
service.

RMS–125

OpenVMS RMS Services
$SEARCH

Table RMS–88 Search Service NAM Output Fields

Field Name Description

NAM$L_DEV Address of file specification device string.
NAM$B_DEV Size of file specification device string.
NAM$L_DIR Address of file specification directory string.
NAM$B_DIR Size of file specification directory string.
NAM$W_FID1 File identification.
NAM$W_FIRST_WILD_DIR1 First wild directory.
NAM$L_FNB File name status bits (wildcard status bits

only).
NAM$W_LONG_DIR_LEVELS1 Total number of directories.
NAM$L_NAME Address of file specification name string.
NAM$B_NAME Size of file specification name string.
NAM$L_NODE Address of file specification node string.
NAM$B_NODE Size of file specification node string.
NAM$B_RSL Resultant string length.
NAM$L_TYPE Address of file specification type string.
NAM$B_TYPE Size of file specification type string.
NAM$L_VER Address of file specification version string.
NAM$B_VER Size of file specification version string.
NAM$L_WCC Wildcard character context value.

1This field is not supported for DECnet for OpenVMS operations.

Table RMS–89 lists the NAML control block fields written as input by the Search
service.

Table RMS–89 Search Service NAML Input Fields (Alpha Only)

Field Name Option Description

NAML$W_DID1 Directory identification
of the directory to be
searched.

NAML$T_DVI1 Device identification
of device containing
directory to be searched.

NAML$L_ESA Expanded string area
address: specifies file
name, type, and version
of file.

NAML$B_ESL Expanded string length.

1This field or option is not supported for DECnet for OpenVMS operations.

(continued on next page)

RMS–126

OpenVMS RMS Services
$SEARCH

Table RMS–89 (Cont.) Search Service NAML Input Fields (Alpha Only)

Field Name Option Description

NAML$L_FNB File name status bits
(wildcard character
options only).

NAML$L_FILESYS_NAME1 File system name buffer
address.

NAML$L_FILESYS_NAME_
ALLOC1

File system name buffer
size.

NAML$L_INPUT_FLAGS Additional flags
specified as input.

NAML$L_LONG_EXPAND Long expanded string
area address.

NAML$L_LONG_EXPAND_
ALLOC

Long expanded string
area size.

NAML$L_LONG_RESULT Long resultant string
area address.

NAML$L_LONG_RESULT_
ALLOC

Long resultant string
area size.

NAML$B_NOP NAML block options.
NAML$V_NO_
SHORT_UPCASE1

Do not uppercase
the directory and file
specification in the
NAML$L_ESA buffer.

NAML$V_PWD Password: indicates
that a password
contained in a DECnet
for OpenVMS access
control string, if present
in a file specification,
is to be left unaltered
in the expanded and
resultant strings
(instead of being
replaced by the word
‘‘password’’).

NAML$V_
NOCONCEAL

Do not conceal device
name: indicates that
when a concealed device
logical name is present,
the concealed device
logical name is to be
replaced by the actual
physical device name in
the resultant string.

1This field or option is not supported for DECnet for OpenVMS operations.

(continued on next page)

RMS–127

OpenVMS RMS Services
$SEARCH

Table RMS–89 (Cont.) Search Service NAML Input Fields (Alpha Only)

Field Name Option Description

NAML$V_
SRCHXABS

Performs Display
service on remote files
(for output fields, see
description of Display
service).

NAML$L_RSA Resultant string area
address: specifies name,
type, and version of
last file found (required
for wildcard character
processing).

NAML$B_RSL Resultant string length.
NAML$B_RSS Resultant string area

size.
NAML$L_WCC Wildcard character

context value.

Table RMS–90 lists the NAML control block fields read as output by the Search
service.

Table RMS–90 Search Service NAML Output Fields (Alpha Only)

Field Name Description

NAML$L_DEV Address of file specification device string.
NAML$B_DEV Size of file specification device string.
NAML$L_DIR Address of file specification directory string.
NAML$B_DIR Size of file specification directory string.
NAML$W_FID1 File identification.
NAML$W_FIRST_WILD_DIR1 First wild directory.
NAML$L_FNB File name status bits (wildcard status bits

only).
NAML$L_FILESYS_NAME_
SIZE1

File system name length.

NAML$L_LONG_DEV Long device string address.
NAML$L_LONG_DEV_SIZE Long device string length.
NAML$L_LONG_DIR Long directory string address.
NAML$W_LONG_DIR_
LEVELS1

Total number of directories.

NAML$L_LONG_DIR_SIZE Long directory string length.
NAML$L_LONG_NAME Long file name string address.
NAML$L_LONG_NAME_SIZE Long file name string length.

1This field is not supported for DECnet for OpenVMS operations.

(continued on next page)

RMS–128

OpenVMS RMS Services
$SEARCH

Table RMS–90 (Cont.) Search Service NAML Output Fields (Alpha Only)

Field Name Description

NAML$L_LONG_NODE Long node name string address.
NAML$L_LONG_NODE_SIZE Long node name string length.
NAML$L_LONG_RESULT_
SIZE

Long resultant string length.

NAML$L_LONG_TYPE Long file type string length.
NAML$L_LONG_TYPE_SIZE Long file type string address.
NAML$L_LONG_VER Long file version string address.
NAML$L_LONG_VER_SIZE Long file version string length.
NAML$L_NAME Address of file specification name string.
NAML$B_NAME Size of file specification name string.
NAML$L_NODE Address of file specification node string.
NAML$B_NODE Size of file specification node string.
NAML$L_OUTPUT_FLAGS Additional status bits passed as output.
NAML$B_RSL Resultant string length.
NAML$L_TYPE Address of file specification type string.
NAML$B_TYPE Size of file specification type string.
NAML$L_VER Address of file specification version string.
NAML$B_VER Size of file specification version string.
NAML$L_WCC Wildcard character context value.

Condition Values Returned

The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACS RMS$_BLN RMS$_CHN
RMS$_DEV RMS$_DME RMS$_DNF
RMS$_DNR RMS$_DVI RMS$_ESA
RMS$_ESL RMS$_FAB RMS$_FND
RMS$_FNF RMS$_IFI RMS$_NAM
RMS$_NAML RMS$_NAMLFSINV RMS$_NAMLFSSIZ
RMS$_NAMLRSS RMS$_NET RMS$_NETFAIL
RMS$_NMF RMS$_NORMAL RMS$_NOVALPRS
RMS$_PRV RMS$_RSL RMS$_RSS
RMS$_RST RMS$_STR RMS$_SUC
RMS$_SUP RMS$_SUPPORT RMS$_SYS
RMS$_WCC

RMS–129

OpenVMS RMS Services
$SPACE

$SPACE

The Space service lets you space (skip) a tape file forward or backward a specified
number of blocks.

RAB64 Users (Alpha Only)

On Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it
is used with the Space service on OpenVMS Alpha systems.

Format

SYS$SPACE rab [,[err] [,suc]]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_
STV may contain additional status information.

Arguments

rab
OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the
Space service call. The rab argument is the address of the RAB control block.

err
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation
is unsuccessful. The err argument is the address of the entry mask of this
user-written completion routine.

suc
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation
is successful. The suc argument is the address of the entry mask of this user-
written completion routine.

RMS–130

OpenVMS RMS Services
$SPACE

Description

The Space service is intended primarily for use with magnetic tape files; the
tape is skipped forward or backward the number of blocks specified in the bucket
number field. (The size of each block on any tape is specific to that tape and
is defined on the tape itself, not by OpenVMS or RMS.) If the value in this
field is positive, the tape skips forward; if the value is negative, the tape skips
backward. For disk files, the next block pointer (NBP) is updated to reflect the
new sequential operation position.

Table RMS–91 lists the control block fields read as input by the Space service.
For additional information on the fields accessed by this service, see Part II.

Table RMS–91 Space Service RAB Input Fields

Field Name Option Description

RAB$L_BKT Bucket code. Indicates the number of blocks
to space forward (positive value) or backward
(negative value).

RAB$W_ISI Internal stream identifier (required).
RAB$L_ROP Record-processing options.

RAB$V_ASY Asynchronous. Performs Space service
asynchronously.

Table RMS–92 lists the control block fields written as output by the Space
service.

Table RMS–92 Space Service RAB Output Fields

Field Name Description

RAB$L_STS Completion status code (also returned in register 0).
RAB$L_STV Status value (the absolute number of blocks actually skipped;

the value is always positive).

Condition Values Returned

The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_BLN RMS$_BOF
RMS$_BUG_DAP RMS$_CDA RMS$_DME
RMS$_DNR RMS$_DPE RMS$_EOF
RMS$_IOP RMS$_ISI RMS$_NET
RMS$_NETFAIL RMS$_NORMAL RMS$_PENDING
RMS$_RAB RMS$_RSA RMS$_STR
RMS$_SUC RMS$_SUP RMS$_SUPPORT
RMS$_SYS RMS$_WBE

RMS–131

OpenVMS RMS Services
$TRUNCATE

$TRUNCATE

The Truncate service shortens a sequential file.

RAB64 Users (Alpha Only)

On Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it
is used with the Truncate service on OpenVMS Alpha systems.

Format

SYS$TRUNCATE rab [,[err] [,suc]]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_
STV may contain additional status information.

Arguments

rab
OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the
Truncate service call. The rab argument is the address of the RAB control block.

err
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation
is unsuccessful. The err argument is the address of the entry mask of this
user-written completion routine.

suc
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation
is successful. The suc argument is the address of the entry mask of this user-
written completion routine.

RMS–132

OpenVMS RMS Services
$TRUNCATE

Description

The Truncate service shortens a sequential file by resetting the logical end-of-file
position to the beginning of the current record. You can then append records to
the file by issuing successive Put services.

The record access mode determines the current record position for the Truncate
service as follows:

• In sequential record access mode, you can only use this service immediately
after setting the context of the current record by successfully executing a Get
or Find service.

• In random-access-by-key mode, RMS establishes the current record position
as defined by the key of reference or the relative record number (RRN), as
applicable.

• In random-access-by-RFA (record file address) mode, RMS establishes the
current record position as defined by the RFA.

The Truncate service does not deallocate space between the end-of-file position
and the physical end of the file, nor does it overwrite the records between the
end-of-file position and the physical end of the file with an erase pattern. You can
read records from the end-of-file position to the physical end of the file by setting
the end-of-file position to the highest block allocated using the DCL command
SET FILE/END_OF_FILE. If you want to erase the data between the logical end
of the file and the physical end of the file, either you must delete the file and
write a new one, or your application program must overwrite the records you
want to delete.

The Truncate service requires that the file access (FAB$B_FAC) field specify a
truncate access (FAB$V_TRN). Truncating a file opened for shared access may
have unexpected results if other accessors are currently accessing the file beyond
the end-of-file position.

Table RMS–93 lists the control block fields read as input by the Truncate service.
For additional information on the fields accessed by this service, see Part II.

Table RMS–93 Truncate Service RAB Input Fields

Field Name Option Description

RAB$W_ISI Internal stream identifier (required).
RAB$L_ROP Record-processing options.

RAB$V_ASY Asynchronous: performs Truncate service
asynchronously.

RMS–133

OpenVMS RMS Services
$TRUNCATE

Table RMS–94 lists the control block fields written as output by the Truncate
service.

Table RMS–94 Truncate Service RAB Output Fields

Field Name Description

RAB$L_STS Completion status code (also returned in register 0).
RAB$L_STV Status value.

Condition Values Returned

The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_ATR RMS$_ATW
RMS$_BLN RMS$_BUG_DAP RMS$_CDA
RMS$_CUR RMS$_DEADLOCK RMS$_DME
RMS$_DNR RMS$_DPE RMS$_EXT_ERR
RMS$_FAC RMS$_IOP RMS$_ISI
RMS$_NET RMS$_NETFAIL RMS$_NORMAL
RMS$_OPNOTSUP RMS$_PENDING RMS$_RAB
RMS$_RER RMS$_RSA RMS$_STR
RMS$_SUC RMS$_SUP RMS$_SUPPORT
RMS$_SYS RMS$_WBE RMS$_WER
RMS$_WLK

RMS–134

OpenVMS RMS Services
$UPDATE

$UPDATE

The Update service allows you to modify the contents of an existing record in a
file residing on a disk device.

RAB64 Users (Alpha Only)

On Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it
is used with the Update service on OpenVMS Alpha systems.

Format

SYS$UPDATE rab [,[err] [,suc]]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_
STV may contain additional status information.

Arguments

rab
OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the
Update service call. The rab argument is the address of the RAB control block.

err
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation
is unsuccessful. The err argument is the address of the entry mask of this
user-written completion routine.

suc
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation
is successful. The suc argument is the address of the entry mask of this user-
written completion routine.

RMS–135

OpenVMS RMS Services
$UPDATE

Description

The record to be updated by the Update service must first be locked by this
stream, using either a Find or Get service. When updating a record, you must
use move mode (not locate mode); that is, you must supply a buffer.

The record length for sequential files cannot change. For relative files with
variable-length or variable with fixed-length control records, the length of the
replacement record can be different from the length of the original record, but
cannot be larger than the maximum size you set when you created the file.

For stream format files, the Update service functions in the same manner as the
Put service, with one exception: when using the Update service, you do not have
to set the RAB$L_ROP field RAB$V_TPT option to update data in the middle of a
file.

For indexed files, the length of the replacement record written by the Update
service may be different from the original record, but RMS does not permit you
to change the primary key. Each replacement record must be large enough to
contain a complete primary key, but it does not have to contain all alternate keys.

If an alternate key is partially or completely missing in the replacement record,
the key must have the characteristic that the values can change; this is also true
if the replacement record contains a key that was not present in the original
record.

Update operations to an indexed file do not require a key value or key of
reference. Before writing the record, RMS compares the key values (primary and
alternate) in the replacement record with the key values of the original record
already existing in the file. This comparison takes the defined characteristics of
each key into account. For example, if a particular key is not allowed to change,
RMS rejects the operation with an RMS$_CHG error code if the replacement
record contains an altered value in the associated key. Similarly, this comparison
determines whether the replacement record would result in the presence of
duplicate key values among records of the file. If duplicates would occur, RMS
verifies the defined characteristics for the keys being duplicated. If duplicates are
not allowed for a particular key, RMS rejects the operation with an RMS$_DUP
error code. If duplicates are allowed, RMS performs the operation.

Subsequent sequential operations on a given index retrieve records with identical
key values in the order in which the records were written.

RAB Control Block Fields
Table RMS–95 lists the control block fields read as input by the Update service.
For additional information on the fields accessed by this service, see Part II.

Table RMS–95 Update Service RAB Input Fields

Field Name Option Description

RAB$W_ISI Internal stream identifier (required).
RAB$L_RBF Record buffer address.
RAB$L_RHB Record header buffer (for variables with fixed

control records only).
(continued on next page)

RMS–136

OpenVMS RMS Services
$UPDATE

Table RMS–95 (Cont.) Update Service RAB Input Fields

Field Name Option Description

RAB$L_ROP Record-processing options.
RAB$V_ASY Asynchronous: performs Update services

asynchronously.
RAB$V_WBH Write-locked: two buffers are allocated to

allow multibuffering.
RAB$W_RSZ Record size (required).

Table RMS–96 lists the control block fields written as output by the Update
service.

Table RMS–96 Update Service RAB Output Fields

Field Name Description

RAB$W_RFA Record file address.
RAB$L_STS Completion status code (also returned in register 0).
RAB$L_STV Status value.

RAB64 Control Block Fields (Alpha Only)
Table RMS–97 lists the Alpha-only RAB64 control block fields read as input by
the Update service. These fields are comparable to the RAB fields described in
Table RMS–95. For additional information on the fields accessed by this service,
see Part II.

Table RMS–97 Update Service RAB64 Input Fields (Alpha Only)

Field Name Description

RAB64$B_BLN This field must be initialized to RAB64$C_BLN64 in order
for RAB64 fields to be used.

RAB64$W_ISI Internal stream identifier (required). Equates to RAB$W_
ISI.

RAB64$L_RBF1 Record buffer address. This field must contain �1 if you
want to use RAB64$PQ_RBF. For 32-bit addressing, this
field equates to RAB$L_RBF.

RAB64$PQ_RBF1 Record buffer 64-bit address (used if RAB64$L_RBF
contains �1). This field can hold either a 64-bit address or
a 32-bit address sign-extended to 64 bits.

RAB64$L_RHB Record header buffer. This field must contain �1 if you
want to use RAB64$PQ_RHB. For 32-bit addressing, this
field equates to RAB$L_RHB (see Table RMS–95).

RAB64$PQ_RHB Record header buffer 64-bit address (used if RAB64$L_
RHB contains �1). This field can hold either a 64-bit
address or a 32-bit address sign-extended to 64 bits.

1One of the RBF fields must contain an address and the RSZ field associated with it must contain a
size.

(continued on next page)

RMS–137

OpenVMS RMS Services
$UPDATE

Table RMS–97 (Cont.) Update Service RAB64 Input Fields (Alpha Only)

Field Name Description

RAB64$L_ROP Record-processing options. Equates to RAB$L_ROP
and options described in Table RMS–95. Options are
identical except for the RAB64 prefix; for example, option
RAB64$V_ASY equates to RAB$V_ASY.

RAB64$W_RSZ1 Record buffer size. This field is ignored in favor of
RAB64$Q_RSZ if RAB64$L_RBF contains �1. Otherwise,
this field equates to RAB$W_RSZ.

RAB64$Q_RSZ1 Record buffer size. This field must be used when
RAB64$L_RBF contains �1 and a value is specified in
RAB64$PQ_RBF.

1One of the RBF fields must contain an address and the RSZ field associated with it must contain a
size.

Table RMS–98 lists the Alpha-only RAB64 control block fields written as output
by the Update service. These fields are comparable to the RAB fields described in
Table RMS–96.

Table RMS–98 Update Service RAB64 Output Fields (Alpha Only)

Field Name Description

RAB64$W_RFA Record file address. Equates to RAB$W_RFA.
RAB64$L_STS Completion status code. Equates to RAB$L_STS (see

Table RMS–96).
RAB64$L_STV Status value. Equates to RAB$L_STV.

Condition Values Returned

The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_ATR RMS$_ATW
RMS$_BLN RMS$_BUG RMS$_BUG_DAP
RMS$_CDA RMS$_CHG RMS$_CHK
RMS$_CUR RMS$_DME RMS$_DNR
RMS$_DUP RMS$_ENQ RMS$_EXP
RMS$_EXT_ERR RMS$_FAC RMS$_FTM
RMS$_IBF RMS$_IDX RMS$_IOP
RMS$_NETBTS RMS$_NETFAIL RMS$_NORMAL
RMS$_OK_DUP RMS$_OK_IDX RMS$_OPNOTSUP
RMS$_PENDING RMS$_PLG RMS$_RAB
RMS$_RBF RMS$_RER RMS$_RHB
RMS$_RNL RMS$_RPL RMS$_RRV
RMS$_RSA RMS$_RSZ RMS$_RVU

RMS–138

OpenVMS RMS Services
$UPDATE

RMS$_STR RMS$_SUC RMS$_SUP
RMS$_SUPPORT RMS$_SYS RMS$_TRE
RMS$_WBE RMS$_WER RMS$_WLK
RMS$_WPL

RMS–139

OpenVMS RMS Services
$WAIT

$WAIT

The Wait service suspends image execution until an asynchronous file or record
service completes. The same control block that is used with the asynchronous file
or record service call is specified as the parameter for the Wait service. If it is
an asynchronous file service, the control block is a FAB; if it is an asynchronous
record service, the control block is a RAB. Upon completion of the service, RMS
returns control to your program at the point following the Wait service call.

RAB64 Users (Alpha Only)

On Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it
is used with the Wait service on OpenVMS Alpha systems.

Format

SYS$WAIT control-block

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset FAB$L_STS or RAB$L_STS. Symbolic
offset FAB$L_STV or RAB$L_STV may contain additional status information.

Argument

control-block

fab or rab
OpenVMS usage: fab or rab
type: longword (unsigned)
access: modify
mechanism: by reference

FAB or RAB control block whose contents are to be used as indirect arguments
for the Open service call. The fab or rab argument is the address of the FAB or
RAB control block.

Description

The Wait service takes no arguments to define entry points for user-written
completion routines; the completion routines are specified by the service being
awaited.

Any completion routines specified on the operation being awaited are declared
as ASTs before RMS returns control. They are executed before the Wait service
completes unless ASTs are disabled. Completion routines are always executed as
asynchronous system traps (ASTs).

RMS–140

OpenVMS RMS Services
$WAIT

Table RMS–99 lists the control block fields used as input by the Wait service for
the FAB. For additional information on the fields accessed by this service, see
Part II of this manual.

Table RMS–99 Wait Service FAB Input Fields

Field Name Description

FAB$W_IFI Internal file identifier (required).
FAB$L_STS Status completion code.

Table RMS–100 lists the control block field written as output by the Wait service
for the FAB.

Table RMS–100 Wait Service FAB Output Field

Field Name Description

FAB$L_STS Completion status code (also returned in register 0).

Table RMS–101 lists the control block fields used as input by the Wait service for
the RAB. For additional information on the fields accessed by this service, see
Part II of this manual.

Table RMS–101 Wait Service RAB Input Fields

Field Name Description

RAB$W_ISI Internal stream identifier (required).
RAB$L_STS Status completion code.

Table RMS–102 lists the control block field written as output by the Wait service
for the RAB.

Table RMS–102 Wait Service RAB Output Field

Field Name Description

RAB$L_STS Completion status code (also returned in register 0).

Condition Values Returned

The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_BLN RMS$_CDA RMS$_EXT_ERR
RMS$_FAB RMS$_ISI RMS$_NORMAL
RMS$_OPNOTSUP RMS$_RAB RMS$_STR
RMS$_SUC

The RMS completion status codes for the Wait service are determined by the
service being awaited, unless the address of the FAB or RAB specified for the
wait is different from that specified for the awaited operation. In this case,
RMS$_NORMAL is returned.

RMS–141

OpenVMS RMS Services
$WRITE

$WRITE

The Write service transfers a user-specified number of bytes (beginning on a block
boundary) to an RMS file of any file organization.

RAB64 Users (Alpha Only)

On Alpha systems, RAB64 can replace the RAB or RAB prefix wherever it
is used with the Write service on OpenVMS Alpha systems.

Format

SYS$WRITE rab [,[err] [,suc]]

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

The value is returned in symbolic offset RAB$L_STS. Symbolic offset RAB$L_
STV may contain additional status information.

Arguments

rab
OpenVMS usage: rab
type: longword (unsigned)
access: modify
mechanism: by reference

RAB control block whose contents are to be used as indirect arguments for the
Write service call. The rab argument is the address of the RAB control block.

err
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level error completion routine that the service invokes if the operation
is unsuccessful. The err argument is the address of the entry mask of this
user-written completion routine.

suc
OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST-level success completion routine that the service invokes if the operation
is successful. The suc argument is the address of the entry mask of this user-
written completion routine.

RMS–142

OpenVMS RMS Services
$WRITE

Description

To use the Write service, you must do the following:

1. Supply a buffer area and specify the buffer size:

• To supply a 32-bit buffer address and a buffer size no greater than 65,535
bytes, use these fields:

User Buffer Address Field User Buffer Size Field

RAB$L_RBF RAB$W_RSZ

• On OpenVMS Alpha systems, you can supply a 64-bit buffer address (or a
32-bit address sign-extended to 64 bits) and a buffer size up to 2 � �31 � 1

bytes. To do so, put a �1 in RAB64$L_RBF and use these fields:

User Buffer Address Field User Buffer Size Field

RAB64$PQ_RBF RAB64$Q_RSZ

2. Indicate the virtual block number (VBN) of the first block to be written in the
bucket number field. This field is RAB$L_BKT or RAB64$L_BKT (available
only on Alpha to accommodate 64-bit addressing). If the value for the VBN
is 0, the transfer starts with the block indicated by the next block pointer
(NBP).

A sequential file is automatically extended if you write a block past the end of
the currently allocated space when using block I/O (or record I/O). For sequential
files, RMS maintains a logical end of file to correspond to the last block and
highest byte written within the block. For relative and indexed files, you must
use the Extend service when using block I/O.

RAB Control Block Fields
Table RMS–103 lists the control block fields read as input by the Write service.
For additional information on the fields accessed by this service, see Part II.

Table RMS–103 Write Service RAB Input Fields

Field Name Option Description

RAB$L_BKT Bucket number: must contain the virtual
block number of the first block to be written.

RAB$W_ISI Internal stream identifier.
RAB$L_RBF Record buffer address. For block I/O,

alignment of the user’s record buffer on a
page or at least a quadword boundary may
improve performance.

RAB$L_ROP Record-processing options.
(continued on next page)

RMS–143

OpenVMS RMS Services
$WRITE

Table RMS–103 (Cont.) Write Service RAB Input Fields

Field Name Option Description

RAB$V_ASY Asynchronous: performs Write services
asynchronously.

RAB$V_TPT Truncate on Put: specifies that a Write
service truncate the file after the transferred
data.

RAB$W_RSZ Record size: indicates the transfer length, in
bytes.1

1Certain devices require that an even number of bytes be transferred. For further details, see the
OpenVMS I/O User’s Reference Manual.

Table RMS–104 lists the control block fields written as output by the Write
service.

Table RMS–104 Write Service RAB Output Fields

Field Name Description

RAB$W_RFA Record file address.
RAB$L_STS Completion status code (also returned in register 0).
RAB$L_STV Status value: contains the actual number of bytes

transferred if an end-of-file error occurs.

RAB64 Control Block Fields (Alpha Only)
Table RMS–105 lists the Alpha-only RAB64 control block fields read as input
by the Write service. These fields are comparable to the RAB fields described in
Table RMS–103. For additional information on the fields accessed by this service,
see Part II.

Table RMS–105 Write Service RAB64 Input Fields (Alpha Only)

Field Name Description

RAB64$B_BLN This field must be initialized to RAB64$C_BLN64 in order
for RAB64 fields to be used.

RAB64$L_BKT Bucket number. Equates to RAB$L_BKT (see
Table RMS–103).

RAB64$W_ISI Internal stream identifier. Equates to RAB$W_ISI.
RAB64$L_RBF1 Record buffer address. This field must contain �1 if you

want to use RAB64$PQ_RBF. For 32-bit addressing, this
field equates to RAB$L_RBF (see Table RMS–103).

RAB64$PQ_RBF1 Record buffer 64-bit address (used if RAB64$L_RBF contains
�1). This field can hold either a 64-bit address or a 32-bit
address sign-extended to 64 bits.

1One of the RBF fields must contain an address and the RSZ field associated with it must contain a
size.

(continued on next page)

RMS–144

OpenVMS RMS Services
$WRITE

Table RMS–105 (Cont.) Write Service RAB64 Input Fields (Alpha Only)

Field Name Description

RAB64$L_ROP Record-processing options. Equates to RAB$L_ROP
and options described in Table RMS–103. Options are
identical except for the RAB64 prefix; for example, option
RAB64$V_ASY equates to RAB$V_ASY.

RAB64$W_RSZ1 Record buffer size. This field is ignored in favor of
RAB64$Q_RSZ if RAB64$L_RBF contains �1. Otherwise,
this field equates to RAB$W_RSZ (see Table RMS–103).

RAB64$Q_RSZ1 Record buffer size. This field must be used when
RAB64$L_RBF contains �1 and a value is specified in
RAB64$PQ_RBF. See Section 8.6 for more information.

1One of the RBF fields must contain an address and the RSZ field associated with it must contain a
size.

Table RMS–106 lists the Alpha-only RAB64 control block fields written as output
by the Write service. These fields are comparable to the RAB fields described in
Table RMS–104.

Table RMS–106 Write Service RAB64 Output Fields (Alpha Only)

Field Name Description

RAB64$W_RFA Record file address. Equates to RAB$W_RFA.
RAB64$L_STS Completion status code. Equates to RAB$L_STS (see

Table RMS–104).
RAB64$L_STV Status value. Equates to RAB$L_STV (see Table RMS–104).

Condition Values Returned

The following condition values can be returned. Use the Help Message utility to access online
message descriptions. For more information about interpreting condition values, see Section 2.4.

RMS$_ACT RMS$_ATR RMS$_ATW
RMS$_BLN RMS$_BUG_DAP RMS$_CDA
RMS$_CONTROLC RMS$_CONTROLO RMS$_CONTROLY
RMS$_DME RMS$_DNR RMS$_EOF
RMS$_EXT RMS$_FAC RMS$_FTM
RMS$_FUL RMS$_IOP RMS$_ISI
RMS$_NET RMS$_NETFAIL RMS$_NORMAL
RMS$_PENDING RMS$_RAB RMS$_RBF
RMS$_RSA RMS$_RSZ RMS$_STR
RMS$_SUC RMS$_SUP RMS$_SUPPORT
RMS$_WBE RMS$_WER RMS$_WLK

RMS–145

A
RMS Control Block Macros

This appendix lists the format of each RMS control block macro and includes
special syntax notes that differ from the rules provided in Part I. Note that in
this appendix the use of the term ‘‘macro’’ refers to a VAX MACRO macro.

RMS Control Block Macros A–1

RMS Control Block Macros
$FAB

$FAB

The $FAB macro allocates storage for a FAB and initializes certain FAB fields
with defaults and user-specified values. No value is returned for this assembly-
time operation.

Format

$FAB ALQ=allocation-quantity,
BKS=bucket-size,
BLS=block-size,
CHAN_MODE=channel-access-mode
CTX=user-context-value,
DEQ=extension-quantity,
DNA=default-filespec-address,
DNM=<filespec>,
DNS=default-filespec-string-size,
FAC=<BIO BRO DEL GET PUT TRN UPD>,
FNA=filespec-string-address,
FNM=<filespec>,
FNS=filespec-string-size,
FOP=<CBT CIF CTG DFW DLT MXV NAM NEF NFS OFP POS RCK RWC
RWO SCF SPL SQO SUP TEF TMD TMP UFO WCK>,
FSZ=header-size,
GBC=global-buffer-count,
LNM_MODE=logical-name-translation-access-mode,
MRN=maximum-record-number,
MRS=maximum-record-size,
NAM=nam-address,
ORG={IDX | REL | SEQ},
RAT=<BLK{CR | FTN | PRN}>,
RFM={FIX | STM | STMCR | STMLF | UDF | VAR | VFC},
RTV=window-size,
SHR=<DEL GET MSE NIL PUT UPD UPI NQL>,
XAB=xab-address

Arguments

For a description of the control block fields that correspond to the $FAB macro
arguments, see Chapter 4. In some cases, specific default values are assigned
automatically when you omit an argument. If there is no specific default, RMS
uses a default value of 0.

Arguments fall into three categories: values, addresses, and keywords. Rules
applicable to these argument categories are described in Appendix B.

Note that multiple arguments can be specified for the FAC, FOP, RAT, and SHR
keywords, but the arguments must be enclosed within left angle (<) and right
angle (>) brackets. The DNM and FNM arguments must also be delimited by
these signs.

The DNM and FNM arguments contain ASCII characters and have no
corresponding field in the FAB. If the DNM argument is present, RMS places
its appropriate address and size in the FAB$L_DNA and FAB$B_DNS fields.

A–2 RMS Control Block Macros

RMS Control Block Macros
$FAB

Similarly, if the FNM argument is present, RMS places its appropriate address
and size in the FAB$L_FNA and FAB$B_FNS fields.

RMS Control Block Macros A–3

RMS Control Block Macros
$FAB_STORE

$FAB_STORE

The $FAB_STORE macro moves user-specified values into fields of the specified
FAB. The expanded $FAB_STORE code executes at run time on a previously
initialized (allocated) FAB, in contrast to the $FAB macro, which initializes the
FAB at assembly time. The $FAB_STORE macro must reside in a code program
section.

Format

$FAB_STORE fab=fab-address,
ALQ=#allocation-quantity,
BKS=#bucket-size,
BLS=#block-size,
CHAN_MODE=#channel-access-mode
CTX=user-context-value,
DEQ=#extension-quantity,
DNA=default-filespec-address,
DNS=#default-filespec-string-size,
FAC=<BIO BRO DEL GET PUT TRN UPD>,
FNA=filespec-string-address,
FNS=#filespec-string-size,
FOP=<CBT CIF CTG DFW DLT MXV NAM NEF NFS OFP POS
RCK RWC RWO SCF SPL SQO SUP TEF TMD TMP UFO WCK>,
FSZ=#header-size,
GBC=#global-buffer-count,
LNM_MODE=#logical-name-translation-access-mode,
MRN=#maximum-record-number,
MRS=#maximum-record-size,
NAM=nam-address,
ORG={IDX | REL | SEQ},
RAT=<BLK{CR | FTN | PRN}>,
RFM={FIX | STM | STMCR | STMLF | UDF | VAR | VFC},
RTV=#window-size,
SHR=<DEL GET MSE NIL PUT UPD UPI NQL>,
XAB=xab-address

Arguments

For a description of the control block fields that correspond to the $FAB_STORE
macro arguments, see Chapter 4.

Arguments fall into several categories: values, addresses, keywords, and the
address of the control block to receive the specified arguments. Rules applicable
to these argument categories for the control block store macros are described in
Appendix B.

The FAB argument fab-address is required for the $FAB_STORE macro and is
not present for the $FAB macro. Conversely, the DNM argument filespec and
FNM argument default-filespec are not available for the $FAB_STORE macro,
although you can use the DNA/DNS and FNA/FNS arguments to specify file
specifications at run time.

Note that R0 is usually used by the $FAB_STORE macro; thus, R0 is not
preserved and does not contain a return status.

A–4 RMS Control Block Macros

RMS Control Block Macros
$NAM

$NAM

The $NAM macro allocates storage for a NAM block and initializes certain NAM
fields with default values and user-specified values. No value is returned for this
assembly-time operation.

Format

$NAM ESA=expanded-string-address,
ESS=expanded-string-size,
NOP=<NOCONCEAL PWD NO_SHORT_UPCASE SRCHXABS SYNCHK>,
RLF=related-file-nam-block-address,
RSA=resultant-string-address,
RSS=resultant-string-size

Arguments

For a description of the control block fields that correspond to the $NAM macro
arguments, see Chapter 5.

Arguments fall into three categories: values, addresses, and keywords. Rules
applicable to these argument categories are described in Appendix B.

Note that multiple arguments can be specified for the NOP keyword, but the
arguments must be enclosed within left angle (<) and right angle (>) brackets.

RMS Control Block Macros A–5

RMS Control Block Macros
$NAM_STORE

$NAM_STORE

The $NAM_STORE macro moves user-specified values into fields of the specified
NAM block. The expanded $NAM_STORE code executes at run time on a
previously initialized (allocated) NAM block, in contrast to the $NAM macro,
which initializes a NAM block at assembly time. The $NAM_STORE macro must
reside in a code program section.

Format

$NAM_STORE NAM=nam-address,
DID=#directory-identification,
DVI=#device-identification,
ESA=expanded-string-address,
ESS=#expanded-string-size,
FID=#file-identification,
NOP=<NOCONCEAL NO_SHORT_UPCASE PWD SRCHXABS
SYNCHK>,
RLF=related-file-nam-block-address,
RSA=resultant-string-address,
RSS=#resultant-string-size

Arguments

For a description of the control block fields that correspond to the $NAM_STORE
macro arguments, see Chapter 5.

Arguments fall into several categories: values, addresses, keywords, and the
address of the control block to receive the specified arguments. Rules applicable
to these argument categories for the control block store macros are described in
Appendix B.

The NAM argument nam-address is required for the $NAM_STORE macro and
is not present for the $NAM macro. Also, the following $NAM_STORE argument
fields are not available for the $NAM macro:

• The DID argument directory-identification sets the NAM$W_DID field,
which is a 3-word field used when the FAB$L_FOP field FAB$V_NAM option
is set. This argument is usually specified by its symbolic address. If a register
is used to contain a value for the NAM$W_DID field, do not use R12, because
two contiguous registers must be used to contain the value of this 3-word
field. Note that you cannot use the byte, word, or longword displacements for
an offset, or for indexed or deferred addressing.

• The DVI argument device-identification sets the NAM$T_DVI field, which
is a 16-byte field used when the FAB$L_FOP field FAB$V_NAM option is set.
This argument must be passed by its symbolic address. A register must not
be specified to contain a value for this argument.

A–6 RMS Control Block Macros

RMS Control Block Macros
$NAM_STORE

• The FID argument file-identification sets the NAM$W_FID field, which is a
3-word field used when the FAB$L_FOP field FAB$V_NAM option is set. This
argument is specified by its symbolic address. If a register is used to contain
a value for the NAM$W_FID field, do not use R12, because two contiguous
registers must be used to contain the value of this 3-word field. Note that
you cannot use the byte, word, or longword displacements for an offset, or for
indexed or deferred addressing.

Note that R0 is usually used by the $NAM_STORE macro; thus, R0 is not
preserved and does not contain a return status.

RMS Control Block Macros A–7

RMS Control Block Macros
$NAML

$NAML

The $NAML macro allocates storage for a NAML block and initializes certain
NAML fields with default values and user-specified values.

Format

$NAML ESA=expanded-string-address,
ESS=expanded-string-size,
NOP=<NOCONCEAL PWD NO_SHORT_UPCASE SRCHXABS SYNCHK>,
RLF=related-file-nam-block-address,
RSA=resultant-string-address,
RSS=resultant-string-size,
FILESYS_NAME=file system name buffer address,
FILESYS_NAME_ALLOC=file system name buffer size,
INPUT_FLAGS=<NO_SHORT_OUTPUT>,
LONG_DEFNAME=long default file specification string address,
LONG_DEFNAME_SIZE=long default file specification string size,
LONG_FILENAME=long file specification string address,
LONG_FILENAME_SIZE=long file specification string size,
LONG_EXPAND=long expanded string area address,
LONG_EXPAND_ALLOC=long expanded string area size,
LONG_RESULT=long resultant string area address,
LONG_RESULT_ALLOC=long resultant string area size,
USER_CONTEXT=user context

Arguments

For a description of the control block fields that correspond to the $NAML macro
arguments, see Chapter 6.

Arguments fall into three categories: values, addresses, and keywords. Rules
applicable to these argument categories are described in Appendix B.

Note that multiple arguments can be specified for the NOP keyword, but the
arguments must be enclosed with left angle (<) and right angle (>) brackets.

A–8 RMS Control Block Macros

RMS Control Block Macros
$NAML_STORE

$NAML_STORE

The $NAML_STORE macro moves user-specified values into fields of the specified
NAML block. The expanded $NAML_STORE code executes at run time on a
previously initialized (allocated) NAML block, in contrast to the $NAML macro,
which initializes a NAML block at assembly time. The $NAML_STORE macro
must reside in a code program section.

Format

$NAML_STORE NAM=naml-address,
DID=#directory-identification,
DVI=#device-identification,
ESA=expanded-string-address,
ESS=#expanded-string-size,
FID=#file-identification,
NOP=<NOCONCEAL NO_SHORT_UPCASE PWD SRCHXABS
SYNCHK>,
RLF=related-file-nam-block-address,
RSA=resultant-string-address,
RSS=#resultant-string-size,
FILESYS_NAME=file system name buffer address,
FILESYS_NAME_ALLOC=#file system name buffer size,
INPUT_FLAGS=<NO_SHORT_OUTPUT>,
LONG_DEFNAME=long default file specification string address,
LONG_DEFNAME_SIZE=#long default file specification string size,
LONG_FILENAME=long file specification string address,
LONG_FILENAME_SIZE=#long file specification string size,
LONG_EXPAND=long expanded string area address,
LONG_EXPAND_ALLOC=#long expanded string area size,
LONG_RESULT=long resultant string area address,
LONG_RESULT_ALLOC=#long resultant string area size,
USER_CONTEXT=#user context

Arguments

For a description of the control block fields that correspond to the $NAML_
STORE macro arguments, see Chapter 6.

Arguments fall into several categories: values, addresses, keywords, and the
address of the control block to receive the specified arguments. Rules applicable
to these argument categories for the control block store macros are described in
Appendix B.

The NAML argument naml-address is required for the $NAML_STORE macro
and is not present for the $NAML macro. Also, the following $NAML_STORE
argument fields are not available for the $NAML macro:

• The DID argument directory-identification sets the NAML$W_DID field,
which is a 3-word field used when the FAB$L_FOP field FAB$V_NAM option
is set. This argument is usually specified by its symbolic address. If a
register is used to contain a value for the NAML$W_DID field, do not use
R12, because two contiguous registers must be used to contain the value
of this 3-word field. Note that you cannot use the byte, word, or longword
displacements for an offset, or for indexed or deferred addressing.

RMS Control Block Macros A–9

RMS Control Block Macros
$NAML_STORE

• The DVI argument device-identification sets the NAML$T_DVI field, which
is a 16-byte field used when the FAB$L_FOP field FAB$V_NAM option is set.
This argument must be passed by its symbolic address. A register must not
be specified to contain a value for this argument.

• The FID argument file-identification sets the NAML$W_FID field, which
is a 3-word field used when the FAB$L_FOP field FAB$V_NAM option is
set. This argument is specified by its symbolic address. If a register is used
to contain a value for the NAML$W_FID field, do not use R12, because two
contiguous registers must be used to contain the value of this 3-word field.
Note that you cannot use the byte, word, or longword displacements for an
offset, or for indexed or deferred addressing.

Note that R0 is usually used by the $NAML_STORE macro; thus, R0 is not
preserved and does not contain a return status.

A–10 RMS Control Block Macros

RMS Control Block Macros
$RAB

$RAB

The $RAB macro allocates storage for a RAB and initializes certain RAB fields
with defaults and user-specified values. You cannot use this macro within a
sequence of executable instructions. No value is returned for this assembly-time
operation.

Format

$RAB BKT=bucket-code-number,
CTX=user-context-value,
FAB=fab-address,
KBF=key-buffer-address,
KRF=key-of-reference-number,
KSZ=key-size,
MBC=multiblock-count-number,
MBF=multibuffer-count-number,
PBF=prompt-buffer-address,
PSZ=prompt-buffer-size,
RAC={KEY | RFA | SEQ},
RBF=record-buffer-address,
RHB=record-header-buffer-address,
ROP=<ASY BIO CCO CDK CVT EOF EQNXT ETO FDL KGE KGT LIM LOA
LOC NLK NXR NXT PMT PTA RAH REA REV RLK RNE RNF RRL TMO
TPT UIF ULK WAT WBH>,
ROP_2=<NQL NODLCKWT NODLCKBLK>,
RSZ=record-size,
TMO=time-out-number-of-seconds,
UBF=user-record-buffer-address,
USZ=user-record-buffer-size,
XAB=xab-address

Arguments

For a description of the control block fields that correspond to the $RAB macro
arguments, see Chapter 7. In some cases, specific default values are assigned
automatically when you omit an argument. These specific defaults are noted in
the text that explains each field in Chapter 7. If there is no specific default, RMS
uses a default value of 0.

Arguments fall into three categories: values, addresses, and keywords. Rules
applicable to these argument categories are described in Appendix B.

Note that multiple arguments can be specified for the ROP keyword, but the
arguments must be enclosed within left angle (<) and right angle (>) brackets.
Also note that the KGE and EQNXT arguments are logically synonymous, as are
the KGT and NXT arguments.

RMS Control Block Macros A–11

RMS Control Block Macros
$RAB_STORE

$RAB_STORE

The $RAB_STORE macro moves user-specified values into fields of the specified
RAB. The expanded $RAB_STORE code executes at run time on a previously
initialized (allocated) RAB, in contrast to the $RAB macro, which allocates and
initializes the RAB at assembly time. The $RAB_STORE macro must reside in a
code program section.

Format

$RAB_STORE RAB=rab-address,
BKT=#bucket-code-number,
CTX=user-context-value,
FAB=fab-address,
KBF=key-buffer-address,
KRF=#key-of-reference-number,
KSZ=#key-size,
MBC=#multiblock-count-number,
MBF=#multibuffer-count-number,
PBF=prompt-buffer-address,
PSZ=#prompt-buffer-size,
RAC={KEY | RFA | SEQ},
RBF=record-buffer-address,
RFA=#record-file-address,
RHB=record-header-buffer-address,
ROP=<ASY BIO CCO CDK CVT EOF EQNXT ETO FDL KGE KGT
LIM LOA LOC NLK NXR NXT PMT PTA RAH REA REV RLK RNE
RNF RRL TMO TPT UIF ULK WAT WBH>,
ROP_2=<NQL NODLCKWT NODLCKBLK>,
RSZ=#record-size,
TMO=#time-out-number-of-seconds,
UBF=user-record-buffer-address,
USZ=#user-record-buffer-size,
XAB=xab-address

Arguments

For a description of the control block fields that correspond to the $RAB_STORE
macro arguments, see Chapter 7.

Arguments fall into many categories: values, addresses, keywords, and the
address of the control block to receive the specified arguments. Rules applicable
to these argument categories for the control block store macros are described in
Appendix B.

The RAB argument rab-address is required for the $RAB_STORE macro and is
not present for the $RAB macro.

The RFA argument record-file-address is a value (not an address), and it is not
available for the $RAB macro. The value for the 3-word RAB$W_RFA field must
be set before each RFA record access. This argument is specified by its symbolic
address. If a register is used to contain a value for the RAB$W_RFA field,
do not use R12, because two contiguous registers must be used to contain the
value of this 3-word field. Note that you cannot use the byte, word, or longword
displacements for an offset, or for indexed or deferred addressing.

A–12 RMS Control Block Macros

RMS Control Block Macros
$RAB_STORE

Note that multiple arguments can be specified for the ROP keyword, but the
arguments must be enclosed within left angle (<) and right angle (>) brackets.
Also note that the KGE and EQNXT arguments are logically synonymous, as are
the KGT and NXT arguments.

Note that R0 is usually used by the $RAB_STORE macro; thus, R0 is not
preserved and does not contain a return status.

RMS Control Block Macros A–13

RMS Control Block Macros
$RAB64 (Alpha Only)

$RAB64 (Alpha Only)

On Alpha systems, the $RAB64 macro allocates storage for a RAB64 and
initializes certain RAB64 fields with defaults and user-specified values. You
cannot use this macro within a sequence of executable instructions. No value is
returned for this assembly-time operation.

The defaults unique to $RAB64 are as follows:

• RAB64$B_BLN is initialized to RAB64$C_BLN64.

• The original longword I/O buffers (KBF, RHB, RBF, and UBF) are initialized
to �1; USZ and RSZ word sizes are initialized to 0.

User-specified values using the CTX, KBF, RHB, RBF, RSZ, UBF, or USZ
keywords are moved into the quadword fields for these keywords. In contrast, the
$RAB macro moves them into the longword (or word) fields for these keywords.

Format

$RAB64 BKT=bucket-code-number,
CTX=user-context-value,
FAB=fab-address,
KBF=key-buffer-address,
KRF=key-of-reference-number,
KSZ=key-size,
MBC=multiblock-count-number,
MBF=multibuffer-count-number,
PBF=prompt-buffer-address,
PSZ=prompt-buffer-size,
RAC={KEY | RFA | SEQ},
RBF=record-buffer-address,
RHB=record-header-buffer-address,
ROP=<ASY BIO CCO CDK CVT EOF EQNXT ETO FDL KGE KGT LIM
LOA LOC NLK NXR NXT PMT PTA RAH REA REV RLK RNE RNF RRL
TMO TPT UIF ULK WAT WBH>,
ROP_2=<NQL NODLCKWT NODLCKBLK>,
RSZ=record-size,
TMO=time-out-number-of-seconds,
UBF=user-record-buffer-address,
USZ=user-record-buffer-size,
XAB=xab-address

Arguments

For a description of the control block fields that correspond to the $RAB64 macro
arguments, see Chapter 8. In some cases, specific default values are assigned
automatically when you omit an argument. These specific defaults are described
above or noted in the text that explains each field in Chapter 8. If there is no
specific default, RMS uses a default value of 0.

Arguments fall into three categories: values, addresses, and keywords. Rules
applicable to these argument categories are described in Appendix B.

A–14 RMS Control Block Macros

RMS Control Block Macros
$RAB64 (Alpha Only)

Note that multiple arguments can be specified for the ROP keyword, but the
arguments must be enclosed within left angle (<) and right angle (>) brackets.
Also note that the KGE and EQNXT arguments are logically synonymous, as are
the KGT and NXT arguments.

RMS Control Block Macros A–15

RMS Control Block Macros
$RAB64_STORE (Alpha Only)

$RAB64_STORE (Alpha Only)

On Alpha systems, the $RAB64_STORE macro moves user-specified values into
fields of the specified RAB64. The expanded $RAB64_STORE code executes at
run time on a previously initialized (allocated) RAB64. In contrast, the $RAB64
macro allocates and initializes the RAB64 at assembly time. The $RAB64_
STORE macro must reside in a code program section.

User-specified values that use the CTX, KBF, RHB, RBF, RSZ, UBF, or USZ
keywords are moved into the quadword fields for these keywords. In contrast,
the $RAB_STORE macro moves them into the longword (or word) fields for these
keywords.

Format

$RAB64_STORE RAB=rab64-address,
BKT=#bucket-code-number,
CTX=user-context-value,
FAB=fab-address,
KBF=key-buffer-address,
KRF=#key-of-reference-number,
KSZ=#key-size,
MBC=#multiblock-count-number,
MBF=#multibuffer-count-number,
PBF=prompt-buffer-address,
PSZ=#prompt-buffer-size,
RAC={KEY | RFA | SEQ},
RBF=record-buffer-address,
RFA=#record-file-address,
RHB=record-header-buffer-address,
ROP=<ASY BIO CCO CDK CVT EOF EQNXT ETO FDL KGE
KGT LIM LOA LOC NLK NXR NXT PMT PTA RAH REA REV
RLK RNE RNF RRL TMO TPT UIF ULK WAT WBH>,
ROP_2=<NQL NODLCKWT NODLCKBLK>,
RSZ=#record-size,
TMO=#time-out-number-of-seconds,
UBF=user-record-buffer-address,
USZ=#user-record-buffer-size,
XAB=xab-address

Arguments

For a description of the control block fields that correspond to the
$RAB64_STORE macro arguments, see Chapter 8.

Arguments fall into many categories: values, addresses, keywords, and the
address of the control block to receive the specified arguments. Rules applicable
to these argument categories for the control block store macros are described in
Appendix B.

The RAB argument rab64-address is required for the $RAB64_STORE macro
and is not present for the $RAB64 macro.

A–16 RMS Control Block Macros

RMS Control Block Macros
$RAB64_STORE (Alpha Only)

The RFA argument record-file-address is a value (not an address), and it is
not available for the $RAB64 macro. The value for the 3-word RAB64$W_RFA
field must be set before each RFA record access. This argument is specified by
its symbolic address. If a register is used to contain a value for the RAB64$W_
RFA field, do not use R12, because two contiguous registers must be used to
contain the value of this 3-word field. Note that you cannot use the byte, word, or
longword displacements for an offset, or for indexed or deferred addressing.

Note that multiple arguments can be specified for the ROP keyword, but the
arguments must be enclosed within left angle (<) and right angle (>) brackets.
Also note that the KGE and EQNXT arguments are logically synonymous, as are
the KGT and NXT arguments.

Note that R0 is usually used by the $RAB64_STORE macro; thus, R0 is not
preserved and does not contain a return status.

RMS Control Block Macros A–17

RMS Control Block Macros
$XABALL

$XABALL

The $XABALL macro allocates and initializes a XABALL, which allows extended
control of file disk space allocation, both for initial allocation and later extension.
No value is returned for this assembly-time operation.

Format

$XABALL AID=area-identification-number,
ALN={ANY | CYL | LBN | RFI | VBN},
ALQ=allocation-quantity,
AOP=<CBT CTG HRD ONC>,
BKZ=bucket-size,
DEQ=extension-quantity,
LOC=location-number,
NXT=next-xab-address,
RFI=<f(1), f(2), f(3)>,
VOL=volume-number

Arguments

For a description of the control block fields that correspond to the $XABALL
macro arguments, see Chapter 9.

Arguments fall into three categories: values, addresses, and keywords. Rules
applicable to these argument categories are described in Appendix B.

Note that multiple arguments can be specified for the AOP keyword, but the
arguments must be enclosed within left angle (<) and right angle (>) brackets.

A–18 RMS Control Block Macros

RMS Control Block Macros
$XABALL_STORE

$XABALL_STORE

The $XABALL_STORE macro moves user-specified values into fields of the
specified XABALL. The expanded $XABALL_STORE code executes at run time
on a previously initialized (allocated) XABALL, in contrast to the $XABALL
macro, which initializes a XABALL at assembly time. The $XABALL_STORE
macro must reside in a code program section.

Format

$XABALL_STORE XAB=xaball-address,
AID=#area-identification-number,
ALN={ANY | CYL | LBN | RFI | VBN},
ALQ=#allocation-quantity,
AOP=<CBT CTG HRD ONC>,
BKZ=#bucket-size,
DEQ=#extension-quantity,
LOC=#location-number,
NXT=next-xab-address,
RFI=#related-file-identification,
VOL=#volume-number

Arguments

For a description of the control block fields that correspond to the $XABALL_
STORE macro arguments, see Chapter 9.

Arguments fall into several categories: value, address, keyword, and the address
of the control block to receive the specified arguments. Rules applicable to
these argument categories for the control block store macros are described in
Appendix B.

The XAB argument xaball-address is required for the $XABALL_STORE macro
and is not present for the $XABALL macro. Also, the RFI argument related
file identification sets the XAB$W_RFI field, which is a 3-word field used
when the XAB$B_ALN field XAB$V_RFI option is set. This argument is usually
specified by its symbolic address. If a register is used to contain a value for the
XAB$W_RFI field, do not use R12, because two contiguous registers must be used
to contain the value of this 3-word field. Note that you cannot use the byte, word,
or longword displacements for an offset, or for indexed or deferred addressing.

Note that R0 is usually used by the $XABALL_STORE macro; thus, R0 is not
preserved and does not contain a return status.

RMS Control Block Macros A–19

RMS Control Block Macros
$XABDAT

$XABDAT

The $XABDAT macro allocates and initializes a XABDAT. No value is returned
for this assembly-time operation.

Format

$XABDAT EDT=date-time,
NXT=next-xab-address

Arguments

For a description of the control block fields that correspond to the $XABDAT
macro arguments, see Chapter 9.

Rules applicable to arguments are described in Appendix B.

A–20 RMS Control Block Macros

RMS Control Block Macros
$XABDAT_STORE

$XABDAT_STORE

The $XABDAT_STORE macro moves user-specified values into fields of the
specified XABDAT. The expanded $XABDAT_STORE code executes at run time
on a previously initialized (allocated) XABDAT, in contrast to the $XABDAT
macro, which initializes a XABDAT at assembly time. The $XABDAT_STORE
macro must reside in a code program section.

Format

$XABDAT_STORE XAB=xabdat-address,
CDT=#creation-date-time,
EDT=#expiration-date-time,
RDT=#revision-date-time,
RVN=#revision-number,
NXT=next-xab-address

Arguments

For a description of the control block fields that correspond to the $XABDAT_
STORE macro arguments, see Chapter 9.

Arguments fall into several categories: values, addresses, keywords, and the
address of the control block to receive the specified arguments. Rules applicable
to these argument categories for the control block store macros are described in
Appendix B.

The XAB argument xabdat-address is required for the $XABDAT_STORE macro
and is not present for the $XABDAT macro. Also, the arguments differ from the
general rules.

• The CDT argument creation-date-time sets the XAB$Q_CDT field, which is
a quadword field. However, if a register is used to contain a literal value for
the XAB$Q_CDT field, do not use R12, because two contiguous registers must
be used to contain the value of this quadword field.

• The EDT argument expiration-date-time sets the XAB$Q_EDT field, which
is a quadword field. The rules for the other time fields also apply to this one.

• The RDT argument revision-date-time sets the XAB$Q_CDT field, which is
a quadword field. The rules for the other time fields also apply to this one.

Note that R0 is usually used by the $XABDAT_STORE macro; thus, R0 is not
preserved and does not contain a return status.

RMS Control Block Macros A–21

RMS Control Block Macros
$XABFHC

$XABFHC

The $XABFHC macro allocates and initializes a XABFHC. No value is returned
for this assembly-time operation.

Format

$XABFHC NXT=next-xab-address

Arguments

For a description of the control block fields that correspond to the $XABFHC
macro arguments, see Chapter 11.

Rules applicable to arguments are described in Appendix B.

A–22 RMS Control Block Macros

RMS Control Block Macros
$XABFHC_STORE

$XABFHC_STORE

The $XABFHC_STORE macro moves user-specified values into fields of the
specified XABFHC. The expanded $XABFHC_STORE code executes at run time
on a previously initialized (allocated) XABFHC, in contrast to the $XABFHC
macro, which initializes a XABFHC at assembly time. The $XABFHC_STORE
macro must reside in a code program section.

Format

$XABFHC_STORE XAB=xabfhc-address,
NXT=next-xab-address

Arguments

For a description of the control block fields that correspond to the $XABFHC_
STORE macro arguments, see Chapter 11.

Arguments fall into several categories: values, addresses, keywords, and the
address of the control block to receive the specified arguments. Rules applicable
to these argument categories for the control block store macros are described in
Appendix B.

The XAB argument xabfhc-address is required for the $XABFHC_STORE
macro and is not present for the $XABFHC macro.

Note that R0 may be used by the $XABFHC_STORE macro; thus, R0 is not
preserved and does not contain a return status.

RMS Control Block Macros A–23

RMS Control Block Macros
$XABITM

$XABITM

The $XABITM macro allocates and initializes a XABITM. No value is returned
for this assembly-time operation.

Format

$XABITM ITEMLIST=item-list-address,
MODE={sensemode | setmode},
NXT=next-xab-address

Arguments

For a description of the control block fields that correspond to the $XABITM
macro arguments, see Chapter 12.

Rules applicable to arguments are described in Appendix B.

ITEMLIST defaults to 0 but a valid pointer must be specified when you use a
$XABITM macro. MODE defaults to sensemode.

A–24 RMS Control Block Macros

RMS Control Block Macros
$XABKEY

$XABKEY

The $XABKEY macro allocates and initializes a XABKEY. No value is returned
for this assembly-time operation.

Format

$XABKEY COLTBL=collating-table-address,
DAN=data-bucket-area-number,
DFL=data-bucket-fill-size,
DTP={BN2 | DBN2 | BN4 | DBN4 | BN8 | DBN8 | IN2
| DIN2 | IN4 | DIN4 | IN8 | DIN8 | COL | DCOL | PAC | DPAC | STG | DSTG},
FLG=<CHG DAT_NCMPR DUP IDX_NCMPR KEY_NCMPR NUL>,
IAN=index-bucket-area-number,
IFL=index-bucket-file-size,
KNM=key-name-buffer-address,
LAN=lowest-level-index-area-number,
NUL=null-key-value,
NXT=next-xab-address,
POS=<position,...>,
PROLOG=prolog-level,
REF=key-of-reference-value,
SIZ=<size,...>

Arguments

For a description of the control block fields that correspond to the $XABKEY
macro arguments, see Chapter 14.

Arguments fall into three categories: values, addresses, and keywords. Rules
applicable to these argument categories are described in Appendix B.

Multiple arguments can be specified for the FLG keyword, but the arguments
must be enclosed within left angle (<) and right angle (>) brackets. Defaults are
applied to the XAB$B_FLG field only if no FLG argument is specified. Consider
the following:

KEY_1: $XABKEY REF=1, POS=0, SIZ=10

This line specifies the key for alternate index 1. Therefore the macro defaults the
XAB$B_FLG field to allow duplicates and changes (the default for alternate keys).
However, if an FLG argument is explicitly specified, the results are different, as
shown in the following code example.

KEY_2: $XABKEY REF=1, POS=0, SIZ=10, FLG=CHG

In this case, the CHG bit is set in the XAB$B_FLG field and the DUP bit remains
clear, to disallow duplicates on this key.

Depending on whether the key being defined is simple or segmented, you would
use one of the following two formats for the POS and SIZ arguments:

POS=position
.
.
.

SIZ=size

RMS Control Block Macros A–25

RMS Control Block Macros
$XABKEY

or

POS=<position0,...,position7>
.
.
.

SIZ=<size0,...,size7>

You must include the angle brackets for multiple argument key positions and
sizes.

A–26 RMS Control Block Macros

RMS Control Block Macros
$XABKEY_STORE

$XABKEY_STORE

The $XABKEY_STORE macro moves user-specified values into fields of the
specified XABKEY. The expanded $XABKEY_STORE code executes at run time
on a previously initialized (allocated) XABKEY, in contrast to the $XABKEY
macro, which initializes the XABKEY at assembly time. The $XABKEY_STORE
macro must reside in a code program section.

Format

$XABKEY_STORE XAB=xabkey-address,
COLTBL=#collating-table-address,
DAN=#data-bucket-area-number,
DFL=#data-bucket-fill-size,
DTP={BN2 | DBN2 | BN4 | DBN4 | BN8 | DBN8 | IN2
| DIN2 | IN4 | DIN4 | IN8 | DIN8 | COL | DCOL
| PAC | DPAC | STG | DSTG},
FLG=<CHG DAT_NCMPR DUP IDX_NCMPR KEY_NCMPR
NUL>,
IAN=#index-bucket-area-number,
IFL=#index-bucket-fill-size,
KNM=key-name-buffer-address,
LAN=#lowest-level-index-area-number,
NUL=#null-key-value,
NXT=next-xab-address,
POS=<position,...>,
PROLOG=#prolog-level,
REF=#key-of-reference-value,
SIZ=<size,...>

Arguments

For a description of the control block fields that correspond to the $XABKEY_
STORE macro arguments, see Chapter 14.

Arguments fall into several categories: values, addresses, keywords, and the
address of the control block to receive the specified arguments. Rules applicable
to these argument categories for the control block store macros are described in
Appendix B.

The XAB argument xabkey-address is required for the $XABKEY_STORE
macro and is not present for the $XABKEY macro. The POS and SIZ arguments
can be either symbolic addresses or a list of up to eight values, where each value
must be preceded by a number sign (#), and the entire list must be enclosed
within left angle and right angle brackets (<#value,...,#value>). The number of
POS and SIZ values must be equal. Alternatively, each POS and SIZ value can
be specified as an argument, using the following form:

POS0 = #value, POS1 = #value, ..., POS7 = #value

SIZ0 = #value, SIZ1 = #value, ..., SIZ7 = #value

Note that R0 is usually used by the $XABKEY_STORE macro; thus, R0 is not
preserved and does not contain a return status.

RMS Control Block Macros A–27

RMS Control Block Macros
$XABPRO

$XABPRO

The $XABPRO macro allocates and initializes a XABPRO. No value is returned
for this assembly-time operation.

Format

$XABPRO ACLBUF=ACL-buffer-address,
ACLCTX=<ACL-context>,
ACLSIZ=ACL-buffer-size,
MTACC=magnetic-tape-accessibility,
NXT=next-xab-address,
PRO=<system, owner, group, world>,
PROT_OPT=<PROPAGATE>,
UIC=<group, member>

Arguments

For a description of the control block fields that correspond to the $XABPRO
macro arguments, refer to Chapter 15.

Rules applicable to arguments are described in Appendix B.

For the MTACC (magnetic tape accessibility) argument, an ASCII radix
indicator is required. For example, the letter Z is entered as the accessibility
character with the following macro expression:

$XABPRO MTACC=^A/Z/

In this example, the circumflex (^) followed by an uppercase A indicates that
ASCII text follows. The two slashes (//) delimit the ASCII text. RMS converts all
lowercase characters to uppercase. No other modification is made.

For the PRO argument, the angle brackets are required syntax, and each user
class must be separated from the others by a comma. When you omit a class to
use the default protection, you must retain the comma to indicate the omission,
unless no other class follows.

To allow all system users read and write access, use the default file protection for
the file owner (by omission), allow group users read access, and use the default
for world users, you would specify <RW,,R>. You may specify all, some, or none
of the access characters, and place multiple characters in any order, for each user
class.

Here is a listing of the user classes together with the letters used to represent
them:

• R—read access

• W—write access

• E—execute access

• D—delete access

The absence of a code specifies that the access associated with the code is denied
to the user.

Users are granted the maximum number of access rights for each of the classes
to which they belong.

A–28 RMS Control Block Macros

RMS Control Block Macros
$XABPRO

For the UIC argument, the value for the group item must be in the range of 0
to 37777; the value for the member item must from 0 to 177777. Note that the
maximum values (37777 and 177777) are reserved for Compaq use only. The
group number and member number must be enclosed within angle brackets,
placed in the order <group,member>, and be separated by a comma. Each
number is interpreted as an octal number.

RMS Control Block Macros A–29

RMS Control Block Macros
$XABPRO_STORE

$XABPRO_STORE

The $XABPRO_STORE macro moves user-specified values into fields of the
specified XABPRO. The expanded $XABPRO_STORE code executes at run time
on a previously initialized (allocated) XABPRO, in contrast to the $XABPRO
macro, which initializes a XABPRO at assembly time. The $XABPRO_STORE
macro must reside in a code program section.

Format

$XABPRO_STORE XAB=xabpro-address,
ACLBUF=ACL-buffer-address,
ACLCTX=#<ACL-context>,
ACLSIZ=#ACL-buffer-size,
MTACC=#magnetic-tape-accessibility,
NXT=next-xab-address,
PRO=<system, owner, group, world>,
PROT_OPT=<PROPAGATE>,
UIC=#uic-value

Arguments

For a description of the control block fields that correspond to the $XABPRO_
STORE macro arguments, see Chapter 15.

Arguments fall into several categories: values, addresses, keywords, and the
address of the control block to receive the specified arguments. Rules applicable
to these argument categories for the control block store macros are described in
Appendix B.

The XAB argument xabpro-address is required for the $XABPRO_STORE
macro and is not present for the $XABPRO macro. Also, the following arguments
do not comply with the general rules:

• The PRO argument (file protection) can be either a symbolic address or a
list of keyword values. If you specify a list of keywords, it must be enclosed
within left angle (<) and right angle (>) brackets and the number sign (#)
must be omitted; for example, PRO=<RWED,RWED,R,R>.

• The UIC argument (group,member) can be either a symbolic address or a list
of two data values. If the data values are constants, they must be specified
with an octal radix without a preceding number sign (#). This argument can
be passed by its symbolic address or by using a VAX MACRO expression.

Note that R0 is usually used by the $XABPRO_STORE macro; thus, R0 is not
preserved and does not contain a return status.

A–30 RMS Control Block Macros

RMS Control Block Macros
$XABRDT

$XABRDT

The $XABRDT macro allocates and initializes a XABRDT. No value is returned
for this assembly-time operation.

Format

$XABRDT NXT=next-xab-address

Arguments

For a description of the control block fields that correspond to the $XABRDT
macro argument, see Chapter 16.

Rules applicable to arguments are described in Appendix B.

RMS Control Block Macros A–31

RMS Control Block Macros
$XABRDT_STORE

$XABRDT_STORE

The $XABRDT_STORE macro moves user-specified values into fields of the
specified XABRDT. The expanded $XABRDT_STORE code executes at run time
on a previously initialized (allocated) XABRDT, in contrast to the $XABRDT
macro, which initializes the XABRDT at assembly time. The $XABRDT_STORE
macro must reside in a code program section.

Format

$XABRDT_STORE XAB=xabrdt-address,
RDT=#revision-date-time,
RVN=#revision-number,
NXT=next-xab-address

Arguments

For a description of the control block fields that correspond to the $XABRDT_
STORE macro arguments, see Chapter 16.

Arguments fall into several categories: values, addresses, keywords, and the
address of the control block to receive the specified arguments. Rules applicable
to these argument categories for the control block store macros are described in
Appendix B.

The XAB argument xabrdt-address is required for the $XABRDT_STORE
macro and is not present for the $XABRDT macro. Also, the RDT argument
revision-date-time and RVN argument revision-number are not present in
the $XABRDT macro. The RDT argument revision-date-time is usually passed
by its symbolic address. However, if a register is used to contain a value for the
XAB$Q_RDT field, do not use R12, because two contiguous registers must be used
to contain the value of this quadword field.

Note that R0 is usually used by the $XABRDT_STORE macro; thus, R0 is not
preserved and does not contain a return status.

A–32 RMS Control Block Macros

RMS Control Block Macros
$XABSUM

$XABSUM

The $XABSUM macro allocates and initializes a XABSUM. No value is returned
for this assembly-time operation.

Format

$XABSUM NXT=next-xab-address

Arguments

For a description of the control block fields that correspond to the $XABSUM
macro argument, see Chapter 18.

Rules applicable to arguments are described in Appendix B.

RMS Control Block Macros A–33

RMS Control Block Macros
$XABSUM_STORE

$XABSUM_STORE

The $XABSUM_STORE macro moves user-specified values into fields of the
specified XABSUM. The expanded $XABSUM_STORE code executes at run time
on a previously initialized (allocated) XABSUM, in contrast to the $XABSUM
macro, which initializes the XABSUM at assembly time. The $XABSUM_STORE
macro must reside in a code program section.

Format

$XABSUM_STORE XAB=xabsum-address,
NXT=next-xab-address

Arguments

For a description of the control block fields that correspond to the $XABSUM_
STORE macro arguments, see Chapter 18.

Arguments fall into several categories: values, addresses, keywords, and the
address of the control block to receive the specified arguments. Rules applicable
to these argument categories for the control block store macros are described in
Appendix B.

The XAB argument xabsum-address is required for the $XABSUM_STORE
macro and is not present for the $XABSUM macro.

Note that R0 may be used by the $XABSUM_STORE macro; thus, R0 is not
preserved and does not contain a return status.

A–34 RMS Control Block Macros

RMS Control Block Macros
$XABTRM

$XABTRM

The $XABTRM macro allocates and initializes a XABTRM. No value is returned
for this assembly-time operation.

Format

$XABTRM ITMLST=item-list-address,
ITMLST_LEN=item-list-length,
NXT=next-xab-address

Arguments

For a description of the control block fields that correspond to the $XABTRM
macro arguments, see Chapter 19.

Rules applicable to arguments are described in Appendix B.

RMS Control Block Macros A–35

RMS Control Block Macros
$XABTRM_STORE

$XABTRM_STORE

The $XABTRM_STORE macro moves user-specified values into fields of the
specified XABTRM. The expanded $XABTRM_STORE code executes at run time
on a previously initialized (allocated) XABTRM, in contrast to the $XABTRM
macro, which initializes a XABTRM at assembly time. The $XABTRM_STORE
macro must reside in a code program section.

Format

$XABTRM_STORE XAB=xabtrm-address,
ITMLST=item-list-address,
ITMLST_LEN=#item-list-length,
NXT=next-xab-address

Arguments

For a description of the control block fields that correspond to the $XABTRM_
STORE macro arguments, see Chapter 19.

Arguments fall into several categories: values, addresses, keywords, and the
address of the control block to receive the specified arguments. Rules applicable
to these argument categories for the control block store macros are described in
Appendix B.

The XAB argument xabtrm-address is required for the $XABTRM_STORE
macro and is not present for the $XABTRM macro.

Note that R0 is usually used by the $XABTRM_STORE macro; thus, R0 is not
preserved and does not contain a return status.

A–36 RMS Control Block Macros

B
VAX MACRO Programming Information and

Examples

This appendix provides VAX MACRO programmers with information about the
four types of RMS macros used in VAX MACRO programming. It describes each
of the four types of macros, the macro naming conventions, and macro syntax
rules. It then shows you how to use the macros and includes examples for each of
the four types. Note that the term ‘‘macro’’ refers to a program macro written in
the VAX MACRO language.

B.1 RMS Macros
RMS provides four types of macros used by VAX MACRO programs implementing
RMS features. The functions these macros provide are described in the following
list.

• Control block initialization macros initialize a control block at assembly time.
This type of macro performs five separate actions:

Allocates space within the program image for the specified control block

Defines the symbolic names associated with a control block

Initializes certain control block fields with internally used values

Initializes specified control block fields with user-specified values

Initializes certain fields with system-supplied defaults (does not apply to
all control block macros)

As an alternative to using this type of macro, an application program would
have to allocate each control block needed with its correct length, initialize
the internally used fields with the correct values, and initialize or set user-
specified values in the appropriate fields. It is strongly recommended that
you use these macros for VAX MACRO programs.

• Control block symbol definition macros define control block symbolic names
at assembly time without allocating and initializing the control block. These
macros are needed only when the corresponding initialization macro is not
used and the symbols are not defined.

• Control block store macros store user-specified field values in control blocks
at run time. Alternatively, you can store values in control block fields at
run time using VAX MACRO instructions, such as the MOVx and MOVAx
instructions. RMS accesses control block fields using the symbolic names that
represent field offsets from the start of the control block.

• Service macros invoke record management services at run time. When a
service is invoked, one or more control blocks are examined for required field
values. Values are also returned in one or more control blocks, including
condition codes. Record management services conform to the OpenVMS

VAX MACRO Programming Information and Examples B–1

VAX MACRO Programming Information and Examples
B.1 RMS Macros

calling standard and can be invoked directly, if needed, without the calling
program having to use the service macro. However, the appropriate control
block must be present with the appropriate field values set for the requested
operation.

RMS stores its macros for use by VAX MACRO programs in
SYS$LIBRARY:STARLET.MLB.

B.1.1 Conventions for Naming RMS Macros
The names for the macros that initialize control blocks at assembly time consist
of a dollar sign ($) followed by the name of the control block. For example, the
name of the macro that initializes a FAB is $FAB; the name of the macro that
initializes a XABALL is $XABALL.

The names for the macros that define symbolic offsets without performing
control block initialization contain the suffix DEF following the corresponding
initialization macro name; for example, $FABDEF and $XABALLDEF.

The names for the macros that set control block field values at run time contain
the suffix ‘‘_STORE’’ following the corresponding initialization macro name; for
example, $FAB_STORE and $XABALL_STORE.

Table B–1 summarizes the control blocks, their assembly time macro names, and
their functions.

Table B–1 User Control Blocks

Control
Block

Macro
Names Function

FAB Describes a file and contains file-related information

$FAB Allocates storage for a FAB and initializes certain
FAB fields; also defines symbolic offsets for a FAB

$FABDEF Defines symbolic offsets for FAB fields

$FAB_STORE Moves specified values into a previously allocated
and initialized FAB

NAM Contains file specification information beyond that
in the file access block

$NAM Allocates storage for a NAM and initializes certain
NAM fields; also defines symbolic offsets for a NAM

$NAMDEF Defines symbolic offsets for NAM fields

$NAM_STORE Moves specified values into a previously specified
and allocated NAM

RAB Describes a record stream and contains record-
related information

$RAB Allocates storage for a RAB and initializes certain
RAB fields; also defines symbolic offsets for a RAB

$RABDEF Defines symbolic offsets for both RAB and RAB64
fields

$RAB_STORE Moves specified values into a previously specified
and allocated RAB

(continued on next page)

B–2 VAX MACRO Programming Information and Examples

VAX MACRO Programming Information and Examples
B.1 RMS Macros

Table B–1 (Cont.) User Control Blocks

Control
Block

Macro
Names Function

$RAB64 Allocates storage for a RAB64 and initializes certain
RAB64 fields; also defines symbolic offsets for a
RAB64

$RAB64_STORE Moves specified values into a previously specified
and allocated RAB64

XAB Supplements file attributes in the file access block;
for XABTRM and XABRU, supplements information
in the record access block

$XABxxx1 Allocates and initializes a XAB

$XABxxxDEF Defines symbolic offsets for a XABxxx

$XABxxx_STORE Moves specified values into a previously specified
and allocated XABxxx

1The variable xxx represents a 3-character mnemonic.

Record management services can be called using the OpenVMS calling standard.
These services are system services identified by the entry point prefix ‘‘SYS$’’
followed by three or more characters; the ‘‘SYS’’ prefix is omitted in the
corresponding VAX MACRO macro name. For example, the Create service has
an entry point of SYS$CREATE and a VAX MACRO macro name of $CREATE. A
complete description of each service is provided in Part III.

Table B–2 describes the functions of each service, including the service entry
point name and its corresponding VAX MACRO macro name.

Table B–2 Record Management Services

Service Name Macro Name Description

File-Processing and File-Naming Macros

SYS$CLOSE $CLOSE Terminates file processing and disconnects
all record streams previously associated
with the file

SYS$CREATE $CREATE Creates and opens a new file

SYS$DISPLAY $DISPLAY Returns the opened file’s attributes to the
application program

SYS$ENTER1 $ENTER Enters a file name into a directory

SYS$ERASE $ERASE Deletes a file and removes its directory
entry

SYS$EXTEND $EXTEND Allocates additional space to a file

SYS$OPEN $OPEN Opens an existing file and initiates file
processing

SYS$PARSE $PARSE Parses a file specification

1This service is not supported for DECnet for OpenVMS operations involving remote file access
between two OpenVMS systems.

(continued on next page)

VAX MACRO Programming Information and Examples B–3

VAX MACRO Programming Information and Examples
B.1 RMS Macros

Table B–2 (Cont.) Record Management Services

Service Name Macro Name Description

File-Processing and File-Naming Macros

SYS$REMOVE1 $REMOVE Removes a file name from a directory
but does not actually delete the file data;
compare this with the $ERASE macro

SYS$RENAME $RENAME Assigns a new name to (renames) a file

SYS$SEARCH $SEARCH Searches a directory, or possibly multiple
directories, for a file name

Record-Processing Macros

SYS$CONNECT $CONNECT Establishes a record stream by associating
a RAB with an open file

SYS$DELETE $DELETE Deletes a record from a relative or indexed
file

SYS$DISCONNECT $DISCONNECT Terminates a record stream by
disconnecting a RAB from an open file

SYS$FIND $FIND Locates the specified record, establishes
it as the current record, and returns the
record’s RFA to the application program

SYS$FLUSH $FLUSH Writes (flushes) modified I/O buffers and
file attributes to the disk before closing a
file

SYS$FREE $FREE Unlocks all records previously locked by the
record stream

SYS$GET $GET Retrieves a record from a file

SYS$NXTVOL1 $NXTVOL Causes processing of a magnetic tape file to
continue to the next volume of a volume set

SYS$PUT $PUT Writes a new record to a file

SYS$RELEASE $RELEASE Unlocks a record pointed to by the contents
of the RAB$W_RFA field

SYS$REWIND $REWIND Establishes the first file record as the
current record

SYS$TRUNCATE $TRUNCATE Truncates a sequential file

SYS$UPDATE $UPDATE Deletes and rewrites (updates) an existing
file record

SYS$WAIT $WAIT Awaits the completion of an asynchronous
record operation

Block I/O-Processing Macros

SYS$READ $READ Retrieves a specified number of bytes from
a file, beginning on block boundaries

SYS$SPACE $SPACE Positions forward or backward in a file to a
block boundary

1This service is not supported for DECnet for OpenVMS operations involving remote file access
between two OpenVMS systems.

(continued on next page)

B–4 VAX MACRO Programming Information and Examples

VAX MACRO Programming Information and Examples
B.1 RMS Macros

Table B–2 (Cont.) Record Management Services

Service Name Macro Name Description

Block I/O-Processing Macros

SYS$WRITE $WRITE Writes a specified number of bytes to a file,
beginning on block boundaries

B.1.2 Applicable VAX MACRO Syntax Rules
One of the conventions used with RMS control block macros is to identify a field
by a mnemonic; for example, you can specify the FAB$L_ALQ field using its
mnemonic, ALQ. Using a mnemonic ensures the accuracy of argument value
placement regardless of how you code the related argument. For example, the
mnemonic for the FAB field that specifies the allocation quantity is ALQ. Thus,
when using the $FAB macro to initialize the allocation quantity field, you might
use the following macro expression:

INFAB: $FAB ALQ=500

This macro statement defines the start of the FAB at label (symbolic address)
INFAB and initializes the allocation field to provide 500 blocks of space to the
specified file.

In this instance, if you want to change the allocation value to 250 blocks at run
time, you could use the following macro expression:

MOVL #250, INFAB+FAB$L_ALQ ; Set allocation quantity

In fields that contain binary options or keyword values, you should use the
appropriate keyword or symbolic binary option value. For example, the FAB uses
the ORG field to specify a file organization. Three keywords are defined for this
field: SEQ (sequential file), REL (relative file), and IDX (indexed file). To specify
an indexed file organization, you should use the following macro expression:

OUTFAB: $FAB ORG=IDX

To specify an indexed file organization at run time, you must move the value into
the field using appropriate symbols:

MOVAL OUTFAB, R5 ; Move address into R5
MOVB #FABC_IDX, FABB_ORG(R5) ; Store constant value

In control block macros, arguments for bit fields that can contain multiple values
are usually enclosed within angle brackets <value_1,value_2,value_n>. Consider
the file access (FAC) field (FAB$B_FAC) in the FAB, a bit field that can contain
multiple values. To permit a process to do Get and Put operations, the following
macro expression could be used:

INFAB: $FAB FAC=<GET,PUT> ; Specify Put and Get operations

Control block macro arguments that are interpreted as ASCII characters (such as
a file specification) must also be enclosed within angle brackets. The use of the
left angle (<) and right angle (>) delimiters is noted in the format and argument
descriptions of the control block macros in Part II.

At run time, you could use the following code sequence to make the file accessible
to a Get operation:

VAX MACRO Programming Information and Examples B–5

VAX MACRO Programming Information and Examples
B.1 RMS Macros

MOVAL OUTFAB, R6 ; Move FAB addr into R6
BBS #FABV_GET, FABB_FAC(R6), OK ; Go to OK if GET bit set
BISB #FABM_GET, FABB_FAC(R6) ; Else set GET bit
OK:

When you use RMS macros, follow the coding rules used by the VAX MACRO
assembler as described in the following list:

• Comments must be separated from the rest of the code line by a semicolon
(;). For example:

$FAB BKS=4 ; Bucket size

• All the arguments for a macro must be coded in a single statement. If the
arguments do not fit on a line or if you want to use multiple lines, type
the continuation character, a hyphen (-), as the last character on the line;
then continue typing arguments on the next line. Comments can follow the
hyphen. For example:

$FAB FNA=FLNAM,- ; Filename address
ALQ=100,- ; Allocation quantity
BKS=4 ; Bucket size

• Arguments and subarguments can be separated from each other by one of the
following:

A comma, with or without spaces or tabs:

FNA=FLNAM,ALQ=100

A space:

FNA=FLNAM ALQ=100

Multiple spaces or tabs:

FNA=FLNAM ALQ=100

The comma without a space or tab is preferred. All coding examples in this
manual use a comma to separate arguments.

B.2 Using the RMS Macros
This section provides examples of how to use the four types of RMS macros.

B.2.1 Control Block Initialization Macros
A major advantage to using the control block initialization macros is that they
direct the initialization values to the correct field locations in the control block.
Returned status values do not apply here because RMS evaluates this type of
macro at assembly time, not at run time.

Control block initialization macros are located at the beginning of their associated
control block. The initialization macro should have a related label because the
address of the control block is a required argument for most services and for some
control block macros. As shown in the following example, the label provides a
programming convenience for symbolically addressing the control block:

MYFAB: $FAB

B–6 VAX MACRO Programming Information and Examples

VAX MACRO Programming Information and Examples
B.2 Using the RMS Macros

Arguments usually require an address, such as a symbolic address, or a value.
RMS initializes the appropriate field by simply taking the supplied argument and
placing it after the appropriate macro data declaration directive, as shown in the
following code example:

.ADDRESS address

.BYTE value

Arguments that specify field values must be enclosed within angle brackets under
the following conditions:

• When the argument is a file specification (ASCII character string)

• When more than one argument is supplied for a binary options field, where
each bit option is identified by a 3-letter mnemonic

• Where otherwise indicated in the format of the macro, such as for UICs and
file identifiers in which multiple values separated by commas constitute the
argument

Here are several examples:

MYFAB: $FAB FAC=<GET, PUT>,- ; Multioption field
FNM=<DEGREE_DAY.DAT>,- ; File specification

.

.

.
NXT=MYXPRO,- ; XAB address
ORG=SEQ ; Single-option field

;
MYXPRO: $XABPRO PRO=<RWED,RWED,R,R>,- ; File protection

UIC=<377,377> ; UIC

Do not position the macro name in a read-only program section because control
block fields may receive values during the execution of a service. For efficiency,
align the control blocks on a longword boundary. The initialization macros display
an informational message in the listing file if the control block is not longword
aligned.

In summary, initialization macros must be placed in a writable data program
section in which the data has been aligned on a longword boundary.

B.2.2 Control Block Symbol Definition Macros
A control block symbol definition macro includes the macro name only, has no
arguments, and can be placed in any program section. The macro name is made
up of the associated initialization macro and the suffix DEF.

RMS does not provide return values for control block symbol definition macros.

B.2.3 Control Block Store Macros
A control block store macro consists of executable run-time code, so it must
be placed within an executable code program section. R0 cannot be used to
return condition codes because control block store macros may use R0 to move
arguments. The only detectable errors are assembly-time errors.

The calling format of each control block store macro resembles the calling format
of the corresponding initialization macro except that a control block store macro
can take a run-time value as an argument. Run-time values include date and
time values, file identifier values, device identifier values, directory identifier
values, and record file address values.

VAX MACRO Programming Information and Examples B–7

VAX MACRO Programming Information and Examples
B.2 Using the RMS Macros

The following list describes other differences between the format of a control
block store macro and its corresponding control block initialization macro:

• An argument specifying the address of the control block is required unless the
calling program provides the control block address in R0. If this argument is
not a register value in the form Rn, RMS loads the control block address into
R0.

• For each argument that requires an address, the store macro uses the VAX
MACRO instruction MOVAx (usually MOVAL) to move the address into
the appropriate control block field. Thus, VAX MACRO expressions can be
used. For instance, you can use a symbolic address to specify the control
block address argument directly (for example, FAB=MYFAB, NAM=MYNAM,
RAB=MYRAB, or XAB=MYXAB).

You may also specify a register that contains the address using the form Rn,
where n is a decimal number from 0 through 12.

• For each argument that requires a nonkeyword data value, the store macro
uses the VAX MACRO instruction MOVx to move data into the appropriate
control block field. Thus, VAX MACRO expressions can be used. Note
that a number sign (#) must precede a literal nonkeyword value, except
when a literal value is enclosed within left angle (<) and right angle (>)
brackets. However, if you specify the address where the argument value
resides, a number sign must not precede the symbolic address nor the register
expression that contains the address.

• For binary option or keyword value fields, use the supplied keyword without
a number sign and do not use a VAX MACRO expression. Multiple keyword
arguments must be enclosed within left angle (<) and right angle (>) brackets.

In some cases, arguments are specified as run-time values using one of the
following forms:

• A VAX MACRO expression

• The symbolic address of the argument value

Example B–1 illustrates the use of the $XABDAT_STORE macro to set the
creation date of the file to the beginning of a fiscal quarter, thereby establishing a
valid starting date for the file data.

This short program creates a file with a creation date of midnight, August
9, 1994. The FAB at symbolic address MYFAB defines a sequential file with
variable-length records up to 52 bytes in length and specifies an allocation size of
500 blocks using the contiguous-best-try file processing option. It also specifies
the file specification. The .ASCID assembler directive defines the constant
date-time character string at symbolic address ATIM.

The SYS$BINTIM system service is invoked to convert the constant ASCII
time at symbolic address ATIM to binary format in the quadword at BTIM. The
BTIM value is moved into the XAB$Q_CDT field of the XABDAT control block at
symbolic address MYXDAT using the following XABDAT_STORE macro:

$XABDAT_STORE XAB=MYXDAT, CDT=BTIM

B–8 VAX MACRO Programming Information and Examples

VAX MACRO Programming Information and Examples
B.2 Using the RMS Macros

Example B–1 Use of the $XABDAT and $XABDAT_STORE Macros

.TITLE CREAT - SET CREATION DATE
; Program that uses XABDAT and XABDAT_STORE
;

.PSECT LONG WRT,NOEXE
;
MYFAB: $FAB ALQ=500,FOP=CBT,FAC=PUT, -

FNM=<DISK$:[PROGRAM]SAMPLE_FILE.DAT>,-
ORG=SEQ,RAT=CR,RFM=VAR,SHR=NIL,MRS=52,XAB=MYXDAT

;
MYXDAT: $XABDAT
;
ATIM: .ASCID /9-AUG-1994 00:00:00.00/
BTIM: .BLKQ 1
;

.PSECT CODE NOWRT,EXE

.ENTRY CREAT, ^M<>
START: $BINTIM_S TIMBUF=ATIM, TIMADR=BTIM ; Convert ASCII to binary time

BLBC R0,SS_ERR ; Branch on error
$XABDAT_STORE XAB=MYXDAT, CDT=BTIM ; Move time into XAB$Q_CDT
$CREATE FAB=MYFAB ; Create file; populate
BLBC R0,ERROR ; file later

CLOSE: $CLOSE FAB=MYFAB ; Close file
BRB FINI ; and exit

ERROR: PUSHL FAB$L_STV+MYFAB ; Push FAB STS and
PUSHL FAB$L_STS+MYFAB ; STV on stack
CALLS #2, G^LIB$SIGNAL ; Signal error
BRB FINI

SS_ERR: PUSHL R0 ; Push R0
CALLS #1, G^LIB$SIGNAL ; Signal error

FINI: RET
.END CREAT

Because the creation date in field XAB$Q_CDT is input to the Create service
($CREATE macro), the value must be stored before the program invokes the
Create service. The file is created, then closed. Note that Create service errors
are signaled using the FAB$L_STS and FAB$L_STV fields, not R0.

B.2.4 Service Macros
This section describes the general macro format of record management service
macros. Part III describes each service in detail, including the calling format.

Note that the general information applicable to invoking record management
services in Chapter 2 also applies to programs written in VAX MACRO.

The service macros use two general formats:

label: macro-name

label: macro-name RAB=rab-address,-
ERR=entry,-
SUC=entry

The first format takes no arguments. You supply the argument list within your
program, and the argument pointer register (AP) is assumed to contain the
address of the argument list. An example of this format follows.

VAX MACRO Programming Information and Examples B–9

VAX MACRO Programming Information and Examples
B.2 Using the RMS Macros

ARG_LOC: .BLKL 2
.
.
.

MOVL #1,ARG_LOC ; Move number of args to ARG_LOC
MOVAL INFAB, ARG_LOC+4 ; Move FAB address to ARG_LOC+4
MOVAL ARG_LOC, AP ; Move ARG_LOC address to AP
$OPEN ; Open file

In this form, the $OPEN macro expands to the following VAX MACRO code:

CALLG (AP), G^SYS$OPEN

In the second format, you supply arguments that automatically generate an
argument list on the stack according to the values you supplied. You specify
these arguments using keywords, which can be in any order. You must separate
keywords using a comma, a blank space, or tabs. The only argument required
when using the second format is the control block address (FAB=fab-address or
RAB=rab-address). This argument must be either a general register (R0 through
R11) containing the control block address, or a suitable address for a PUSHAL
instruction. If you omit this argument, no other arguments are allowed; in other
words, you must use the first format.

The ERR=entry and SUC=entry arguments are optional and, if used, provide the
addresses of completion routine entry points. Completion routines are always
executed as ASTs. RMS places the values you supply in the argument list on the
stack during execution of the expanded macro. These values must be addresses
that can be used by a PUSHAL instruction.

Here is an example of the second format:

$OPEN FAB=INFAB

This macro line expands to the following VAX MACRO code:

PUSHAL INFAB
CALLS #01, G^SYS$OPEN

When the argument list contains a completion routine argument, an AST is
queued. When the AST routine executes, the following conditions hold:

• General registers R0 through R11 are undefined. The AP contains the address
of the AST argument list; the AST argument value in the AST argument list
specifies the address of the associated control block (FAB or RAB). The status
must be retrieved from the completion status code field (STS) of the associated
control block.

• Any general registers saved by an entry mask can be modified, in addition to
R0 and R1.

• Additional calls to record management services can be made within the
completion routines.

• To exit from a completion routine, you must perform any necessary cleanup
operations and execute a RET instruction.

The calling format of each service is listed alphabetically in Part III. The format
for the Close service is shown in the following code example:

SYS$CLOSE fab [,[err] [,suc]]

When you use a macro to call a service, remember to omit the SYS prefix. For
example, use $CLOSE instead of SYS$CLOSE.

B–10 VAX MACRO Programming Information and Examples

VAX MACRO Programming Information and Examples
B.2 Using the RMS Macros

All file-processing macros require the FAB address as an argument and optionally
allow you to specify the entry points for error or success condition handlers, as
shown in the following format illustration:

$macro FAB=fab-addr [,ERR=error-entry] [,SUC=success-entry]

For example, to invoke the $OPEN macro and pass it the FAB address of INFAB
and the error entry point of OPEN_ERR, you could use the following macro:

$OPEN FAB=INFAB, ERR=OPEN_ERR

Note that the $RENAME macro has a different format, as noted in Table B–3.
This file processing macro has the following format:

$RENAME OLDFAB=old-fab-addr [,ERR=error-entry]
[,SUC=success-entry] ,NEWFAB=new-fab-addr

The format for record processing macros and block I/O macros requires the RAB
address as an argument and optionally allows you to specify the entry points for
error or success condition handlers, as shown in the following format illustration:

$macro RAB=rab-addr [,ERR=error-entry] [,SUC=success-entry]

Note that the $WAIT macro has a different format, in that it does not use the
error and success arguments:

$WAIT RAB=rab-addr

Table B–3 lists each service macro according to its macro type.

Table B–3 File, Record, and Block I/O Processing Macros

File
Processing

Record
Processing Block I/O

$CLOSE $CONNECT $READ

$CREATE $DELETE $SPACE

$DISPLAY $DISCONNECT $WRITE

$ENTER $FIND

$ERASE $FLUSH

$EXTEND $FREE

$NXTVOL $GET

$OPEN $PUT

$PARSE $RELEASE

$REMOVE $REWIND

$RENAME1 $TRUNCATE

$SEARCH $UPDATE

$WAIT

1Denotes macro with nonstandard format (see text).

After calling a service, you should check the status code returned in R0 (and the
STS field of the appropriate control block). The recommended way to signal errors
is to provide both the STS and STV fields of the FAB or RAB as arguments to the
appropriate run-time library routine. The following VAX MACRO instructions
invoke the LIB$SIGNAL routine for a file-related (FAB) error using the CALLS

VAX MACRO Programming Information and Examples B–11

VAX MACRO Programming Information and Examples
B.2 Using the RMS Macros

(stack) form of calling a routine, where the FAB is located at symbolic address
MYFAB (not shown):

PUSHL MYFAB+FAB$L_STV ; Push fields on stack
PUSHL MYFAB+FAB$L_STS ; in reverse order
CALLS #2, G^LIB$SIGNAL ; Invoke signal routine

B.3 VAX MACRO Example Programs
This section includes examples illustrating the implementation of RMS at the
VAX MACRO programming level. See the Guide to OpenVMS File Applications
for RMS examples using the Edit/FDL utility.

Using RMS macros, you can create new files, process existing files, extend and
delete files, and read, write, update, and delete records within files.

To create and process RMS files, your program must contain calls to appropriate
services. Generally, you make these calls by using the service macros for run-time
processing. When encountered at run time, the expanded code of these macros
generates a call to the corresponding service. Each macro and its resultant call
represent a program request for a file or record service, or a block I/O transfer
operation.

B.3.1 Creating, Accessing, and Deaccessing a File
The Create service constructs a new file according to the attributes you specify
in the FAB for the file, whereas the Open service makes an existing file available
for processing by your program. Both of these services, invoked by the $CREATE
and $OPEN macros respectively, allocate resources within the system to establish
access (a path) to a file. You must open or create a file to perform most file
operations and any record operations on that file. Applications designed for
shared access must declare the type of sharing at this time. The user specifies
the various types of shared access by setting bits in the file access control
(FAB$B_FAC) and share (FAB$B_SHR) fields in the appropriate FAB.

RMS provides several file-processing options for the Create service. The create-if
option (FAB$V_CIF option in the FAB$L_FOP field) requests that the file be
created only if it does not exist. If the file does exist in the specified directory, the
file is opened, not created. The Open and Create services both establish access
to the desired file, but the Create service additionally allocates disk space and
performs functions related to allocation.

When you are finished processing a file, you invoke the Close service ($CLOSE
macro) to close the file, disconnect all record streams associated with the file,
and free all resources allocated to the file. If you do not explicitly invoke the
Close service when the program image exits, RMS attempts an implicit close. All
resources associated with open files are returned when the files are deaccessed at
image rundown time. However, process permanent files are not implicitly closed
when an image exits. These are special files that the current CLI opens outside
the context of a normal image.

B.3.2 Example of Opening and Creating Files
Example B–2 illustrates the use of the Open, Create, Connect, Get, Put, and
Close services to access and copy records from one file to another. Note that the
arguments to the $FAB and $RAB macros are listed vertically on separate lines
for ease in reading them. However, the argument list must be contiguous and a
common programming error is omission of required delimiters and continuation
characters when the arguments are listed in this manner.

B–12 VAX MACRO Programming Information and Examples

VAX MACRO Programming Information and Examples
B.3 VAX MACRO Example Programs

Example B–2 Use of the Create, Open, and Close Services

.TITLE COPYFILE
;
; This program copies the input file to the output file.
;

.PSECT DATA,WRT,NOEXE
INFAB: $FAB FNM = <INFILE:>,- ; Primary input file name

DNM = <.INV> ; Default input file type
INRAB: $RAB FAB = INFAB,- ; Pointer to FAB

ROP = RAH,- ; Read-ahead option
UBF = REC_BUFF,- ; Record buffer
USZ = REC_SIZE ; and size

OUTFAB: $FAB FNM = <OUTFILE:>,- ; Primary output file name
DNM = <.INV>,- ; Default output file name
FOP = CTG,- ; Make contiguous file
FAC = <PUT>,- ; Open for PUT operations
SHR = <NIL>,- ; Exclusive file access
MRS = REC_SIZE,- ; Maximum record size
RAT = CR ; Implied carriage control

OUTRAB: $RAB FAB = OUTFAB,- ; Pointer to FAB
ROP = WBH,- ; Write-behind option
RBF = REC_BUFF ; Output uses same buffer

; as input

;
REC_SIZE = 132 ; Maximum record size
REC_BUFF:

.BLKB REC_SIZE ; Record buffer

.PSECT CODE,NOWRT,EXE
;
; Initialization - Open input and output files and connect streams
;

.ENTRY COPYFILE,^M<R6> ; Save R6
$OPEN FAB=INFAB ; Open input file
BLBC R0,EXIT1 ; Quit on error
$CONNECT RAB=INRAB ; Connect to input
BLBC R0,EXIT2 ; Quit on error
MOVL INFAB+FAB$L_ALQ,- ; Set proper size for output

OUTFAB+FAB$L_ALQ
$CREATE FAB=OUTFAB ; Create output file
BLBC R0,EXIT3 ; Quit on error
$CONNECT RAB=OUTRAB ; Connect to output
BLBS R0,READ ; Branch to READ loop
BRB EXIT4 ; Trap error

EXIT1: MOVAL INFAB,R6 ; Error: Keep FAB address
BRB F_ERR ; Signal file error

EXIT2: MOVAL INRAB,R6 ; Keep RAB address
BRB R_ERR ; Signal record error

EXIT3: MOVAL OUTFAB,R6 ; Keep FAB address
BRB F_ERR ; Signal record error

EXIT4: MOVAL OUTRAB,R6 ; If error, retain RAB addr.
BRB R_ERR ; Signal record error

;
; Copy records loop
;
READ: $GET RAB=INRAB ; Get a record

BLBS R0,WRITE ; Write the record
CMPL R0,#RMS$_EOF ; Was error end-of-file?
BEQL DONE ; Successful completion
BRB EXIT2 ; Error otherwise

(continued on next page)

VAX MACRO Programming Information and Examples B–13

VAX MACRO Programming Information and Examples
B.3 VAX MACRO Example Programs

Example B–2 (Cont.) Use of the Create, Open, and Close Services

WRITE: MOVW INRAB+RAB$W_RSZ, - ; Input RAB sets record
OUTRAB+RAB$W_RSZ ; size for output RAB

$PUT RAB=OUTRAB ; Write the record
BLBC R0,EXIT4 ; Quit on error
BRB READ ; Go back for more

;
; Close files, signal any errors, and exit
;
F_ERR: PUSHL FAB$L_STV(R6) ; Push STV and STS of FAB

PUSHL FAB$L_STS(R6) ; on the stack
CALLS #2, G^LIB$SIGNAL ; Signal error
BRB EXIT

R_ERR: PUSHL RAB$L_STV(R6) ; Push STV and STS of RAB
PUSHL RAB$L_STS(R6) ; on the stack
CALLS #2, G^LIB$SIGNAL ; Signal error

DONE: $CLOSE FAB=INFAB ; Close input
$CLOSE FAB=OUTFAB ; and output

EXIT: RET ; Return with status in R0
.END COPYFILE

This example illustrates how you can use the sequential file organization to
create a new file by copying records from an existing file. The newly created file
and the source file have variable-length records.

This example assumes that an external program has identified the input file as a
search list logical name using this statement:

$ ASSIGN [INV]30JUN85,[INV.OLD]30JUN85 INFILE:

This directs RMS to look for the input file in directory [INV] first, and if it does
not find the file, it should look in directory [INV.OLD].

The program also specifies the default file type .INV for the input file using this
statement:

DNM=<.INV> ; Default input file name

Next the program configures the RAB used for the input file (labeled INRAB).
The first argument links the RAB to the associated FAB (INFAB) and this is
the only required argument to a RAB. The rest of the arguments specify the
read-ahead option (described in later text) and the record buffer for the input
file. The Get service uses the user record buffer address (UBF) field and the user
record buffer size (USZ) field as inputs to specify the record buffer and the record
size, respectively.

Note

When you invoke the Get service, RMS takes control of the record buffer
and may modify it. RMS returns the record size and only guarantees the
contents from where it accessed the record to the completion of the record.

The program then configures the FAB for the output file. The first argument
uses the FNM field to equate the file name to the externally defined logical name
OUTFILE. After the program specifies the default file specification extension for
the output file, it specifies three additional FAB fields.

First it directs RMS to allocate contiguous space for the output file by setting the
CTG bit in the FAB$L_FOP field of the FAB.

B–14 VAX MACRO Programming Information and Examples

VAX MACRO Programming Information and Examples
B.3 VAX MACRO Example Programs

Next the program uses a program-defined variable to store the value 132 in the
MRS field:

MRS=REC_SIZE
REC_SIZE= 132

The program then specifies that each record is to be preceded by a line feed and
followed by a carriage return whenever the record is output to a line printer or
terminal:

RAT=CR

Because the program alternately reads and then writes each record, the input file
and the output file may share the same buffer. However, because the Put service
does not have access to the UBF and UBZ fields, the output RAB defines the
buffer using the RBF and the RSZ fields.

Note that the UBF, USZ, and RBF values are set prior to run time, but that the
RSZ value is set at run time, just prior to invocation of the Put service. This is
done because the input file contains variable-length records and the Put service
relies on the Get service to supply each record’s size by way of the RSZ field, an
INRAB output field.

The following statement from the sample program illustrates this feature:

WRITE: MOVW INRAB+RAB$W_RSZ, - ; Input RAB sets record
OUTRAB+RAB$W_RSZ ; size for output RAB

The run-time processing macros for the input file consist of a $OPEN, a
$CONNECT, a $GET, and a $CLOSE macro. Because the input file already
exists, the program accesses it with a $OPEN macro. The sole argument to this
macro identifies the FAB to the Open service:

$OPEN FAB=INFAB

Next, the program connects a record stream to the input file by calling the
Connect service and specifying INRAB as the appropriate RAB:

$CONNECT RAB=INRAB

Note that upon completion of each service call, the program tests the condition
value in R0 returned by the service before proceeding to the next call. If the call
fails, the program exits with the appropriate control block address in R6.

After creating the output file and establishing its record stream, the program
begins a processing loop in which the Get service reads a record from the input
file and the Put service writes the record to the output file. When all file records
are copied, as indicated by the detection of the end of the file, the program exits
to label DONE, which closes both files.

The Close service disconnects the record stream for all RABs connected to
the specified FAB. In a multistream environment (more than one RAB can be
connected to a single FAB), a program may disconnect individual record streams
using the Disconnect service.

VAX MACRO Programming Information and Examples B–15

VAX MACRO Programming Information and Examples
B.3 VAX MACRO Example Programs

B.3.3 Example of Creating a Multiple-Key Indexed File
Example B–3 creates an indexed file on a remote node from a sequential file
on the local node. The indexed file contains three keys: a segmented primary
key and two simple alternate keys. The segmented primary key includes the
customer’s last name, the first letter of the customer’s first name, and the
customer’s middle initial.

Example B–3 Use of the Create Service for an Indexed File

.TITLE CREATEIDX - CREATE INDEXED FILE

.IDENT /V001/
;
; This program creates an indexed file with three keys from a
; sequential file containing a name and address list. The record
; format of the input file is shown below:
;
; First Name Column 00-10
; Middle Initial Column 11-11
; Last Name Column 12-26
; Street Column 27-46
; City Column 47-58
; State Column 59-60
; Zip Code Column 61-65
; Reserved for
; new data Column 66-end of record
;
; The input and output files are specified by the logical names SRC
; and DST, respectively. For example:
;
; $ DEFINE SRC DBB1:[TEST]INPUT.DAT
; $ DEFINE DST TRNTO::DRA4:[RMS.FILES]OUTPUT.DAT
; $ RUN CREATEIDX
;
;**

.SBTTL Control block and buffer storage

.PSECT DATA NOEXE,LONG
;
; Define the source file FAB and RAB control blocks.
;
SRC_FAB:

$FAB FAC=<GET>,- ; File access for GET only
FOP=<SQO>,- ; DAP file transfer mode

FNM=<SRC:> ; Name of input file
SRC_RAB:

$RAB FAB=SRC_FAB,- ; Address of associated FAB
RAC=SEQ,- ; Sequential record access
UBF=BUFFER,- ; Buffer address
USZ=BUFFER_SIZE ; Buffer size

(continued on next page)

B–16 VAX MACRO Programming Information and Examples

VAX MACRO Programming Information and Examples
B.3 VAX MACRO Example Programs

Example B–3 (Cont.) Use of the Create Service for an Indexed File

;
; Define the destination file FAB and RAB control blocks.
;
DST_FAB:

$FAB FAC=<PUT>,- ; File access for PUT only
FOP=CTG,- ; Allocate contiguous
SHR = <NIL>,- ; Exclusive file access
FNM=<DST:>,- ; Name of output file
MRS=128,- ; Maximum record size
RFM=VAR,- ; Variable length records
RAT=<CR>,- ; Implied carriage control
ORG=IDX,- ; Indexed file organization
XAB=DST_KEY0 ; Address of start of XAB chain

DST_RAB:
$RAB FAB=DST_FAB,- ; Address of associated FAB

MBF=3,- ; Use 3 buffers
RAC=KEY,- ; Random record writes
RBF=BUFFER,- ; Buffer address
ROP=LOA,- ; Specify initial fill size
RSZ=BUFFER_SIZE ; Buffer size

;
; Define a key definition XAB for the primary key.
;
DST_KEY0: ; Primary key is Name

$XABKEY REF=0,- ; Key reference number
DAN=0,- ; Define data XABALL
DFL=1536,- ; Define data fill of 75%
FLG=<DUP>,- ; Allow duplicate keys
DTP=DSTG,- ; Descending sort order
IAN=1,- ; Define index XABALL
IFL=1536,- ; Initial index fill 75%
PROLOG=3,- ; Request prolog 3
POS=<12,0,11>,- ; Key segment positions
SIZ=<15,1,1>,- ; Key segment lengths
NXT=DST_KEY1 ; Address of next XAB in chain

;
; Define key definition XABs for the alternate keys.
;
DST_KEY1: ; 1st alternate key is City

$XABKEY REF=1,- ; Key reference number
DAN=2,- ; Data level (SIDR) XABALL
IAN=2,- ; Index XABALL
IFL=768,- ; Initial index fill 75%
POS=47,- ; Starting key position
SIZ=12,- ; Key size
FLG=<CHG,DUP>,- ; Duplicates and changes
NXT=DST_KEY2 ; Address of next XAB in chain

DST_KEY2: ; 2nd alternate key is State
$XABKEY REF=2,- ; Key reference number

DAN=2,- ; Data level (SIDR) XABALL
IAN=2,- ; Index XABALL
IFL=768,- ; Initial index fill 75%
POS=59,- ; Starting key position
FLG=<CHG,DUP>,- ; Duplicates and changes
SIZ=2,- ; Key size
NXT=DST_ALL0 ; Designate next XAB

(continued on next page)

VAX MACRO Programming Information and Examples B–17

VAX MACRO Programming Information and Examples
B.3 VAX MACRO Example Programs

Example B–3 (Cont.) Use of the Create Service for an Indexed File

;
; Define allocation control XABs to define multiple areas
;
DST_ALL0:

$XABALL AID=0,- ; Data area definition
ALQ=328,- ; Allocation quantity and
AOP=<CBT>,- ; contiguous best try
BKZ=4,- ; Bucket size of 4 blocks
DEQ=112,- ; Default extension quantity
NXT=DST_ALL1 ; Designate next XAB

DST_ALL1:
$XABALL AID=1,- ; Primary key index area

ALQ=8,- ; Allocation quantity and
AOP=<CBT>,- ; contiguous best try
BKZ=4,- ; Bucket size of 4 blocks
DEQ=4,- ; Default extension quantity
NXT=DST_ALL2 ; Designate next XAB

DST_ALL2:
$XABALL AID=2,- ; Alternate key data area

ALQ=112,- ; Allocation quantity and
AOP=<CBT>,- ; contiguous best try
BKZ=2,- ; Bucket size of 2 blocks
DEQ=38,- ; Default extension quantity
NXT=0 ; No more XABs

;
; Allocate buffer to the size of the largest record being read.
;
BUFFER: .BLKB 66 ; Buffer for input and output

BUFFER_SIZE=.-BUFFER ; Buffer size

;***

.SBTTL Mainline

.PSECT CODE NOWRT,BYTE
;
; Start of program
;

.ENTRY CREATEIDX,^M<R6> ; Entry point
;
; Open the source and destination files.
;

$OPEN FAB=SRC_FAB ; Open input file
BLBC R0,EXIT1 ; Branch on failure
$CONNECT RAB=SRC_RAB ; Connect input record stream
BLBC R0,EXIT2 ; Branch on failure
$CREATE FAB=DST_FAB ; Create output file
BLBC R0,EXIT3 ; Branch on failure
$CONNECT RAB=DST_RAB ; Connect output record stream
BLBC R0,EXIT4 ; Branch on failure
BRB LOOP ; Bypass signaling code

EXIT1: MOVAL SRC_FAB,R6 ; Keep FAB address
BRB F_ERR ; Signal error

EXIT2: MOVAL SRC_RAB,R6 ; Keep RAB address
BRB R_ERR ; Signal error

EXIT3: MOVAL DST_FAB,R6 ; Keep FAB address
BRB F_ERR ; Signal error

EXIT4: MOVAL DST_RAB,R6 ; Keep RAB address
BRB R_ERR ; Signal error

(continued on next page)

B–18 VAX MACRO Programming Information and Examples

VAX MACRO Programming Information and Examples
B.3 VAX MACRO Example Programs

Example B–3 (Cont.) Use of the Create Service for an Indexed File
;
; Transfer records until end-of-file is reached.
;
LOOP: $GET RAB=SRC_RAB ; Read next rec from input file

BLBS R0,PUT ; Branch on success
CMPL R0,#RMS$_EOF ; Was it end-of-file (EOF)?
BNEQ EXIT2 ; Branch if not EOF error
BRB CLOSE ; Close and exit if EOF

PUT: $PUT RAB=DST_RAB ; Write 66-byte record to output
BLBS R0,LOOP ; On success, continue loop
BRB EXIT4 ; On error, signal and exit

;
; Close the source and destination files.
;
F_ERR: PUSHL FAB$L_STV(R6) ; Push STV and STS fields

PUSHL FAB$L_STS(R6) ; on stack
CALLS #2, G^LIB$SIGNAL ; Signal file error
BRB EXIT ; Exit

R_ERR: PUSHL RAB$L_STV(R6) ; Push STV and STS fields
PUSHL RAB$L_STS(R6) ; on stack
CALLS #2, G^LIB$SIGNAL ; Signal file error

CLOSE: $CLOSE FAB=DST_FAB ; Close output file
$CLOSE FAB=SRC_FAB ; Close input file

EXIT: $EXIT_S ; Exit
.END CREATEIDX ; Specify starting address

This example program creates an indexed file with a primary key and two
alternate keys that are defined by appropriate key definition control blocks
(XABKEY). For efficiency, the file is divided into areas consisting of a data area
and an index area for each key using multiple allocation control blocks (XABALL).

In each XABKEY, the DAN and IAN arguments (XAB$B_DAN and XAB$B_
IAN fields) indicate the area identification number (AID) of the corresponding
XABALL. By setting the RAB$V_LOA bit in RAB field RAB$L_ROP, the program
directs RMS to use the DFL and IFL arguments (XAB$W_DFL and XAB$W_IFL
fields) to determine the maximum initial fill size (in bytes) for data and index
buckets (each bucket contains the number of blocks specified in the XABALL BKZ
argument, XAB$B_BKZ field).

These are the XABKEY and XABALL control blocks for the primary key (the
NAME key) in this example:

DST_KEY0: ; Primary key is Name
$XABKEY REF=0,- ; Key reference number

DAN=0,- ; Define data XABALL
DFL=1536,- ; Define data fill of 75%
FLG=<DUP>,- ; Allow duplicate keys
DTP=DSTG,- ; Descending sort order
IAN=1,- ; Define index XABALL
IFL=1536,- ; Initial index fill 75%
PROLOG=3,- ; Request prolog 3

.

.

.

VAX MACRO Programming Information and Examples B–19

VAX MACRO Programming Information and Examples
B.3 VAX MACRO Example Programs

DST_ALL0:
$XABALL AID=0,- ; Data area definition

ALQ=328,- ; Allocation quantity and
AOP=<CBT>,- ; contiguous best try
BKZ=4,- ; Bucket size of 4 blocks
DEQ=112,- ; Default extension quantity
NXT=DST_ALL1 ; Designate next XAB

DST_ALL1:
$XABALL AID=1,- ; Primary key index area

ALQ=8,- ; Allocation quantity and
AOP=<CBT>,- ; contiguous best try
BKZ=4,- ; Bucket size of 4 blocks
DEQ=4,- ; Default extension quantity
NXT=DST_ALL2 ; Designate next XAB

The allocation information was obtained using the File Definition Language
(FDL) editor which is especially useful when you are creating large indexed files.
The DCL commands CREATE/FDL and CONVERT can be used to create files by
using an FDL file produced by the Edit/FDL utility, without any programming.
Instead of using the multiple XABs for the key definition and area allocations in
this program, a simpler approach is to use the FDL file produced by the Edit/FDL
utility by invoking the FDL routines FDL$PARSE and FDL$RELEASE (for more
information on these routines, see the OpenVMS Utility Routines Manual).

Fixed-length records are copied from the sequential input file on the local node
to the indexed file on the remote node. Each variable-length output record is
initially 66 bytes long and may be extended to a maximum of 128 bytes.

B.3.4 Processing File Specifications
The file name and file specification services, Parse and Search, are used for
relatively complex operations such as processing wildcard characters.

Before you can perform operations on a file, you must establish a path to the
file. You do this by specifying the file specification string address and size
(FAB$L_FNA and FAB$B_FNS) fields (and possibly the default file specification
string address and size fields) of the FAB to describe an ASCII string within the
program. In this ASCII string, you can have a concatenation of the network node
name; a logical or device name; the directory name; and the file name, type, and
version number.

If a logical name is used, RMS translates the logical name into its equivalent
file specification before it applies defaults to any missing components of the
file specification. If the logical name is a search list logical name, RMS
translates each element of the search list into an equivalent file specification
before it applies defaults to that element. When using the Search service, a file
specification that may contain a search list logical name must be handled as if
wildcard characters were present in the file specification.

The Parse service is required prior to the Search service in order to examine the
file specification for wildcard characters or a search list. If the file is found, the
Parse service sets a NAM or NAML block bit that RMS uses internally and sets
an appropriate value in the wildcard character context that is used as input by
the Search service. The Parse service is invoked once, then the Search service is
repetitively invoked as many times as there are files that match the original file
specification.

B–20 VAX MACRO Programming Information and Examples

VAX MACRO Programming Information and Examples
B.3 VAX MACRO Example Programs

If a wildcard is present, the Search service attempts to find all files that match
the file specification. If an asterisk (*) is in the directory field, all directories
on the specified device are searched for files that match the remaining file
specification components. As with the use of wildcard characters, when a search
list logical name is present, a single Parse service and multiple Search services
return all files that match the file specification. With search lists, however, all
list elements are searched for matching file specifications in the specified order
without regard to uniqueness between the resulting file specifications. Search
lists can be used in place of (or in addition to) wildcard characters to specify a
more efficient search order, which can mean different combinations for the device,
directory, file name, file type, and version number parts of a file specification.
Search lists can also contain wildcard characters, if needed.

In summary, the Parse and Search services use a search list logical name very
much like a wildcard. Unlike the case of opening a file, in which the first instance
where the file is found successfully ends the use of additional search list file
specifications, the Parse and Search services use all search list file specifications.

Example B–4 shows how the $PARSE and $SEARCH macros can be used in
wildcard processing.

Example B–4 Wildcard Processing Using Parse and Search Services

.TITLE WILD
;
; Program to accept wildcard characters in input (partial) file
; specification and display full file specification.
;

$NAMDEF ; NAM block definitions

.PSECT DATA,NOEXE,WRT
NAM_BLK:

$NAM RSA=RES_STR,- ; Result buffer address
RSS=NAM$C_MAXRSS,- ; Result buffer size
ESA=EXP_STR,- ; Expanded buffer address
ESS=NAM$C_MAXRSS ; Expanded buffer size

FAB_BLK:
$FAB FOP=NAM,- ; Use NAM block option

NAM=NAM_BLK,- ; Pointer to NAM block
FNA=INP_STR ; Addr of file name string

EXP_STR: ; Expanded string buffer
.BLKB NAM$C_MAXRSS

RES_STR: ; Resultant string buffer
.BLKB NAM$C_MAXRSS

RES_STR_D: ; Resultant string descriptor
.BLKL 1
.LONG RES_STR

INP_STR: ; Input string buffer
.BLKB NAM$C_MAXRSS

INP_STR_D: ; Input string descriptor
.LONG NAM$C_MAXRSS
.LONG INP_STR

INP_STR_LEN: ; Input string length
.BLKL 1

(continued on next page)

VAX MACRO Programming Information and Examples B–21

VAX MACRO Programming Information and Examples
B.3 VAX MACRO Example Programs

Example B–4 (Cont.) Wildcard Processing Using Parse and Search Services

PROMPT_D: ; User prompt string
.ASCID /Please enter the file specification: /

.PSECT CODE,EXE,NOWRT

.ENTRY WILD,^M<>
PUSHAB INP_STR_LEN ; Address for string length
PUSHAB PROMPT_D ; Prompt string descriptor
PUSHAB INP_STR_D ; String buffer descriptor
CALLS #3,G^LIB$GET_INPUT ; Get input string value
BLBC R0,EXIT ; Quit on error

;
; Store user input string and perform initial parse to
; set up RMS context for subsequent search.
;

MOVB INP_STR_LEN, - ; Set string size
FAB_BLK+FAB$B_FNS

$PARSE FAB=FAB_BLK ; Parse the file spec
BLBC R0,F_ERR ; Quit and signal on error

;
; Search until all possibilities are exhausted.
;
SEARCH_LOOP:

$SEARCH FAB=FAB_BLK ; Find next file
BLBC R0,SRCHERR ; Any more?

;
; Print out the resultant string from the search operation
;

MOVZBL NAM_BLK+NAM$B_RSL, -
RES_STR_D ; Set string length

PUSHAB RES_STR_D ; String descriptor
CALLS #1,G^LIB$PUT_OUTPUT ; Output the result
BLBC R0,EXIT ; Quit on error
BRB SEARCH_LOOP ; Go for more

SRCHERR: ; If error is "No more files",
CMPL R0,#RMS$_NMF ; this is normal completion
BEQL S_EXIT ; of the search loop.

F_ERR: PUSHL FAB_BLK+FAB$L_STV ; Push STV and STS on stack
PUSHL FAB_BLK+FAB$L_STS ; in reverse order
CALLS #2, G^LIB$SIGNAL ; Signal error

S_EXIT: MOVL #1,R0 ; Suppress "No More Files"
EXIT: RET

.END WILD

This program is designed to locate all files corresponding to a partial file
specification input. The program prompts the user for an input string, which
can consist of a partial file specification, using the wildcard characters and/or any
type of logical name, including a search list logical name. In many respects, this
program emulates the DCL command DIRECTORY, which is discussed in the
OpenVMS DCL Dictionary.

The program illustrates the use of the $PARSE and $SEARCH file name
processing macros. Here is the program statement that invokes the Parse
service for parsing the file name string:

$PARSE FAB=FAB_BLK

Before invoking the Parse service ($PARSE macro), the program moves the input
string length to the file name string (FAB$B_FNS) field. If the Parse service
returns an error completion status, the program branches to the F_ERR error
routine.

B–22 VAX MACRO Programming Information and Examples

VAX MACRO Programming Information and Examples
B.3 VAX MACRO Example Programs

Assuming no error, the program searches the disk directories specified by the
expanded string area address field in the NAM block (NAM$L_ESA) until all
possible files conforming to the partial file specification input are found. Here is
the program line that invokes the Search service:

$SEARCH FAB=FAB_BLK

A status test is performed immediately after the $SEARCH macro. If an error
is detected, the program branches to the SRCHERR label. If a no-more-files
condition is detected, RMS returns the RMS$_NMF message to indicate that all
files that match the specification have been found. (This error, however, is not
signaled.)

This program contains two run-time library routines: LIB$GET_INPUT and
LIB$PUT_OUTPUT. The LIB$GET_INPUT routine inputs a record from the
current controlling input device, specified by SYS$INPUT, using the Get service.
The LIB$PUT_OUTPUT routine outputs a record (line) to the current controlling
output device, specified by SYS$OUTPUT, using the Put service. Both routines
are discussed in greater detail in the OpenVMS RTL Library (LIB$) Manual.

B.3.5 Connecting and Disconnecting Record Streams
To associate or disassociate a file with one or more record streams, RMS provides
the Connect and Disconnect services, which are invoked using the $CONNECT
and $DISCONNECT macros.

Before reading and writing file records, the program must open (or create) the
input and output files and then connect the files to the appropriate record streams
by executing the $OPEN (or $CREATE) macro followed by the $CONNECT
macro.

Closing a file implicitly disconnects the record stream. Use the Disconnect service
to explicitly disconnect a record stream that is not to be used immediately. This
keeps the file open but releases various data structures for use by other processes
until your program needs the record stream.

Example B–5 shows a program in which a user-entered reply determines which
key path is selected to access the indexed file created in Example B–3. The
user-entered value determines the value specified for the RAB$B_KRF field. The
RAB$B_KRF value is set before the connect operation occurs because this field is
input to the Connect service.

VAX MACRO Programming Information and Examples B–23

VAX MACRO Programming Information and Examples
B.3 VAX MACRO Example Programs

Example B–5 Use of the Connect Service and Multiple Keys

.TITLE MULTIKEY
;
REC_SIZE=128

.PSECT DATA NOEXE,LONG
; ** RMS DATA **
MODFAB: $FAB FNM=<DATA_OUTPUT.DAT>,- ; FAB file spec.

FAC=<GET>,- ; Get access needed
SHR=<GET, UPD, PUT>,- ; Allow Get, Update, Put
MRS=REC_SIZE ; Specify record size

MODRAB: $RAB FAB=MODFAB,- ; RAB; indicate FAB
MBF=3,- ; Use 3 buffers
UBF=REC_MODBUF,- ; Specify buffer
USZ=REC_SIZE,-
KRF=0 ; Primary is default key

REC_START: .LONG REC_SIZE ; Record buffer
.ADDRESS REC_MODBUF

REC_MODBUF: .BLKB REC_SIZE
; TERMINAL I/O DATA **
MPRO0: .ASCID / /
MPRO1: .ASCID /Enter list order: 1-by name, 2-by city, 3-by state, 9-end :/
ENTRYERR: .ASCID /* * Value entered must be 1, 2, 3, or 9. * */
;
REGANS: .LONG 1

.ADDRESS REGBUF
REGBUF: .BLKB 1
;
DONE: .ASCID /Press RETURN to continue/
;

.PSECT CODE
START: .WORD ^M<>
INPUT: PUSHAL MPRO0 ; Get input

PUSHAL MPRO1 ; Display prompt
PUSHAL REGANS
CALLS #3, G^LIB$GET_INPUT
BLBC R0,FINIBR
CMPB #^A/1/,REGBUF ; Test value of menu answer
BEQLU PRIM ; 1 means primary
CMPB #^A/2/,REGBUF ; Continue testing
BEQLU ALT1 ; 2 means first alternate
CMPB #^A/3/,REGBUF ; Continue testing
BEQLU ALT2 ; 3 means second alternate
CMPB #^A/9/,REGBUF ; Continue testing
BEQLU FINIBR ; 9 means end program

BADANS: PUSHAL ENTRYERR ; otherwise, display error message
CALLS #1, G^LIB$PUT_OUTPUT
BLBC R0,FINIBR
BRB INPUT ; Entry error; retry

FINIBR: BRW FINI ; branch extender
PRIM: MOVB #0,MODRAB+RAB$B_KRF ; Set key of reference in RAB

BRB OPEN
ALT1: MOVB #1,MODRAB+RAB$B_KRF ; Set key of reference in RAB

BRB OPEN
ALT2: MOVB #2,MODRAB+RAB$B_KRF ; Set key of reference in RAB
OPEN: $OPEN FAB=MODFAB ; Open file

BLBS R0,CONN
BRW ERROR_OPEN

CONN: $CONNECT RAB=MODRAB ; Connect record stream
BLBS R0,NEXT
BRW ERROR

(continued on next page)

B–24 VAX MACRO Programming Information and Examples

VAX MACRO Programming Information and Examples
B.3 VAX MACRO Example Programs

Example B–5 (Cont.) Use of the Connect Service and Multiple Keys

NEXT: $GET RAB=MODRAB ; Get record
CMPL #RMS$_EOF,R0 ; Test if EOF
BEQLU CLEAN
BLBC R0,ERROR
MOVZWL RAB$W_USZ+MODRAB,REC_START ; Set ASCII descriptor length
PUSHAL REC_START ; Display each record
CALLS #1, G^LIB$PUT_OUTPUT
BLBS R0,NEXT
BRB FINI ; Repeat until EOF

CLEAN: $CLOSE FAB=MODFAB ; Close file
BLBC R0,ERROR_OPEN
PUSHAL MPRO0
CALLS #1, G^LIB$PUT_OUTPUT
BLBC R0,FINI
PUSHAL DONE
PUSHAL REGANS
CALLS #2, G^LIB$GET_INPUT
BLBC R0,FINI
BRW INPUT

;
ERROR_OPEN:

PUSHL MODFAB+FAB$L_STV ; Error opening
PUSHL MODFAB+FAB$L_STS ; file. Signal error
CALLS #2, G^LIB$SIGNAL ; using LIB$SIGNAL.
BRB FINI ; End program

ERROR: PUSHL MODRAB+RAB$L_STV ; Record-related error
PUSHL MODRAB+RAB$L_STS
CALLS #2, G^LIB$SIGNAL ; Signal error, then
$CLOSE FAB=MODFAB ; close file

FINI: RET
.END START

Here the SHR argument limits access to processes that perform the Get service,
Put service, and Update service. If you anticipate no file modifications as your
program accesses the file, you can improve performance by having the SHR
argument limit access to processes that use the Get service (SHR=GET).

Errors are signaled according to the recommended practice of using the FAB$L_
STS and FAB$L_STV fields for file errors and RAB$L_STS and RAB$L_STV
fields for record errors.

B.3.6 Other File-Processing Operations
Other file services include the Display, Erase, Extend, Remove, and Rename
services, which can be invoked using the $DISPLAY, $ERASE, $EXTEND,
$REMOVE, and $RENAME macros, respectively.

Example B–6 illustrates the use of the Rename service to rename a file from
directory [USER] named NAMES.DAT to directory [USER.HISTORY] named
OLD_NAMES.DAT.

VAX MACRO Programming Information and Examples B–25

VAX MACRO Programming Information and Examples
B.3 VAX MACRO Example Programs

Example B–6 Use of the Rename Service

.TITLE RENAME
;
; Program that renames a file into a different directory and
; displays the resultant string.
;

.PSECT DATA,NOEXE,WRT
;
; Define old FAB, old NAM, new FAB, new NAM, and buffers
;
OLD_FAB: ; Define old file FAB

$FAB FNM=<[USER]NAMES.DAT>,-
NAM=OLD_NAM ; Pointer to NAM block

OLD_NAM: ; Define old file NAM
$NAM ESA=EXP_OLD,- ; Equivalence string

ESS=NAM$C_MAXRSS,- ; address and size
RSA=RES_OLD,- ; Resultant string
RSS=NAM$C_MAXRSS ; address and size

NEW_FAB: ; Define new file FAB
$FAB FNM=<[USER.HISTORY]OLD_NAMES.DAT>,-

NAM=NEW_NAM ; Pointer to NAM block
NEW_NAM:

$NAM ESA=EXP_NEW,- ; Equivalence string
ESS=NAM$C_MAXRSS,- ; address and size
RSA=RES_NEW,- ; Resultant string
RSS=NAM$C_MAXRSS ; address and size

EXP_OLD: ; Old file equivalence
.BLKB NAM$C_MAXRSS ; string buffer

EXP_NEW: ; New file equivalence
.BLKB NAM$C_MAXRSS ; string buffer

RES_OLD: ; Old file resultant
.BLKB NAM$C_MAXRSS ; string buffer

RES_OLD_D: ; String descriptor
.BLKL 1
.LONG RES_OLD

RES_NEW: ; New file resultant
.BLKB NAM$C_MAXRSS ; string buffer

RES_NEW_D: ; String descriptor
.BLKL 1
.LONG RES_NEW

;
MESS: .ASCID /has been successfully relocated to /
;

.PSECT CODE,EXE,NOWRT

.ENTRY RENAME,^M<>
; Rename file

;
$RENAME OLDFAB=OLD_FAB, NEWFAB=NEW_FAB
BLBC R0,ERROR

; Set up descriptors
;

(continued on next page)

B–26 VAX MACRO Programming Information and Examples

VAX MACRO Programming Information and Examples
B.3 VAX MACRO Example Programs

Example B–6 (Cont.) Use of the Rename Service

MOVZBL OLD_NAM+NAM$B_RSL,RES_OLD_D
MOVZBL NEW_NAM+NAM$B_RSL,RES_NEW_D

;
PUSHAL RES_OLD_D ; Push resultant name,
CALLS #1,G^LIB$PUT_OUTPUT ; display old file spec.
BLBC R0,TERM_ERROR ; Branch on error
PUSHAL MESS ; Push message on stack,
CALLS #1,G^LIB$PUT_OUTPUT ; display message
BLBC R0,TERM_ERROR ; Branch on error
PUSHAL RES_NEW_D ; Push resultant name,
CALLS #1,G^LIB$PUT_OUTPUT ; display new file spec.
BLBS R0,DONE ; Branch on success

TERM_ERROR:
PUSHL R0 ; Signal output error
CALLS #1,G^LIB$SIGNAL ; from R0
BRB DONE

ERROR: PUSHL OLD_FAB+FAB$L_STV ; Push STV and STS on
PUSHL OLD_FAB+FAB$L_STS ; stack (reverse order)
CALLS #2,G^LIB$SIGNAL ; Signal error

DONE: RET
.END RENAME

This program uses the Rename service to change both the directory and the
name of the object file, which is being replaced by a new file (created by a
separate program). If the Rename service executes correctly, the resultant file
specification of the old file, the message defined by the ASCII descriptor following
the label MESS, and the resultant file specification of the new file are displayed
as verification that the Rename service successfully completed.

B.3.7 Retrieving and Inserting Records
The record-processing services provided by RMS insert records into a file and
retrieve records from a file. These services are the Find, Get, and Put services,
which can be invoked by the $FIND, $GET, and $PUT macros, respectively.

Example B–7 illustrates the use of the $GET and $PUT macros. It connects the
input and output record streams, reads a record from an indexed file, and writes
the record to a relative file. The program illustrates the use of the key string
buffer, the key string descriptor, and the key string length when reading indexed
records, and it includes the use of a user prompt string.

Example B–7 Use of the Get and Put Services

.TITLE LOOKUP
;
; This program looks up records in the input file and
; writes the records to the output file.

.PSECT DATA,WRT,NOEXE
INFAB: $FAB FNM = <INFILE:>,- ; Input file logical name

SHR = <GET,PUT,UPD,DEL> ; Allow read/write sharing

(continued on next page)

VAX MACRO Programming Information and Examples B–27

VAX MACRO Programming Information and Examples
B.3 VAX MACRO Example Programs

Example B–7 (Cont.) Use of the Get and Put Services
INRAB: $RAB FAB = INFAB,- ; Pointer to FAB

KBF = INP_STR,- ; Key buffer
KRF = 0,- ; Primary key
RAC = KEY,- ; Keyed access
ROP = WAT,- ; Wait for record
UBF = REC_BUFF,- ; Record buffer
USZ = REC_SIZE ; and size

OUTFAB: $FAB FNM = <OUTFILE:>,- ; Output file logical name
BKS = 3,- ; 3 blocks per bucket
MRS = REC_SIZE,- ; Maximum record size
ORG = REL,- ; Relative file
RAT = CR ; Implied carriage control

OUTRAB: $RAB FAB = OUTFAB,- ; Pointer to FAB
RBF = REC_BUFF ; Output uses same buffer

; as input
REC_SIZE = 132 ; Maximum size records
REC_BUFF:

.BLKB REC_SIZE ; Record buffer
INP_STR: ; Key string buffer

.BLKB REC_SIZE
INP_STR_D: ; Key string descriptor

.LONG REC_SIZE

.LONG INP_STR
INP_STR_LEN: ; Key string length

.BLKL 1
PROMPT_D: ; User prompt string

.ASCID /Please input key value: /

.PSECT CODE,NOWRT,EXE
;
; Initialization - Open input and output files and connect streams
;

.ENTRY LOOKUP,^M<> ; No registers to save
$OPEN FAB=INFAB ; Open input file
BLBC R0,EXIT1 ; Quit on error
$CONNECT RAB=INRAB ; Connect to input
BLBC R0,EXIT2 ; Quit on error
$CREATE FAB=OUTFAB ; Create output file
BLBC R0,EXIT3 ; Quit on error
$CONNECT RAB=OUTRAB ; Connect to output
BLBC R0,EXIT4 ; Quit on error
BRB READ ; Skip error branching

EXIT1: MOVAL INFAB, R6 ; Keep INFAB address
BRW F_ERR ; Signal FAB error

EXIT2: MOVAL INRAB, R6 ; Keep INRAB address
BRW R_ERR ; Signal RAB error

EXIT3: MOVAL OUTFAB, R6 ; Keep OUTFAB address
BRB F_ERR ; Signal FAB error

EXIT4: MOVAL OUTRAB, R6 ; Keep OUTRAB address
BRB R_ERR ; Signal RAB error

;
; Loop to copy records
;
READ:

PUSHAB INP_STR_LEN ; Address for string length
PUSHAB PROMPT_D ; Prompt string descriptor
PUSHAB INP_STR_D ; String buffer descriptor
CALLS #3,G^LIB$GET_INPUT ; Get input string value
BLBS R0,GET ; Quit on error or end-of-file
CMPL R0,#RMS$_EOF ; Was error end-of-file?
BEQL DONE ; Successful completion
BRB EXIT ; Error otherwise

(continued on next page)

B–28 VAX MACRO Programming Information and Examples

VAX MACRO Programming Information and Examples
B.3 VAX MACRO Example Programs

Example B–7 (Cont.) Use of the Get and Put Services

GET: MOVB INP_STR_LEN, - ; Set key size
INRAB+RAB$B_KSZ

$GET RAB=INRAB ; Get a record
BLBS R0,PUT ; Put if successful
CMPL R0,#RMS$_RNF ; No such record?
BEQL READ ; Try again
BRB EXIT2 ; Error otherwise

PUT: MOVW INRAB+RAB$W_RSZ, - ; Set the record size
OUTRAB+RAB$W_RSZ ; for output

$PUT RAB=OUTRAB ; Write the record
BLBC R0,EXIT4 ; Quit on error
BRB READ ; Go back for more

;
; Close files and exit
;
F_ERR: PUSHL FAB$L_STV(R6) ; Push STV and STS on

PUSHL FAB$L_STS(R6) ; stack in reverse order
CALLS #2, G^LIB$SIGNAL ; Signal message
BRB EXIT

R_ERR: PUSHL RAB$L_STV(R6) ; Push STV and STS on
PUSHL RAB$L_STS(R6) ; stack in reverse order
CALLS #2, G^LIB$SIGNAL ; Signal message

DONE: $CLOSE FAB=INFAB ; Close input
$CLOSE FAB=OUTFAB ; and output

EXIT: RET ; Return with status in R0
.END LOOKUP

This program writes records from an existing indexed input file into a newly
created relative output file.

The program configures the file-sharing field (FAB$B_SHR) in the input FAB to
permit sharing of the file by processes that use the Get, Put, Update, and Delete
services.

The output FAB sets the bucket size field (FAB$B_BKS) at 3 blocks per bucket,
limits the record size in the output file to 132 bytes, specifies the relative file
organization, and specifies an implicit carriage control when the file output is
directed to a terminal.

The RAB for the input file establishes the key data, sets the WAIT record option,
and defines the record buffer. The output RAB locates the record buffer. The rest
of the first program section assigns values and allocates space to various program
variables. After the program opens and creates the two files and connects the
record streams, it executes a series of instructions at label READ that input
the required key values and the user prompt. Then the program uses the $GET
and $PUT macros to invoke the respective services for retrieving and inserting
the records. The $GET macro uses the INRAB and the $PUT macro uses the
OUTRAB, as shown in the following program statements:

$GET RAB=INRAB

$PUT RAB=OUTRAB

Each time the program reads or writes a record, it performs a status check. If the
status check is successful, the program branches back to the READ label for the
next record. If any of the status checks indicate an error, the program branches
to the appropriate error handler before exiting.

When the program completes the record transfers, it branches to the DONE label
to close the record and exit.

VAX MACRO Programming Information and Examples B–29

VAX MACRO Programming Information and Examples
B.3 VAX MACRO Example Programs

B.3.8 Deleting Records
This service can only be used with relative and indexed files. Example B–8
illustrates the use of the Delete service.

Example B–8 Use of the Delete Service

.TITLE DELETE
;
; This program looks up records in the input file and
; deletes those records.
;

.PSECT DATA,WRT,NOEXE
INFAB: $FAB FNM = <INFILE:>,- ; Input file logical name

FAC = <DEL,GET> ; DEL access
INRAB: $RAB FAB = INFAB,- ; Pointer to FAB

KBF = INP_STR,- ; Key buffer
KRF = 0,- ; Primary key
RAC = KEY ; Keyed access

REC_SIZE = 132 ; Maximum size records
INP_STR: ; Key string/record buffer

.BLKB REC_SIZE
INP_STR_D: ; Key string descriptor

.LONG REC_SIZE

.LONG INP_STR
INP_STR_LEN: ; Key string length

.BLKL 1
KEY_PMT_D: ; Key value prompt string

.ASCID /Please enter key value: /

.PSECT CODE,NOWRT,EXE
;
; Initialization - Open file and connect stream
;

.ENTRY DELETE,^M<> ; No registers to save
$OPEN FAB=INFAB ; Open input file
BLBC R0,F_ERR ; Quit on error
$CONNECT RAB=INRAB ; Connect to input
BLBC R0,R_ERR ; Quit on error

;
; Delete record loop
;
READ:

PUSHAB INP_STR_LEN ; Address for string length
PUSHAB KEY_PMT_D ; Prompt string descriptor
PUSHAB INP_STR_D ; String buffer descriptor
CALLS #3,G^LIB$GET_INPUT ; Get input string value
BLBS R0,FIND ; Quit on error or end-of-file
CMPL R0,#RMS$_EOF ; Was error end-of-file?
BEQL DONE ; Successful completion
BRB EXIT ; Error otherwise

FIND: MOVB INP_STR_LEN, - ; Set key size
INRAB+RAB$B_KSZ

$FIND RAB=INRAB ; Locate the record
BLBS R0,DEL ; Continue if found
CMPL R0,#RMS$_RNF ; No such record?
BEQL READ ; Try again
BRB R_ERR ; Error otherwise

DEL: $DELETE RAB=INRAB ; Delete the record
BLBC R0,R_ERR ; Quit on error
BRB READ ; Go back for more

(continued on next page)

B–30 VAX MACRO Programming Information and Examples

VAX MACRO Programming Information and Examples
B.3 VAX MACRO Example Programs

Example B–8 (Cont.) Use of the Delete Service

;
; Close files and exit
;
F_ERR: PUSHL FAB$L_STV+INFAB ; Push STV and STS on

PUSHL FAB$L_STS+INFAB ; stack in reverse order
CALLS #2, G^LIB$SIGNAL ; Signal message
BRB EXIT

R_ERR: PUSHL RAB$L_STV+INRAB ; Push STV and STS on
PUSHL RAB$L_STS+INRAB ; stack in reverse order
CALLS #2, G^LIB$SIGNAL ; Signal message

DONE: $CLOSE FAB=INFAB ; Close files
EXIT: RET ; Return with status in R0

.END DELETE

This program uses a key to find and delete a record. To use the $DELETE
macro, the $FAB macro for the file must set the FAB$V_DEL bit as shown in the
following code example:

INFAB: $FAB FNM=<INFILE:>,-
FAC=

The following program statement invokes the Delete service and points to the
input RAB:

$DELETE RAB=INRAB

B.3.9 Updating Records
Example B–9 illustrates the use of the Update service.

Example B–9 Use of the Update Service

.TITLE UPDATE
;
; This program looks up records in the input file and
; updates those records.
;

.PSECT DATA,WRT,NOEXE
INFAB: $FAB FNM = <INFILE:>,- ; Input file logical name

FAC = <GET,UPD> ; Read and Write access
INRAB: $RAB FAB = INFAB,- ; Pointer to FAB

KBF = INP_STR,- ; Key buffer
KRF = 0,- ; Primary key
RAC = KEY,- ; Keyed access
RBF = INP_STR ; Record buffer

REC_SIZE = 132 ; Maximum size records
INP_STR: ; Key string/record buffer

.BLKB REC_SIZE
INP_STR_D: ; Key string descriptor

.LONG REC_SIZE

.LONG INP_STR
INP_STR_LEN: ; Key string length

.BLKL 1
KEY_PMT_D: ; Key value prompt string

.ASCID /Please input key value: /
DATA_PMT_D: ; Data value prompt string

.ASCID /Please input new record value: /

(continued on next page)

VAX MACRO Programming Information and Examples B–31

VAX MACRO Programming Information and Examples
B.3 VAX MACRO Example Programs

Example B–9 (Cont.) Use of the Update Service
.PSECT CODE,NOWRT,EXE

;
; Initialization - Open file and connect stream
;

.ENTRY UPDATE,^M<> ; No registers to save
$OPEN FAB=INFAB ; Open input file
BLBC R0,FAB_E ; Quit on error
$CONNECT RAB=INRAB ; Connect to input
BLBC R0,RAB_E ; Quit on error
BRB READ ; Begin update loop

FAB_E: BRW F_ERR ; File (FAB) error
RAB_E: BRW R_ERR ; Record (RAB) error
;
; Update record loop
;
READ:
;
; Prompt for key value to look up.
;

PUSHAB INP_STR_LEN ; Address for string length
PUSHAB KEY_PMT_D ; Prompt string descriptor
PUSHAB INP_STR_D ; String buffer descriptor
CALLS #3,G^LIB$GET_INPUT ; Get input string value
BLBS R0,FIND ; Quit on error or end-of-file
CMPL R0,#RMS$_EOF ; Was error end-of-file?
BEQL ALL_D ; Successful completion
BRW EXIT ; Error otherwise

ALL_D: BRW DONE
FIND: MOVB INP_STR_LEN, - ; Set key size

INRAB+RAB$B_KSZ
$FIND RAB=INRAB ; Locate the record
BLBS R0,UPD ; Continue if found
CMPL R0,#RMS$_RNF ; No such record?
BEQL READ ; Try again
BRB R_ERR ; Error otherwise

;
; Prompt for new data record.
;
UPD:

PUSHAB INP_STR_LEN ; Address for string length
PUSHAB DATA_PMT_D ; Prompt string descriptor
PUSHAB INP_STR_D ; String buffer descriptor
CALLS #3,G^LIB$GET_INPUT ; Get input string value
BLBC R0,EXIT ; Quit on error
MOVW INP_STR_LEN, - ; Set record size

INRAB+RAB$W_RSZ
$UPDATE RAB=INRAB ; Write the record
BLBC R0,R_ERR ; Quit on error
BRW READ ; Go back for more

;
; Close files and exit
;
F_ERR: PUSHL FAB$L_STV+INFAB ; Push STV and STS on

PUSHL FAB$L_STS+INFAB ; stack in reverse order
CALLS #2, G^LIB$SIGNAL ; Signal message
BRB EXIT

(continued on next page)

B–32 VAX MACRO Programming Information and Examples

VAX MACRO Programming Information and Examples
B.3 VAX MACRO Example Programs

Example B–9 (Cont.) Use of the Update Service

R_ERR: PUSHL RAB$L_STV+INRAB ; Push STV and STS on
PUSHL RAB$L_STS+INRAB ; stack in reverse order
CALLS #2, G^LIB$SIGNAL ; Signal message

DONE: $CLOSE FAB=INFAB ; Close files
EXIT: RET ; Return with status in R0

.END UPDATE

This program uses a key and a new record entered from the terminal to update a
record in the input file.

To use the $UPDATE macro, the $FAB macro for the file must specify that the
FAB$V_UPD bit is marked in the file access (FAB$B_FAC) field as shown in the
following code example:

INFAB: $FAB FNM=<INFILE:>,-
FAC=<GET,UPD>

Before updating a record, the program uses the Find service to locate the record
by executing the $FIND macro located at the FIND label:

$FIND RAB=INRAB

B.3.10 Using Block I/O
In addition to the major types of record access provided by the sequential, random
by key value or relative record number, and random by RFA access modes, RMS
provides another means to access data in a file: block I/O.

Block I/O operations let you directly read or write the blocks of a file. These
operations are provided for users who must keep system overhead to a minimum
and need no interpretation of file data as logical records, yet still want to take
advantage of RMS file accessibility. Block I/O is an intermediate step between
the RMS record operations and direct use of $QIO system services.

The three block I/O services are invoked using the $READ, $SPACE, and $WRITE
macros, respectively.

• The Read service transfers a specified number of bytes to memory.

• The Space service positions a file forward or backward a specified number of
blocks.

• The Write service writes a specified number of bytes to a file.

The Read and Write services always begin on a block boundary.

In addition to the Read, Space, and Write services, you can use the following
services on a record stream connected for block I/O operations:

• The Disconnect service ($DISCONNECT macro)

• The Flush service ($FLUSH macro)

• The Next Volume service ($NXTVOL macro)

• The Rewind service ($REWIND macro)

These services perform miscellaneous operations or disconnect the record stream.
They do not work on the contents of the records themselves.

VAX MACRO Programming Information and Examples B–33

VAX MACRO Programming Information and Examples
B.3 VAX MACRO Example Programs

You cannot perform block I/O operations on shared files. That is, file access for
block I/O operations is denied unless the FAB$V_UPI or the FAB$V_NIL bit is
set in the FAB$B_SHR field.

You specify block I/O operations for a record stream by setting the FAB$V_BIO
bit in the file access (FAB$B_FAC) field as input to the Open or Create services.
If you intend to write to the file, you must set the PUT option in the FAB$B_FAC
field; if you intend to read from the file, you must set the GET option in the
FAB$B_FAC field. If you set the FAB$V_BIO bit when you create a relative
or indexed file, RMS omits prolog processing for indexed files and initial space
prezeroing in relative files.

For files of unknown organization, block I/O is the only form of processing
allowed. Processing proceeds identically to that for block I/O to the relative file
organization described previously.

B.3.11 Mixed Block and Record I/O
How and when RMS allows you to switch between record I/O and block I/O
depends on the organization of the file being accessed.

When you access sequential files, RMS allows you to switch between record I/O
and block I/O with each record operation, if desired. To enable I/O switching for a
record stream connected to a sequential file, use the following procedure:

1. Set the FAB$V_BRO option in the FAB$B_FAC field as input to the Create or
Open service.

2. Clear the RAB$L_ROP field RAB$V_BIO option as input to the Connect
service.

This procedure informs RMS that it should check the RAB$V_BIO option in the
RAB$L_ROP field after each operation.

To do a block I/O operation:

1. Set the RAB$L_ROP field RAB$V_BIO option.

2. Invoke a block I/O service (Read, Space, or Write).

To do a record I/O operation:

1. Clear the RAB$L_ROP field RAB$V_BIO option.

2. Invoke a record I/O service.

Use care if you do choose to mix record and block I/O operations for sequential
files. When you switch operations on disk devices, the context of the current
record, the next record, and the next block pointer is undefined. Thus, the first
operation after the switch must not use sequential record access mode. For
magnetic tape devices, the context of the next record or next block indicates the
start of the following block on the tape for the first operation after the switch.

As previously noted, you usually set the FAB$B_FAC field FAB$V_BRO option
only to indicate that you want to mix record I/O and block I/O operations. If
you decide that you want to perform block I/O processing only, you can set the
RAB$L_ROP field RAB$V_BIO option after you open the file but before you
invoke the Connect service. This connect-time operation overrides the setting
of the FAB$V_BRO option for the current record stream and indicates to the
Connect service that you only intend to do block I/O for this file, thus eliminating
the need to allocate internal I/O buffers. (However, you must still allocate buffers
for block I/O operations in your application program.) If you set the FAB$V_BRO

B–34 VAX MACRO Programming Information and Examples

VAX MACRO Programming Information and Examples
B.3 VAX MACRO Example Programs

option when you create an indexed file, the key definition XABs for that file must
be present.

When you access relative or indexed files, switching is available only if you close
and reopen the file. RMS does not permit both types of I/O simultaneously. When
multiple record streams are used, all record streams must use the same type of
I/O, either record I/O or block I/O.

You specify the I/O type when you create or open a file by selecting either the
block I/O option (FAB$V_BIO bit set) or the record I/O option (FAB$V_BIO bit
clear). For relative and indexed files, the decision to use block I/O or record I/O
for a file can be postponed, if desired, until the record stream is connected by the
following procedure:

1. Set the FAB$B_FAC field FAB$V_BRO option when you are opening (or
creating) the file.

2. Indicate the appropriate operation to the Connect service by either setting the
RAB$V_BIO bit in the RAB$L_ROP for block I/O or by clearing it for record
I/O.

B.3.12 Next Block Pointer (NBP)
For block I/O operations to sequential files on disk devices, RMS maintains an
internal next block pointer (NBP) that does the following functions:

• Points to the beginning of the file following execution of a Connect service if
the RAB$V_EOF option in the RAB$L_ROP field of the RAB is cleared. If
the RAB$L_ROP field RAB$V_EOF option is set, the NPB points to the block
following the end of the file. The RAB$V_EOF option is relevant only for
sequential files doing block I/O processing.

• Points to the block following the highest numbered block transferred by a
read or write operation.

• Points to the next block following an operation invoked by the Space service.

An explicit Extend service is required for relative and indexed files because RMS
does not automatically extend a file’s allocation when using block I/O processing.

Example B–10 illustrates how to copy a file using block I/O.

Example B–10 Use of Block I/O

.TITLE BLOCKIO
;
; This program copies the input file to the output file.
; It illustrates block I/O using the RMS $READ and $WRITE
; macros.
;

.PSECT DATA,WRT,NOEXE
INFAB: $FAB FNM = <INFILE:>,- ; Input file name

FAC = <BIO,GET> ; Block I/O read operations
INRAB: $RAB FAB = INFAB,- ; Pointer to FAB

BKT = 0,- ; Start with current block
UBF = REC_BUFF,- ; Record buffer
USZ = REC_SIZE ; and size

(continued on next page)

VAX MACRO Programming Information and Examples B–35

VAX MACRO Programming Information and Examples
B.3 VAX MACRO Example Programs

Example B–10 (Cont.) Use of Block I/O
OUTFAB: $FAB FNM = <OUTFILE:>,- ; Output file name

FOP = CBT,- ; Try for contiguous file
MRS = REC_SIZE,- ; Maximum record size
FAC = <BIO,PUT>,- ; Block I/O write operations
RAT = CR ; Implied carriage control

OUTRAB: $RAB FAB = OUTFAB,- ; Pointer to FAB
BKT = 0,- ; Start with current block
RBF = REC_BUFF ; Output uses same buffer

; as input
REC_SIZE = 1024 ; Maximum record size
REC_BUFF:

.BLKB REC_SIZE ; Record buffer

.PSECT CODE,NOWRT,EXE
;
; Initialization - Open input and output files and connect streams
;

.ENTRY BLOCKIO,^M<> ; No registers to save
$OPEN FAB=INFAB ; Open input file
BLBC R0,EXIT1 ; Quit on error
$CONNECT RAB=INRAB ; Connect to input
BLBC R0,EXIT2 ; Quit on error
MOVL INFAB+FAB$L_ALQ,- ; Set proper size

OUTFAB+FAB$L_ALQ ; for output
$CREATE FAB=OUTFAB ; Create output file
BLBC R0,EXIT3 ; Quit on error
$CONNECT RAB=OUTRAB ; Connect to output
BLBC R0,EXIT4 ; Quit on error

;
; Copy loop
;
READ: $READ RAB=INRAB ; Get a block

BLBS R0,WRITE ; Write the block
CMPL R0,#RMS$_EOF ; Was error end-of-file?
BEQL DONE ; Successful completion
BRB EXIT2 ; If not, signal error

WRITE: MOVW INRAB+RAB$W_RSZ, - ; Set the record size
OUTRAB+RAB$W_RSZ ; for output

$WRITE RAB=OUTRAB ; Write the block
BLBC R0,EXIT4 ; Quit on error
BRB READ ; Go back for more

;
; Error Signaling
;
EXIT1: MOVL INFAB+FAB$L_STS,R2 ; Move STS into R2

MOVL INFAB+FAB$L_STV,R3 ; Move STV into R3
BRB EXIT ; Signal error

EXIT2: MOVL INRAB+RAB$L_STS,R2 ; Move STS into R2
MOVL INRAB+RAB$L_STV,R3 ; Move STV into R3
BRB EXIT ; Signal error

(continued on next page)

B–36 VAX MACRO Programming Information and Examples

VAX MACRO Programming Information and Examples
B.3 VAX MACRO Example Programs

Example B–10 (Cont.) Use of Block I/O
EXIT3: MOVL OUTFAB+FAB$L_STS,R2 ; Move STS into R2

MOVL OUTFAB+FAB$L_STV,R3 ; Move STV into R3
BRB EXIT ; Signal error

EXIT4: MOVL OUTRAB+RAB$L_STS,R2 ; Move STS into R2
MOVL OUTRAB+RAB$L_STV,R3 ; Move STV into R3
BRB EXIT ; Signal error

;
; Close files and exit
;
DONE: $CLOSE FAB=INFAB ; Close input and

$CLOSE FAB=OUTFAB ; output files
RET ; Return w/ success in R0

EXIT: PUSHL R3 ; Push STV and STS
PUSHL R2 ; on stack
CALLS #2, G^LIB$SIGNAL ; Signal error
RET ; Return w/ status in R0
.END BLOCKIO

This example program uses block I/O to transfer the contents of the input file
to the output file. The following program data statements specify block I/O read
operations from the input file by setting the FAB$V_BIO bit (block I/O) and the
FAB$V_GET bit (read) in the FAB$B_FAC field of the input file’s FAB:

INFAB: $FAB FNM = <INFILE>, - ;Input file name
FAC = <BIO,GET>,-

The following data statements specify block I/O write operations to the output file
by setting the FAB$V_BIO bit (block I/O) and the FAB$V_PUT bit (write) in the
FAB$B_FAC field of the output file’s FAB:

OUTFAB: $FAB FNM = <INFILE>, - ;Output file name
FAC = <BIO,PUT>,-

The input file’s contents are copied until the end of file is encountered. Any errors
are signaled with the convention of using both the STS and STV fields of the
appropriate control block.

VAX MACRO Programming Information and Examples B–37

Index

A
Access

modes, 1–3
run-time options, 1–4

Access control entries
See ACEs

Access control list buffer field
See XAB$L_ACLBUF field

Access control list buffer size field
See XAB$W_ACLSIZ field

Access control list context field
See XAB$L_ACLCTX field

Access control list error status field
See XAB$L_ACLSTS field

Access control list length field
See XAB$W_ACLLEN field

Access control lists
See ACLs

Access modes field
See FAB$B_ACMODES field

Access specification, list of mask values, 15–5
ACEs (access control entries)

RMS limitation, 15–2
ACLs (access control lists)

conversion methods, 15–2
use with RMS control block, 15–2

Actual offset value, avoiding use of, 2–3
AIDs (area identification numbers), program

example, B–19
Alignment boundary type field

See XAB$B_ALN field
Allocation control extended address block

See XABALL block
Allocation options field

See XAB$B_AOP field
Allocation quantity field

See FAB$L_ALQ field; XAB$L_ALQ field
Append access, use of RAB$V_EOF option, 7–13
Area descriptors, how affected by extending index

file, RMS–47
Area identification number field

See XAB$B_AID field

Area identification numbers
See AIDs

Argument delimiters, used with RMS, B–10
Argument keywords, delimiting for RMS, B–10
Argument lists

count field, 2–4
description, 2–4
error routine address field, 2–4
new FAB address field, 2–5
passing to record management services, B–9
passing to service, B–9
success routine address field, 2–4

Arguments
delimiters for RMS, B–10
for initialization and control block store macros,

B–7
passing, 1–3
separator in RMS coding, B–6
specifying as run-time values, B–8
to FABs, 1–4
to RABs, 1–5

Argument values, passed to AST-level completion
routine, 2–4

ASCII characters, delimiting in control block fields,
B–5, B–7

AST completion routines, arguments passed to,
2–4

ASTs (asynchronous system traps)
argument lists, B–10
arguments passed to completion routines, B–10
argument values, B–10

Asynchronous completion, 2–6
Asynchronous I/O option

See FAB$V_ASY option; RAB$V_ASY option
Asynchronous operations, contrasted with

synchronous operation, 2–9
Asynchronous option, 2–5
Asynchronous system traps

See ASTs
Automatic file extension, RMS–47

Index–1

B
Backup date and time field

See XAB$Q_BDT field
BID field

See Block identifier field
BLN field

See NAM$B_BLN field
Block boundary option

See FAB$V_BLK option
Block code field

See XAB$B_COD field
Block I/O, B–33

execution contrasted with record I/O execution,
B–34

how implemented by record management
services, B–33

how to specify for relative and indexed files,
B–35

options
See FAB$V_BIO option; RAB$V_BIO option

program example, B–35
requirements for mixing with record I/O, B–34
services, 1–2
use of NBP for sequential files, B–35
using record management services, B–4
with multiple record streams, B–35
with record I/O processing, B–35

Block identifier field
See FAB$B_BID field; NAM$B_BID field;

RAB$B_BID field
Block length field

See NAM$B_BLN field
Block length field in allocation XAB

See XAB$B_BLN field
Block length field in date and time XAB

See XAB$B_BLN field
Block length field in file access block

See FAB$B_BLN field
Block length field in file header characteristics

XAB
See XAB$B_BLN

Block length field in item list XAB
See XAB$B_BLN field

Block length field in key XAB
See XAB$B_BLN field

Block length field in protection XAB
See XAB$B_BLN field

Block length field in record access block
See RAB$B_BLN field

Block length field in revision date and time XAB
See XAB$B_BLN field

Block length field in summary XAB
See XAB$B_BLN field

Block length field in terminal XAB
See XAB$B_BLN field

Block or record I/O option
See FAB$V_BRO option

Bucket code field
See RAB$L_BKT field

Buckets, boundary and file organization
considerations, 4–4

Bucket size field
See FAB$B_BKS field

Bucket size field in allocation XAB
See XAB$B_BKZ field

Bucket size field in file header characteristics XAB
See XAB$B_BKZ

Bucket splits
minimizing, 14–4

BYTLM quota, limiting size of user’s ACL buffer,
15–3

C
C

programming examples implementing RMS,
3–1

Caller access mode, 4–6
Calling sequence, 2–4
Calling standard, for calling services, B–3
Calling standard,for calling services, 1–1
Cancel CTRL/O option

See RAB$V_CCO option
Carriage return option

See FAB$V_CR option
CDT argument, A–21
Channel access mode protection option, 4–6
Channel access mode subfield

See FAB$V_CHAN_MODE option
Check for duplicate key

See RAB$V_CDK option
CHG (change) option, in XAB$B_FLG field, A–25
Close service, 3–1, B–12, B–15

condition values, RMS–5
See also Completion status codes

contrasted with Disconnect service, 3–5
control block input fields, RMS–4
control block output fields, RMS–5
limitations with XABs, RMS–4
use restrictions, RMS–4

Collating key
data type, 14–6
stored order versus lookup value, 7–3, 7–4

Collating sequence name field
See XAB$L_COLNAM field

Index–2

Collating sequence size field
See XAB$L_COLSIZ field

Collating sequence table field
See XAB$L_COLTBL field

Comment separators, B–6
Completion routines

conditions for AST execution, B–10
service macro arguments, B–10

Completion status code field
as alternative to use of R0, 2–4
for signaling errors, 2–7
in RAB

See RAB$L_STS field
use with debugger, 2–9

Completion status codes
description, 2–5
handling, B–11
listing conditions when not returned, 2–8
severity codes, 2–7

Completion status value field
as alternative to use of R0, 2–4
for signaling errors, 2–7
in FAB

See FAB$L_STV field
in RAB

See RAB$L_STV field
use with debugger, 2–9

Condition values
See also Completion status codes

Connect service, RMS–6, B–15
comparing positioning for various file

organizations, RMS–7
condition values, RMS–9
connecting record stream, 3–5
control block input fields, RMS–7
control block output fields, RMS–8
program example, B–23
use with multiple keys, B–23

Contiguous-best-try option
See FAB$V_CBT option

Contiguous option
See FAB$V_CGT option; FAB$V_CTG option

Continuation character (-)
use in RMS coding, B–6

Control block options, specifying by symbolic bit
offset, 2–3

Control blocks
dual purpose, 1–5
field naming conventions, 2–2
for extended attributes, 1–6
for file name operations, 1–6
for file services, 1–3
for record services, 1–5
macro names, B–2
requirements for valid default values, 1–5
symbolic bit offset, 2–3

Control blocks (cont’d)
symbolic constant (keyword) value, 2–3
symbolic naming exceptions, 2–3
symbolic offsets, 2–2
types of macros, B–1
use restrictions, 2–1
use with OpenVMS languages, 2–1

Control block store macros
description, B–1
example, B–8
placement guidelines, B–7
requirement for number sign, B–8
use of R0, B–7

CONVERT command, B–20
Convert option

See RAB$V_CVT option
Count byte format option

See FAB$V_MSB option
CREATE/FDL command, B–20
Create-if option, 3–1, B–12

See also FAB$V_CIF option
$CREATE macro, B–9
Create service, 3–1, RMS–10, B–12

condition values, RMS–24
contrasted with Open service, 3–1
control block input fields, RMS–11
control block output fields, RMS–16
handling search list, RMS–11
program example, 3–2, B–12
specifying prolog level, RMS–24
using the create-if option, RMS–23
using the NAM block, RMS–17
using to create indexed files, RMS–23
XAB override in various fields, RMS–11

Creation date and time field
See XAB$Q_CDT field

Ctrl/Z key sequence
using as end-of-file marker, RMS–63
using to terminate Get service, RMS–63

Current position option
See FAB$V_POS option

D
DANs (data bucket area numbers)

program example, B–19
Data bucket area number field

See XAB$B_DAN field
Data bucket area numbers

See DANs
Data bucket fill size

See DFL
Data bucket fill size field

See XAB$W_DFL field

Index–3

Data bucket size field
See XAB$B_DBS field

Data levels, comparing for primary and alternate
keys, 14–4

Data type of key field
See XAB$B_DTP field

Date and time extended address block
See XABDAT blocks

Debugger, use with completion status codes, 2–9
DEC Multinatinal Character Set, using, 2–10
DECnet, specifying maximum record size for

remote file access, 4–23
DECnet for OpenVMS

See DECnet
Default extension quantity field

See FAB$W_DEQ field; XAB$W_DEQ field
Default file extension quantity field in XABFHC

See XAB$W_DXQ field
Default file specification string address field

See FAB$L_DNA field
Default file specification string size field

See FAB$B_DNS field
Default global buffer count field

See XAB$W_GBC field
Default value for revision date and time, 10–3
Deferred write option

See FAB$V_DFW option
Delete on close option

See FAB$V_DLT option
Delete service, RMS–26

condition values, RMS–27
See also Completion status codes

control block input fields, RMS–27
control block output fields, RMS–27
program example, B–30
requirements, RMS–27
use restrictions, RMS–26

Delete service option
See FAB$V_DEL option

Delete sharing option
See FAB$V_SHRDEL option

Delimiters
using in control block arguments, B–5, B–7

$DEVDEF macro, source of DEV field bit
definitions, 4–7

Device characteristics field
See FAB$L_DEV field

Device identification field
See NAM$T_DVI field

Device name address field
See NAM$L_DEV field

Device name address string
See NAM$L_DEV string

Device name length field
See NAM$B_DEV field

Device name size string
See NAM$B_DEV string

DFL (data bucket fill size), program example,
B–19

Directory address string
See NAM$L_DIR string

Directory identification field
See NAM$W_DID

Directory name length address field
See NAM$L_DIR field

Directory name length field
See NAM$B_DIR field

Directory size string
See NAM$B_DIR string

Disconnect service, RMS–28
condition values, RMS–29

See also Completion status codes
control block input fields, RMS–29
control block output fields, RMS–29
program example, B–23
using with multiple RABs, RMS–29

Disk cluster boundary, determining allocation
quantity, 4–3

Display service
condition values, RMS–34
control block input fields, RMS–31
control block output fields, RMS–31
requirements, RMS–31

DNA argument, A–4
DNM argument, A–2
DNM field, 3–4, B–14
DNS argument, A–4
DUP (duplicate) option, in XAB$B_FLG field,

A–25
Duplicate keys

examples, 7–9
incompatibility between RMS and RMS-11,

14–9
insertion order, RMS–98
retrieving records, 7–9

E
Edit/FDL utility (EDIT/FDL)

as alternative to multiple XABs, B–20
EDT argument, A–21
End-of-file

See EOF
Enter service, RMS–35

condition values, RMS–38
control block input fields, RMS–36

Index–4

Enter service (cont’d)
requirement for NAM or NAML block fields,

RMS–36
EOF

See RAB$V_EOF option
EOF (end-of-file), positioning, RMS–7
EOF field in XABFHC

See XAB$L_EBK field
EOF mark, positioning for user file open option,

4–17
Equal-or-next key option

See also RAB$V_EQNXT option
Erase service

alternative, RMS–40
condition values, RMS–44

See also Completion status codes
control block input fields, RMS–40
requirements for using, RMS–40
use restriction, RMS–40

Error completion routine, 2–4
Errors, recommended method for signaling, 2–7
Error status code, 2–7
Error types, 2–8
ESA (expanded string area address), program

example, B–23
Escape sequences

using from terminal devices, RMS–63
ETO option, RMS–63

See also RAB$V_ETO option
Event flags, for synchronous operations, 2–9
Executive-mode (PSL$C_EXEC) constant

for FAB$V_CHAN_MODE, 4–6
Expanded string, requesting, 5–2
Expanded string area address

See ESA
Expanded string area address field

See NAM$L_ESA field
Expanded string length field

See NAM$B_ESL field
Expanded string size field

See NAM$B_ESS field
Expiration date field

See XAB$Q_EDT field
Expired date suppression, 12–12
Extended attribute block address field

See FAB$L_XAB field; RAB$L_XAB field
Extended attribute blocks

See XABs
Extended terminal operation option

See ETO option; RAB$V_ETO option
Extend service, RMS–46

condition values, RMS–48
control block input fields, RMS–47
control block output fields, RMS–48
invoking, 4–11

Extend service (cont’d)
use restriction, RMS–47
XAB option overrides, RMS–47

F
FAB$B_ACMODES field, 4–3

See also FAB$V_CHAN_MODE subfield;
FAB$V_LNM_MODE subfield

FAB$B_BID field, 4–3
FAB$B_BKS field

considerations for calculating, 4–4
default logic, 4–4
limitation for RMS-11, 4–4
performance considerations, 4–4
requirements for RMS-11 compatibility, 4–5
selecting default size for indexed files, 4–4
variations for XABs, 4–4

FAB$B_BLN field, 4–4
FAB$B_DNS field, 4–9, A–2

default file specification, 4–2
FAB$B_FAC field, 4–9, 4–10

comparing with FAB$B_SHR field, 4–10
for specifying sharing options, 3–1, B–12
interdependency with FAB$B_SHR field, 4–28
options, 4–10
requirement for invoking Extend service,

RMS–47
FAB$B_FNS field, 4–12

specifying primary file specification, 4–2
to specify file name size, B–20

FAB$B_FSZ field, 4–18
FAB$B_JOURNAL field, 4–20
FAB$B_ORG field, 4–24
FAB$B_PUT field, requirement for invoking

Extend service, RMS–47
FAB$B_RAT field, 4–24
FAB$B_RFM field, 4–26
FAB$B_RTV field, 4–27
FAB$B_SHR field

comparing option names with file access option
names, 4–28

conflict with FAB$B_FAC field, 4–28
default logic, 4–28
for specifying sharing options, 3–1, B–12
interdependency with FAB$B_FAC field, 4–28
option naming convention, 4–28

FAB$B_UPD field, requirement for invoking
Extend service, RMS–47

FAB$C_FIX option, 4–26
FAB$C_STMCR option, 4–26
FAB$C_STMLF option, 4–26
FAB$C_STM option, 4–26
FAB$C_UDF option, 4–26
FAB$C_VAR option, 4–27
FAB$C_VFC option, 4–27

Index–5

FAB$L_ALQ field
as output field, 4–3
functional variations for XABs, 4–3
setting at run time, B–5
use with Create service, 4–3
use with Extend service, 4–3
use with Open service, 4–3
using to specify additional file space, RMS–47

FAB$L_CTX field, 4–6
FAB$L_DEV field, 4–7
FAB$L_DNA field, 4–9, A–2

components listed, 4–9
specifying default file specification, 4–2

FAB$L_FNA field, 4–11
specifying primary file specification, 4–2
to specify file name string, B–20

FAB$L_FOP field, 4–12
options, 4–13

FAB$L_MRN field, 4–21
FAB$L_NAM field, 4–23
FAB$L_NAML field, 4–23
FAB$L_SDC field, 4–27
FAB$L_STS field, 4–30

handling for ACL error status, 15–3
FAB$L_STV field, 4–30

examples of using, B–11
for invoking $QIO, 4–16
for total number of blocks allocated, RMS–48
with I/O channel, RMS–16

FAB$L_XAB field, 4–30
FAB$V_AI flag, 4–20
FAB$V_ASY option, 4–17
FAB$V_BI flag, 4–20
FAB$V_BIO option, 4–10

how used to specify I/O type, B–35
FAB$V_BLK option, 4–24
FAB$V_BRO option, 4–29
FAB$V_CBT option, 4–13
FAB$V_CHAN_MODE subfield, 4–6
FAB$V_CIF option, 4–14
FAB$V_CR option, 4–24
FAB$V_CTG option, 4–14
FAB$V_DEL option, 4–10

for enabling Delete service, B–31
FAB$V_DFW option, exception to use of global

buffers, 4–19
FAB$V_DLT option, 4–15

qualified use by Close service, RMS–4
use with FAB$V_SCF or FAB$V_SPL option,

4–15
FAB$V_FTN option, 4–24
FAB$V_GET option, 4–10, 4–11

use with block I/O operations, 4–10, 4–11
FAB$V_LNM_MODE option, 4–21
FAB$V_MSE option

enabling multiple RABs, RMS–7
for overriding the FAB$V_UPI option, 4–29

FAB$V_MSE option (cont’d)
requirement for read-only buffer cache, 4–19,

4–28
use with other options, 4–28

FAB$V_MXV option, 4–14
FAB$V_NAM option, 4–14
FAB$V_NEF option, 4–16
FAB$V_NFS option, 4–16

relationship to FAB$V_CHAN_MODE subfield,
4–5

FAB$V_NIL option, 4–29
effect on specifying user file open option, 4–17
precedence over other options, 4–29
requirement for block I/O, B–34

FAB$V_NQL sharing option, 4–29
FAB$V_OFP option, 4–15
FAB$V_POS option, 4–16
FAB$V_PRN option, 4–25
FAB$V_PUT option, 4–10, 4–11

use with block I/O operations, 4–10
FAB$V_PUT sharing option, 4–29
FAB$V_RCK option, 4–18
FAB$V_RU flag, 4–20
FAB$V_RWC option, 4–16
FAB$V_RWO option, 4–16
FAB$V_SCF option, 4–15

qualified use by Close service, RMS–4
FAB$V_SHRDEL option, 4–29
FAB$V_SHRGET option

requirement for read-only buffer cache, 4–19,
4–28

FAB$V_SPL option, 4–15
qualified use by Close service, RMS–4

FAB$V_SQO option, 4–17
prohibiting random access, RMS–62

FAB$V_SUP option, 4–15
subordinate to FAB$V_CIF option, 4–14

FAB$V_SYNCSTS option, 4–17
FAB$V_TEF option, 4–14
FAB$V_TMD option, 4–15

inhibiting automatic Create, RMS–36
FAB$V_TMP option, 4–16

inhibiting automatic Create, RMS–36
FAB$V_TRN option

in file access field, 4–11
requirement for truncate-on-put operation,

7–18
FAB$V_UFO option, 4–16

effect on internal structures, 4–20
relationship to FAB$V_CHAN_MODE subfield,

4–5
FAB$V_UPD option, 4–11, 4–29

requirement for implementing update-if option,
7–18

requirement for Update service, B–33
FAB$V_UPI option

requirement for block I/O, B–34
requirement for setting, 4–30

Index–6

FAB$V_UPI option (cont’d)
requirement for user file open option, 4–17

FAB$V_WCK option, 4–18
FAB$W_BLS field, 4–5
FAB$W_DEQ field, 4–4, 4–6, 4–7

default logic, 4–7
overriding default, 4–7

FAB$W_GBC field, 4–19
as output, 4–19
changing, 4–19
clearing, 4–19
overriding default, 4–19

FAB$W_IFI field, 4–20
requirement for invoking Extend service,

RMS–47
FAB$W_MRS field, 4–22

program example, B–15
$FAB macro, A–2

argument categories, A–2
FABs (file access blocks), 4–1

argument categories, 1–4
description, 1–3
requirements for, 4–2

$FAB_STORE macro, A–4
argument categories, A–4
FAB argument requirement, A–4
run-time arguments, A–4

FAC field
See FAB$B_FAC field

Fast delete option
See RAB$V_FDL option

FDL$PARSE routine, B–20
FDL$RELEASE routine, B–20
Field length, identifier in symbolic name, 2–2
File access block address field

See RAB$L_FAB field
File access blocks (FABs)

See FABs
File access field

See FAB$B_FAC field
File component descriptors

address field, 5–3
example, 5–3
field value logic, 5–3
list of, 5–3
size field, 5–3
suggested use of, 5–3

File Expiration Date and Time
evaluation criteria, 12–12
how used, 12–13

File header characteristic extended address block
See XABFHC block

File identification field
See NAM$W_FID field

File name address field
See NAM$L_NAME field

File name address string
See NAM$L_NAME string

File name length field
See NAM$B_NAME field

File name size string
See NAM$B_NAME string

File name status field
See NAM$L_FNB field

File name strings
component parts, B–20

File organization and record format field
See XAB$B_RFO field

File organization field
See FAB$B_ORG field

File owner group number field
See XAB$W_GRP field

File owner member number field
See XAB$W_MBM field

File positioning, effect on shared files, RMS–7
File processing

naming convention options, 4–12
option categories listed, 4–12
service output options, 4–12
services listed, 1–1
using record management services, B–3

File-processing options field
See FAB$L_FOP field

File protection extended address block
See XABPRO block

File protection field
See XAB$W_PRO field

File protection option field
See XAB$B_PROT_OPT field

Files
characteristics argument for FAB, 1–4
extensions, RMS–47
specification argument for FAB, 1–4
specifying paths using file specification string,

B–20
File sections

defining in context of multiple volumes,
RMS–73

File sharing, features provided by RMS, 1–3
File sharing field

See FAB$B_SHR field
File specification address

See FAB$L_FNA field
File specifications

component descriptors, 5–2
default requirements, B–20
how handled by Search service, B–20
parsing, RMS–88
string addresses, B–20
string sizes, B–20

Index–7

File specification size
See FAB$B_FNS field

File tags
creating, 12–11
requirement for, 12–11
using, 12–11

File type address field
See NAM$L_TYPE field

File type address string
See NAM$L_TYPE string

File type length field
See NAM$B_TYPE field

File type size string
See NAM$B_TYPE string

File version address field
See NAM$L_VER field

File version address string
See NAM$L_VER string

File version length field
See NAM$B_VER field

File version limit field
See XAB$W_VERLIMIT field in XABFHC

File version size string
See NAM$B_VER string

Fill level, comparing primary key and alternate
keys, 14–10

Find service, RMS–49
capabilities, RMS–50
condition values, RMS–54
control block input fields

RAB, RMS–50
RAB64, RMS–53

control block output fields
RAB, RMS–52
RAB64, RMS–54

First data bucket start virtual block number field
See XAB$L_DVB

First free byte field
See XAB$W_FFB field

Fixed-length control area size field
See FAB$B_FSZ field

Fixed-length header control size field
See XAB$B_HSZ field

Fixed-length record format option
See FAB$C_FIX option

Flush service
condition values, RMS–57
control block input fields, RMS–57
control block output fields, RMS–57

FNA argument, A–4
FNM argument, A–2
FNS argument, A–4

Fortran, carriage control option list, 4–24
Fortran carriage control option

See FAB$V_FTN option
Free service, RMS–59

condition values, RMS–60
control block input and output fields, RMS–60

G
$GET macro, program example, B–27
Get option

See FAB$V_GET option
Get service, RMS–61

applicable access modes, RMS–62
condition values, RMS–70

See also Completion status codes
control block input fields

RAB, RMS–64
RAB64, RMS–68

control block output fields
RAB, RMS–68
RAB64, RMS–70

requirement for user record area, RMS–64
returning terminator character for terminal

input, RMS–63
return status for various file access methods,

RMS–7
using input from mailbox devices, RMS–64
using stream input, RMS–62
using terminal input, RMS–63
using the RAB$L_STV field for additional

status information, RMS–64
Global buffer count field

See FAB$W_GBC field
Global buffers, 4–18

determining number of, 4–19
Global buffer sizes, for shared sequential file

operations, 4–20, 7–7

H
HDR1 labels, accessing from XAB$B_MTACC field,

15–4
Highest virtual block field

See XAB$L_HBK field

I
I/O mode

how to switch for sequential files, B–34
procedure for delaying decision until stream

connection, B–35
when mode switching allowed, B–34

IANs (index bucket area numbers), program
example, B–19

Index–8

IFL (initial index fill), program example, B–19
Illformed calls, RMS, 2–5
Index bucket area number field

See XAB$B_IAN field
Index bucket area numbers

See IANs
Index bucket fill size

See IFL
Index bucket fill size field

See XAB$W_IFL field
Index bucket size field

See XAB$B_IBS field
Indexed files

block allocation, 9–3
bucket size for multiple areas, RMS–16
composition, RMS–23
creating, RMS–23
creating with multiple keys, B–16
default bucket size, 4–4
determining keys and areas, 18–1
determining key size, 7–4
determining key value, RMS–62
determining maximum record size, 4–22
determining number of buffers, 7–7
establishing index, RMS–7
example of processing duplicate keys, 7–9
example of specifying, B–5
fast delete option, 7–16
identifying data area, 14–3
inhibiting index update, 14–12
initial extent quantity, 4–3
inserting records with Put service, RMS–98
invoking Get and Find services for, 7–4
key of reference, 7–3
methods of accessing records, 7–5
options, 7–11
positioning area, 9–6
prolog selection, RMS–24
restriction against VFC format, 4–18
restriction to changing primary key, RMS–136
separating index levels, 14–11
size of data bucket, 14–4
specifying bucket size, 4–4, 9–4
specifying index area, 14–9
specifying index bucket size, 14–10
string key options, 14–8
update-if option, 7–18
use of areas in, B–19
use of end-of-file option, RMS–7
verifying sort order, RMS–7
with allocation options, 4–14
with collating sequences, 14–3
with deferred-write option, RMS–12
with Get service, RMS–62
with XABKEY, 14–1

Index levels, comparing primary key and alternate
keys, 14–10

Initialization macros
example, B–5
functions, B–1
multiple bit field, B–5
placement guidelines, B–7
using, B–6

Internal file identifier field
See FAB$W_IFI field

Internal stream identifier field
See RAB$W_ISI field

IO$M_NOW modifier, for Get and Put services,
7–16

Item list address field
See XAB$L_ITEMLIST field; XAB$L_ITMLST

field
Item list extended address block

See XABITM block
Item list length field

See XAB$W_ITMLST_LEN field
Item lists, 19–1

J
Journaling extended address block

See XABJNL block
Journaling flags, FAB symbolic offsets, 4–20

K
Key buffer address field

See RAB$L_KBF field
Key definition extended address block

See XABKEY block
Key greater than option

See RAB$V_NXT option
Key greater than or equal option

See RAB$V_EQNXT option
Key name buffer address field

See XAB$L_KNM field
Key of reference field

See Keys of reference; RAB$B_KRF field;
XAB$_REF field

Key options, comparing primary and alternate
keys, 14–7

Key options flag field
See XAB$B_FLG field

Key position field
See XAB$W_POS0 through XAB$W_POS7 field

Keys
determining match method, 7–5
types of matches, 7–5

Index–9

Keys (in records)
defining as simple or segmented, 14–12

Key size field
See RAB$B_KSZ field; XAB$B_SIZ0 through

XAB$B_SIZ7 field
Keys of reference, establishing, RMS–62
Key string buffers, program example, B–27
Key string descriptors, program example, B–27
Key string lengths, program example, B–27

L
Length field

using to indicate constant (keyword) value, 2–3
using to indicate mask or bit offset, 2–3

Level of root bucket field
See XAB$B_LVL field

LIB$GET_INPUT routine, example of use in RMS
program, B–23

LIB$PUT_OUTPUT routine, example of use in
RMS program, B–23

LIB$SIGNAL routine, using to signal RMS errors,
2–7

Limit option
See RAB$V_LIM option

Load option
See RAB$V_LOA option

Locate mode
See also RAB$V_LOC option
comparing with move mode for buffer handling,

7–17
Location field in XABALL

See XAB$L_LOC field
Lock record for read option

See RAB$V_REA option
Lock record for write option

See RAB$V_RLK option
Logical names, requirements for parsing, B–20
Logical name translation access mode subfield

See FAB$V_LNM_MODE
Longest record length field

See XAB$W_LRL field
Long name blocks

See NAMLs
Lowest level of index area number field

See XAB$B_LAN field

M
Macro fields

example of initializing, B–5
setting at run time, B–5

MACRO language, programming information, B–1

Macros
applicable VAX MACRO syntax rules, B–5
block I/O processing, 1–2
control block initialization, B–1
file naming, 1–1
file processing, 1–1
for defining RMS symbols, B–1
for initializing RMS control blocks, B–1
for invoking RMS at run time, B–1
for RMS control block store, B–1
library location, B–2
names and control blocks, B–2
naming conventions, B–2
record processing, 1–2
RMS types, B–1
rules applicable to programming, B–6
service, B–1
syntax applicable to RMS, B–1
using, B–6

Magnetic tape accessibility field
See XAB$B_MTACC field

Manual unlock option
See RAB$V_ULK option

MAXBUF system parameter, limiting size of user’s
ACL buffer, 15–3

Maximum record number field
See FAB$L_MRN field

Maximum record size field
See also FAB$W_MRS field
default value for remote file access, 4–23
in XABFHC

See XAB$W_MRZ field
Maximum version option

See FAB$V_MXV option
Minimum record length field

See XAB$W_MRL field
Mixed I/O, B–34
Mode field in XABITM

See XAB$B_MODE field
Mode switching, when permitted, B–34
Multiblock count field

See RAB$B_MBC field
Multibuffer count field

See RAB$B_MBF field
Multinational character set

See DEC Multinational character set
Multiple arguments

delimiting in control block fields, B–5, B–7
specifying in control block fields, A–2

Multiple-key indexed files, B–16
Multiple keys

example of use with Close service, B–23
performance cost of using, 14–13
recommended number, 14–13

Index–10

Multiple record streams, with block I/O, B–35
Multistream access option

See FAB$V_MSE option

N
NAM$B_BID field, 5–4
NAM$B_BLN field, 5–4
NAM$B_DEV field, 5–3, 5–4
NAM$B_DIR field, 5–3, 5–4
NAM$B_ESL field, 5–5
NAM$B_ESS field, 5–5
NAM$B_NAME field, 5–3, 5–7
NAM$B_NMC field, 5–8
NAM$B_NODE field, 5–3, 5–8
NAM$B_NOP field, 5–8
NAM$B_RSL field, 5–10, RMS–81
NAM$B_RSS field, 5–10
NAM$B_TYPE field, 5–3, 5–10
NAM$B_VER field, 5–3, 5–10
NAM$L_DEV field, 5–3, 5–4
NAM$L_DIR field, 5–3, 5–4
NAM$L_ESA field, 5–5
NAM$L_FNB field, 5–6, RMS–81, RMS–116
NAM$L_FNB status bits, 5–6
NAM$L_NAME field, 5–3, 5–7
NAM$L_NODE field, 5–3, 5–8
NAM$L_RLF field, 5–9
NAM$L_RSA field, 5–10, RMS–81
NAM$L_TYPE field, 5–3, 5–10
NAM$L_VER field, 5–3, 5–10
NAM$L_WCC field, 5–11

returned by Remove service, RMS–110
NAM$T_DVI field, 5–5
NAM$V_CNCL_DEV bit, 5–6
NAM$V_CONCEAL field, RMS–32
NAM$V_CONCEAL option, RMS–81, RMS–84
NAM$V_DIR_LVLS bit, 5–6
NAM$V_DIR_LVLS_GY bit, 5–6
NAM$V_EXP_DEV bit, 5–6
NAM$V_EXP_DIR bit, 5–6
NAM$V_EXP_NAME bit, 5–6
NAM$V_EXP_TYPE bit, 5–6
NAM$V_EXP_VER bit, 5–6
NAM$V_GRP_MBR bit, 5–6
NAM$V_HIGHVER bit, 5–6
NAM$V_LOWVER bit, 5–6
NAM$V_NOCONCEAL option, 5–8, RMS–17,

RMS–90
NAM$V_NODE bit, 5–6
NAM$V_NO_SHORT_UPCASE option, 5–8,

RMS–18, RMS–91
NAM$V_PPF bit, 5–6
NAM$V_PWD field, RMS–32, RMS–90

NAM$V_PWD option, 5–9, RMS–17, RMS–81,
RMS–83

NAM$V_QUOTED bit, 5–6
NAM$V_ROOT_DIR bit, 5–6
NAM$V_SEARCH_LIST bit, 5–6
NAM$V_SRCHXABS option, 5–9
NAM$V_SYNCHK option, 5–9, RMS–91

use with Parse service, 4–7
using for Parse service without I/O, RMS–89

NAM$V_WILDCARD bit, 5–6
NAM$V_WILD_GRP bit, 5–7
NAM$V_WILD_MBR bit, 5–7
NAM$V_WILD_NAME bit, 5–7
NAM$V_WILD_SFD1 bit, 5–7
NAM$V_WILD_SFDG7 bit, 5–7
NAM$V_WILD_TYPE bit, 5–7
NAM$V_WILD_UFD bit, 5–7
NAM$V_WILD_VER bit, 5–7
NAM$W_DID field, 5–4
NAM$W_FID field, 5–5
NAM$W_FIRST_WILD_DIR field, 5–5
NAM$W_LONG_DIR_LEVELS field, 5–7
NAM (name block) option

See FAB$V_NAM option
NAM and NAML blocks, using, 6–1
Name block address field

See FAB$L_NAM field
Name block options field

See NAM$B_NOP field
Name blocks

See NAMs
Naming conventions

macros, B–2
services, 1–1, B–3

NAML$B_BID field, 6–5
NAML$B_BLN field, 6–5
NAML$B_RSL field, RMS–84
NAML$L_FILESYS_NAME field, 6–5
NAML$L_FILESYS_NAME_ALLOC field, 6–5
NAML$L_FILESYS_NAME_SIZE field, 6–6
NAML$L_FNB field, RMS–83, RMS–118
NAML$L_INPUT_FLAGS field, 6–6

NAML$V_NO_SHORT_OUTPUT, 6–6
NAML$L_LONG_DEFNAME field, 6–6
NAML$L_LONG_DEFNAME_SIZE field, 6–6
NAML$L_LONG_DEV field, 6–6
NAML$L_LONG_DEV_SIZE field, 6–6
NAML$L_LONG_DIR field, 6–7
NAML$L_LONG_DIR_SIZE field, 6–7
NAML$L_LONG_EXPAND field, 6–7
NAML$L_LONG_EXPAND_ALLOC field, 6–7
NAML$L_LONG_EXPAND_SIZE field, 6–7
NAML$L_LONG_FILENAME field, 6–7
NAML$L_LONG_FILENAME_SIZE field, 6–7
NAML$L_LONG_NAME field, 6–8

Index–11

NAML$L_LONG_NAME_SIZE field, 6–8
NAML$L_LONG_NODE field, 6–8
NAML$L_LONG_NODE_SIZE field, 6–8
NAML$L_LONG_RESULT field, 6–8
NAML$L_LONG_RESULT_ALLOC Field, 6–9
NAML$L_LONG_RESULT_SIZE field, 6–9
NAML$L_LONG_TYPE field, 6–9
NAML$L_LONG_TYPE_SIZE field, 6–9
NAML$L_LONG_VER field, 6–9
NAML$L_LONG_VER_SIZE field, 6–9
NAML$L_OUTPUT_FLAGS field, 6–9

NAML$V_FILESYS_NAME_UCS2, 6–9
NAML$V_LONG_RESULT_ESCAPTE, 6–9

NAML$L_RSA field, RMS–84
NAML$Q_USER_CONTEXT field, 6–10
NAML$V_CONCEAL field, RMS–33
NAML$V_NOCONCEAL option, RMS–21,

RMS–93
NAML$V_NO_SHORT_UPCASE option, RMS–21,

RMS–93
NAML$V_PWD field, RMS–33, RMS–93
NAML$V_PWD option, RMS–20
NAML$V_SYNCHK option, RMS–93
NAML Blocks, program example, 3–9
$NAML macro, A–8
NAMLs (long name blocks), 1–6

summary of fields, 6–1, 6–2
validating, 6–5

$NAML_STORE macro, A–9
$NAM macro, A–5

argument categories, A–5
NAMRV_NO_SHORT_UPCASE option, RMS–81,

RMS–84
NAMs (name blocks)

summary of fields, 5–1
using from higher-level language, 5–2

$NAM_STORE macro, A–6
NBP (next block pointer)

default for block transfer, 7–3
for block I/O, B–35

/NETWORK_BLOCK_COUNT qualifier
for specifying maximum record size, 4–23

Next block pointer
See NBP

Next key option
See RAB$V_NXT option

Next Volume service, RMS–72
condition values, RMS–74
control block input and output fields, RMS–73
flush logic, RMS–73
input and output logic sequences, RMS–73
requirements for using, RMS–73

Node name address field
See NAM$L_NODE field

Node name address string
See NAM$L_NODE string

Node name length field
See NAM$B_NODE field

Node name size string
See NAM$B_NODE string

No lock option
See RAB$V_NLK option

Nonexistent record option
See RAB$V_NXR option

Non-file-structured option
See FAB$V_NFS option

NOP field
specifying multiple values, A–5

No sharing option
See FAB$V_NIL option

Not end-of-file option
See FAB$V_NEF option

Null character field
See XAB$B_NUL field

Number of allocation areas field
See XAB$B_NOA field

Number of key segments field
See XAB$B_NSG field

Number of keys field
See XAB$B_NOK field

Number sign (#)
requirement for in control store macros, B–8

Numeric keys, interpretation of size value, 7–5

O
ODS-2 ACP, 12–13
$OPEN macro

expansion of, B–10
for invoking the Open service, 3–1, B–12
using in example, B–9, B–10, B–11

Open service, 3–1, RMS–75, B–12, B–15, B–21
condition values, RMS–86
control block input fields, RMS–76
control block output fields, RMS–79
invoking, 3–4
NAM input fields, RMS–80
NAM output fields, RMS–81
program example, 3–2, B–12
requirements for using, RMS–76

OpenVMS RMS
See RMS

Output file parse option
See FAB$V_OFP option

Output record buffer address field
See RAB$L_RBF field

Index–12

P
Packed decimal byte, structure for key type, 14–6
Packed decimal string, as key type, 14–6
$PARSE macros, for processing wildcard

characters, B–21
Parse service, RMS–88

condition values, RMS–95
control block input fields, RMS–89, RMS–90
preparing for file search, B–20
preparing for wildcard character processing,

RMS–89
program example, B–20
requirements for using, RMS–89

Performance, improving with SHR argument,
B–25

Print format options
See also FAB$V_PRN option
for VFC records with 2-byte control area, 4–25

Program execution mode, using to call services,
2–9

Programming interface, to RMS, 2–1
Programming languages, using control blocks with,

2–1
Prolog field

See XAB$B_PROLOG field
Prolog levels, RMS–24
Prolog version number field

See XAB$W_PVN field
Prompt buffer address field

See RAB$L_PBF field
Prompt buffer size field

See RAB$B_PSZ field
Prompt option

See RAB$V_PMT option
Protection extended address block

See XABPRO block
Purge type-ahead option

See RAB$V_PTA option
$PUT macro, program example, B–27
Put service

condition values, RMS–102
See also Completion status codes

control block input fields
RAB, RMS–99
RAB64, RMS–100

control block output fields
RAB, RMS–100
RAB64, RMS–102

inserting records by sort order, RMS–98
inserting records into indexed files, RMS–98
inserting records into relative files, RMS–97
inserting records into sequential files, RMS–97
inserting records with duplicate keys, RMS–98
record locking caution, RMS–98

Put service (cont’d)
record-processing options, 7–18
requirements for using, RMS–98
update-if logic, RMS–98
using RAB$V_TPT option, RMS–97
using RAB$V_UIF option, RMS–97
using with mailboxes, RMS–97
using with stream format files, RMS–97

Put service option
See FAB$V_PUT option

Put sharing option
See FAB$V_PUT option; FAB$V_PUT sharing

option

R
R0 register, use by control block store macros,

B–7
RAB$B_BID field, 7–2
RAB$B_BLN field, 7–3
RAB$B_KRF field, 7–4

for selecting key path, B–23
RAB$B_KSZ field

DECnet requirements, 7–5
key size compared to data types, 7–4
shared offset, 7–4
used with performance caching optimization,

7–16
use with limit option, 7–14
use with search key, 7–13, 7–15

RAB$B_MBC field
default logic, 7–7
for establishing global buffer size in shared

sequential file operations, 4–20, 7–7
performance benefit, 7–7
use restriction, 7–7

RAB$B_MBF field, 7–7
RAB$B_PSZ field, 7–8
RAB$B_RAC field, 7–8
RAB$B_TMO field

for various record functions, 7–23
requirement for RAB$V_TMO option, 7–23
use with RAB$V_TMO option for mailbox

service, 7–16
use with timeout option for terminal operation,

7–21
RAB$C_KEY option, 7–9
RAB$C_RFA option, 7–9
RAB$C_SEQ option, 7–8
RAB$L_BKT field

as output, 7–2
use with block I/O, 7–2, 7–3

RAB$L_CTX field, 7–3
RAB$L_FAB field, 7–3
RAB$L_KBF field

shared offset, 7–3
use with limit option, 7–14

Index–13

RAB$L_KBF field (cont’d)
use with RAB$B_KSZ field, 7–4
use with search key, 7–15

RAB$L_PBF field, 7–8
RAB$L_RBF field, 3–4, 7–9, B–15
RAB$L_RHB field, 7–10
RAB$L_ROP field

record processing options, 7–11
specifying key match method, 7–5

RAB$L_STS field, 7–22
RAB$L_STV0 field, RMS–63
RAB$L_STV field

alternate access to, 7–23
for returning I/O status block, RMS–63
for returning I/O status block from Put service,

RMS–100
for returning process identification (PID),

RMS–64, RMS–97
for returning record length, RMS–68
using with Get service, RMS–64

RAB$L_UBF field, 7–23
RAB$L_XAB field, 7–24

requirement for using XABTRM, 19–1
RAB$V_ASY option

use restriction, 7–16
RAB$V_BIO option, 7–12
RAB$V_CCO option, 7–20
RAB$V_CDK option, 7–16
RAB$V_CVT option, 7–20
RAB$V_EOF option, 7–13
RAB$V_EQNXT option, 7–13

specifying key match method, 7–5, 7–6
used with reverse-search (RAB$V_REV) option,

7–15
RAB$V_ETO option

required to use XABTRM, 19–1
RAB$V_FDL option, 7–16
RAB$V_KGE option

See RAB$V_EQNXT option
RAB$V_KGT option

See also RAB$V_NXT option
used with reverse-search (RAB$V_REV) option,

7–15
RAB$V_LIM option, 7–14
RAB$V_LOA option, 7–14

determining fill size, 14–10
example of use, B–19
use restriction, 14–4, 14–10

RAB$V_LOC option, 7–17
use restriction, 7–17

RAB$V_NLK option
precedence over RAB$V_ULK option, 7–19

RAB$V_NODLCKBLK option, 7–22
RAB$V_NODLCKWT option, 7–22
RAB$V_NQL option, 7–21

RAB$V_NXR option, 7–19
RAB$V_NXT option, 7–15

specifying key match method, 7–5, 7–6
RAB$V_PMT option, 7–20
RAB$V_PTA option, 7–20
RAB$V_RAH option, 7–17

default logic, 7–17
use restriction, 7–17

RAB$V_REA option, 7–19
use restriction, 7–19

RAB$V_REV, 7–15
RAB$V_RLK option, precedence over RAB$V_REA

option, 7–19
RAB$V_RNE option, 7–20
RAB$V_RNF option, 7–20
RAB$V_RRL option, 7–19
RAB$V_SYNCSTS option, 7–17
RAB$V_TMO option, 7–19, 7–20

for immediate mailbox service, 7–16
RAB$V_TPT option

use restriction, 7–18
using with Put service, RMS–97

RAB$V_UIF option
effects on Put service, 7–18
use restriction for indexed files, 7–18
using with Put service, RMS–97

RAB$V_ULK option
subordinate to RAB$V_NLK option, 7–20

RAB$V_WAT option, 7–20
RAB$V_WBH option, 7–13, 7–18
RAB$W_ISI field, 7–3
RAB$W_RFA field, 7–10

additional symbolic offsets, 7–10
as argument to $RAB_STORE macro, A–12
guidelines for using, 7–10

RAB$W_ROP_2 field, 7–21
RAB$W_RSZ field, 3–4, 7–22, B–15
RAB$W_STV0 offset, alternate access to

RAB$L_STV, 7–23
RAB$W_STV2 field, for returning length of escape

sequence, RMS–63
RAB$W_STV2 offset, alternate access to

RAB$L_STV, 7–23
RAB$W_USZ field

recommended value, 7–24
use with block I/O, 7–24

RAB64$PQ_KBF field, 8–3
RAB64$PQ_RBF field, 8–3
RAB64$PQ_RHB field, 8–4
RAB64$PQ_UBF field, 8–4
RAB64$Q_CTX field, 8–3
RAB64$Q_RSZ field, 8–4
RAB64$Q_USZ field, 8–4
RAB64$W_RFA field

as argument to $RAB64_STORE macro, A–16
RAB64 (64-bit record access blocks)

description, 8–1
summary of fields, 8–1

Index–14

$RAB64 macro, A–14
RAB64 structure, program example, 3–12
$RAB64_STORE macro, A–16

argument categories, A–16
comparing with $RAB64 macro, A–16
requirements, A–16
RFA argument, A–16

$RAB macro, A–11
RABs (record access blocks)

arguments, 1–5
description, 1–5, 7–1
in C example, 3–4
summary of fields, 7–1
use in VAX MACRO example, B–15

$RAB_STORE macro, A–12
argument categories, A–12
comparing with $RAB macro, A–12
requirements, A–12
RFA argument, A–12

RDT (revision-date-time) argument, A–21
Read ahead option

See RAB$V_RAH option
Read check option

See FAB$V_RCK option
Read-no-echo option

See RAB$V_RNE option
Read no filter option

See RAB$V_RNF option
Read regardless of lock option

See RAB$V_RRL option
Read service

condition values, RMS–106
control block input fields

RAB, RMS–104
RAB64, RMS–105

control block output fields
RAB, RMS–104
RAB64, RMS–106

requirements for using, RMS–104
Record access blocks

See RABs
Record access field

See RAB$B_RAC field
Record attribute field

See FAB$B_RAT field
Record attributes field in XABFHC

See XAB$B_ATR field
Record buffer field

See RAB$L_RBF field
Record file address field

See RAB$W_RFA field
Record format field

See FAB$B_RFM field

Record header buffer field
See RAB$L_RHB field

Record I/O, how to execute, B–34
Record locking record-processing options, 7–18
Record processing

services listed, 1–1
using record management services, B–3

Record processing macros, format example, B–11
Record-processing option, for Connect service,

7–12
Record-processing options field

See RAB$L_ROP field
Records

inserting
RMS program example, B–27

program example show file insertion, B–27
reading and writing requirements, B–23
retrieving

RMS program example, B–27
Record size field

See RAB$W_RSZ field
Record streams, in the context of a RAB, 7–1
Recovery unit extended address block

See XABRU block
Register 0

See R0 register
Registers, saving when making call, 2–4
Related file identification field

See XAB$W_RFI field
Related file identification field in XABALL

See XAB$W_RFI field
Related file NAM block address field

See NAM$L_RLF field
Relative file field, record access, 7–2
Relative files

buffer requirement, 7–8
defining cell size, 4–22
description of relative record number, 7–5
determining record length, 4–22
establishing highest record number, 4–21
nonexistent record processing, 7–19
omitting initial prezeroing, B–34
random access, 7–3
record size limit, 4–22
RFA value, 7–10
specifying bucket size, 9–4
specifying cell size, 11–4

Relative volume number field
See XAB$W_VOL field

Release service, RMS–107
condition values, RMS–108
control block input and output fields, RMS–108

Remove service
caution against mixing with Search service,

RMS–110
comparing with Erase service, RMS–110

Index–15

Remove service (cont’d)
condition values, RMS–113
control block input fields, RMS–110
control block output fields, RMS–111
improving performance, RMS–110
requirements for using, RMS–110
use with wildcard characters and search lists,

RMS–110
Rename service, RMS–114

alternative to specifying arguments to
$RENAME macro, RMS–115

condition values, RMS–120
control block input fields, RMS–115
control block output fields, RMS–116
exception in argument list, 2–5
indicating successful completion, B–27
noting format difference, B–11
program example, B–25
requirements for using, RMS–115

Reserved event flag, use of, 2–9
Resultant string, requesting, 5–2
Resultant string area address field

See NAM$L_RSA field
Resultant string area size field

See NAM$B_RSS field
Resultant string length field

See NAM$B_RSL field
Retrieval window size field

See FAB$B_RTV field
Retrieving records, program example, B–27
Reverse-search key option

design characteristics, 7–15
performance caching optimization, 7–16
used with duplicate keys, 7–15

Revision date and time, establishing with
XABDAT, 10–3

Revision date and time extended address block
See XABRDT block

Revision date and time field, 10–3
See also XAB$Q_RDT field

Revision number field
See XAB$W_RVN field

Rewind on close option
See FAB$V_RWC option

Rewind on open option
See FAB$V_RWO option

Rewind service, RMS–121
condition values, RMS–122
control block input fields, RMS–122
control block output fields, RMS–122
use restriction, RMS–122

RMS
allowable program execution modes, 2–9
applicable macro programming rules, B–6
block I/O, 1–2, B–4

processing services, 1–2

RMS (cont’d)
calling example, B–11
calling sequence, 2–4
calling services, 1–1
Control Block Macros, A–1
control blocks, 1–3
file organizations, 1–3
ill-formed calls, 2–5
implementation from high-level language, 3–1
invoking at run time, B–1
naming conventions, 1–1, B–3
passing argument list to, B–9
passing arguments to, 1–3
program interface description, 2–1
record access modes, 1–3
record formats, 1–3
security features, 1–3
service macros

format, B–10
supporting file operations, 1–3
supporting record operations, 1–3
use of DEC Multinational Character Set, 2–10
use of reserved event flags, 2–9

RMS$_OK_DUP alternate success status, 7–16
RMS$_OK_LIM success status code, 7–14
RMS$_XAB error, 12–13
RMS–11

block identifier field limitation, 4–4
RMS calling service’s restrictions, 2–9
RMS calling services, 1–1
RMS Journaling, testing for flag, 4–20
RMS macros

capabilities listed, B–12
description, B–1
for creating and processing files, B–12
format, B–9
format rules, B–10
types, B–11

RMS MACROS, B–1 to B–37
RMS_DFNBC system parameter

for specifying default network block count,
4–23

Root index bucket virtual block field
See XAB$L_RVB field

Run-time
access options, 1–4
implementation of RMS, 3–1, B–12
information to RMS listed, 1–5
processing environment, 2–1

S
Search lists

as alternative to using wildcard characters,
B–21

using with Remove service, RMS–110

Index–16

$SEARCH macro, for processing wildcard
characters, B–21

Search service, RMS–123
condition values, RMS–129
control block input fields, RMS–124
example of completion code handling, B–23
program example, B–20
requirement for Parse service, B–20
using with wildcard characters and search lists,

RMS–124
Search string translations, requirements for

parsing, B–20
Secondary device characteristics field

See FAB$L_SDC field
Segmented keys, 14–12

restriction against overlapping, 14–12
Separators, in symbolic name, 2–2
Sequential only option

See FAB$V_SQO option
Service macros, for creating and processing files,

3–1
SET FILE command

for changing global buffer count value, 4–19
for storing journaling attributes, 4–20

SET RMS_DEFAULT command, 7–7
to limit default extension quantity, 4–7

Set system failure exception mode
See SYS$SETSFM system service

Severity codes, in completion status code field,
2–7

S field in symbolic offset, for specifying field
length, 2–3

Shared access
requirement to specify, 3–1

Shared access, requirement to specify, B–12
Shared files, end-of-file positioning, RMS–7
Shared sequential file operations, establishing

global buffer size, 4–20, 7–7
Shelving

controlling whether file is shelvable, 12–9
determining if file is shelvable, 12–10

SHR field
See FAB$B_SHR field

Sign representation, preference for key type
coding, 14–6

Simple keys, 14–12
Sort order, establishing, 7–6
Space service, RMS–130

condition values, RMS–131
control block input fields, RMS–131
control block output fields, RMS–131

Spool file option
See FAB$V_SPL option

Starting logical block number field
See XAB$L_SBN field

Stored semantics file attribute, 12–11
See also File tags

Stream record format option
See FAB$C_STM option

Stream record format with carriage return option
See FAB$C_STMCR

Stream record format with line feed option
See FAB$C_STMLF option

String keys, RMS–24
specifying size value, 7–4

STS (status) field
See also Completion status code field;

FAB$L_STV field
contents, 2–7

STV (status value) field
See also Completion status value field
contents, 2–7

Submit command file option
See FAB$V_SCF option

Success completion routine, 2–4
Summary extended address block

See XABSUM block
Summary XAB, for key information, 14–1
Supersede existing file option

See FAB$V_SUP option
Supervisor-mode (PSL$C_SUPER) constant

for FAB$V_CHAN_MODE, 4–6
Symbol definition macros

description, B–1
using, B–7

Symbolic addresses, use in locating start of control
block, B–6

Symbolic bit offsets, use in specifying options, 2–3
Symbolic naming exceptions, control block, 2–3
Symbolic offsets

control block, 2–3
format, 2–2
use in locating control block fields, 2–2

Synchronous completion, 2–6
Synchronous option, 2–5
Synchronous status option

See FAB$V_SYNCSTS option; RAB$V_
SYNCSTS option

SYS$BINTIM system service, for storing time in
XABDAT, B–8

SYS$CLOSE RMS service, RMS–3
See also Close service

SYS$CLOSE service
See Close service

SYS$CONNECT RMS service, RMS–6
See also Connect service

SYS$CONNECT service
See Connect service

Index–17

SYS$CREATE RMS service, RMS–10
See also Create service

SYS$CREATE service
See Create service

SYS$DELETE RMS service, RMS–26
See also Delete service

SYS$DELETE service
See Delete service

SYS$DISCONNECT RMS service, RMS–28
See also Disconnect service

SYS$DISCONNECT service
See Disconnect service

SYS$DISPLAY RMS service, RMS–30
See also Display service

SYS$DISPLAY service
See Display service

SYS$ENTER RMS service, RMS–35
See also Enter service
See also Enter service, RMS–35

SYS$ENTER service
See Enter service

SYS$ERASE RMS service, RMS–39
See also Erase service

SYS$ERASE service
See Erase service

SYS$EXTEND RMS service, RMS–46
See also Extend service

SYS$EXTEND service
See Extend service

SYS$FIND RMS service, RMS–49
See also Find service

SYS$FIND service
See Find service

SYS$FLUSH RMS service, RMS–56
See also Flush service

SYS$FLUSH service
See Flush service

SYS$FREE RMS service, RMS–59
See also Free service

SYS$FREE service
See Free service

SYS$GET RMS service, RMS–61
See also Get service

SYS$GET service
See Get service

SYS$LIBRARY:STARLET.MLB library
as source of RMS macros, B–2

SYS$NXTVOL RMS service, RMS–72
See also Next Volume service

SYS$NXTVOL system service
See Next Volume service

SYS$OPEN RMS service, RMS–75
See also Open service

SYS$OPEN service
See Open service

SYS$PARSE RMS service, RMS–88
See also Parse service

SYS$PARSE service
See Parse service

SYS$PUT RMS service, RMS–96
See also Put service

SYS$PUT service
See Put service

SYS$QIO system service
for additional processing, 4–16
use in RMS I/O operations, 2–9

SYS$READ RMS service, RMS–103
See also Read service

SYS$READ service
See Read service

SYS$RELEASE RMS service, RMS–107
See also Release service

SYS$RELEASE service
See Release service

SYS$REMOVE RMS service, RMS–109
See also Remove service

SYS$REMOVE service
See Remove service

SYS$RENAME RMS service, RMS–114
See also Rename service

SYS$RENAME service
See Rename service

SYS$REWIND RMS service, RMS–121
See also Rewind service

SYS$REWIND service
See Rewind service

SYS$RMSRUNDWN
See Control routines

SYS$SEARCH RMS service, RMS–123
See also Search service

SYS$SEARCH service
See Search service

SYS$SETDDIR
See Control routines

SYS$SETDFPROT
See Control routines

SYS$SETSFM system service
use in signaling RMS errors, 2–7

SYS$SPACE RMS service, RMS–130
See also Space service

SYS$SPACE service
See Space service

SYS$TRUNCATE RMS service, RMS–132
See also Truncate service

SYS$TRUNCATE service
See Truncate service

Index–18

SYS$UPDATE RMS service, RMS–135
See also Update service

SYS$UPDATE service
See Update service

SYS$WAIT RMS service, RMS–140
See also Wait service

SYS$WAIT service
See Wait service

SYS$WRITE RMS service, RMS–142
See also Write service

SYS$WRITE service
See Write service

SYSPRV privilege, as requirement for creating
files with different UIC, 15–7

T
Temporary file delete option

See FAB$V_TMD option
Temporary file option

See FAB$V_TMP option
Terminal device record processing options, 7–20
Terminal extended address block

See XABTRM block
Terminal read operations

RAB$L_ROP field options, 19–1
T field in symbolic offset, for specifying varying

field length, 2–3
Timeout field

See RAB$B_TMO field
Timeout option

See RAB$V_TMO option
Total key size field

See XAB$B_TKS field
Truncate at end-of-file option

See FAB$V_TEF option
Truncate-on-put option

See RAB$V_TPT option
Truncate option

See FAB$V_TRN option
Truncate service, RMS–132

condition values, RMS–134
See also Completion status codes

control block input fields, RMS–133
control block output fields, RMS–134
use restriction, RMS–133

Type code field in allocation XAB
See XAB$B_COD field

Type code field in date and time XAB
See XAB$B_COD field

Type code field in file header characteristics XAB
See XAB$B_COD

Type code field in item list XAB
See XAB$B_COD field

Type code field in key XAB
See XAB$B_COD field

Type code field in protection XAB
See XAB$B_COD field

Type code field in revision date and time XAB
See XAB$B_COD field

Type code field in summary XAB
See XAB$B_COD field

Type code field in terminal XAB
See XAB$B_COD field

U
UICs (user identification codes), delimiting in

control block fields, B–7
Undefined record format option

See FAB$C_UDF option
Update-if option

See RAB$V_UIF option
Update service, RMS–135

comparing with Put service for stream format
files, RMS–136

condition values, RMS–138
control block input fields

RAB, RMS–136
RAB64, RMS–137

control block output fields
RAB, RMS–137
RAB64, RMS–138

invoking, 4–11
program example, B–31
requirements for using, RMS–136
using with indexed files, RMS–136

Update sharing option
See FAB$V_UPD option

User classes, list of symbolic offsets, 15–5
User context field

See RAB$L_CTX field
User-entered reply, as used in example for

selecting key path, B–23
User file-open option

See FAB$V_UFO option
User identification code field

See XAB$L_UIC field
User identification codes

See UIC (user identification codes)
User-mode (PSL$C_USER) constant

for FAB$V_CHAN_MODE, 4–6
User process interlock option

See FAB$V_UPI option

Index–19

User prompt strings
program example, B–27

User record buffer address field
See RAB$L_UBF field

User record buffer size field
See RAB$W_USZ field

V
Variable format units

See VFUs
Variable-length format option

See FAB$C_VAR option
Variable-length records, guidelines for specifying,

4–22
VFC record format option

See FAB$C_VFC option
VFUs (variable format units)

RMS support for, 4–25

W
$WAIT macro format, B–11
Wait option

See RAB$V_WAT option
Wait service, RMS–140

condition values, RMS–141
FAB control block input fields, RMS–141
FAB control block output field, RMS–141
RAB control block input fields, RMS–141
RAB control block output field, RMS–141

Wildcard characters
use with Remove service, RMS–110
use with Search service, B–21

Wildcard context field
See NAM$L_WCC field

Wildcard substitutions
specifying NAM$L_RSA field, 5–10
specifying NAML$L_RSA field, 6–8

Write-behind option
See RAB$V_WBH option

Write check option
See FAB$V_WCK option

Write service
condition values, RMS–145
control block input fields

RAB, RMS–143
RAB64, RMS–144

control block output fields
RAB, RMS–144
RAB64, RMS–145

X
XAB$B_AID field, 9–2
XAB$B_ALN field, 9–2
XAB$B_AOP field, 9–3
XAB$B_ATR field, 11–2
XAB$B_BKZ field

as output, 9–4
default logic, 9–4, 9–5
determining bucket size, 9–4
in allocation XAB (XABALL), 9–4
in file header characteristics allocation XAB

(XABFHC), 11–2
RMS-11 restriction, 9–4
size requirements for multiple index areas, 9–5

XAB$B_BLN field
in allocation XAB (XABALL), 9–5
in date and time XAB (XABDAT), 10–2
in file header characteristics XAB (XABALL),

11–3
in item list XAB (XABITM), 12–2
in key XAB (XABKEY), 14–2
in protection XAB (XABPRO), 15–4
in revision date and time XAB (XABRDT),

16–2
in summary XAB (XABSUM), 18–1
in terminal XAB (XABTRM), 19–2

XAB$B_COD field
in allocation XAB (XABALL), 9–5
in date and time XAB (XABDAT), 10–2
in file header characteristics XAB (XABFHC),

11–3
in item list XAB (XABITM), 12–2
in key XAB (XABKEY), 14–2
in protection XAB (XABPRO), 15–4
in revision date and time XAB (XABRDT),

16–2
in summary XAB (XABSUM), 18–1
in terminal XAB (XABTRM), 19–2

XAB$B_DAN field, 14–3
XAB$B_DBS field, 14–4
XAB$B_DTP field

data formats, 14–5
data type restrictions, 14–5
options, 14–5
use with search key, 7–13, 7–15
value prefixes for sorting, 14–4

XAB$B_FLG field, 14–7, A–25
option allowable combinations, 14–9
options, 14–8

XAB$B_HSZ field, 11–4
XAB$B_IAN field, conditional usage, 14–9
XAB$B_IBS field, 14–10
XAB$B_LAN field, indicating index level, 9–5
XAB$B_LVL field, 14–11

Index–20

XAB$B_MODE field, 12–2
for stored semantics functions, 12–12

XAB$B_MTACC field, 15–4
XAB$B_NOA field, 18–2
XAB$B_NOK field, 18–2
XAB$B_NSG field, 14–12
XAB$B_NUL field, 14–12
XAB$B_PROLOG field, 14–13
XAB$B_PROT_OPT field, 15–7
XAB$B_RFO field, 11–5
XAB$B_SIZ0 through XAB$B_SIZ7 field

default logic, 14–14
requirement for compatibility with XAB$W_

POS0 through XAB$W_POS7 field, 14–14
with segmented key, 14–14
with simple key, 14–14

XAB$B_TKS field, 14–14
XAB$C_ALLLEN value, 9–5
XAB$C_ALL value, 9–5
XAB$C_DATLEN value, 10–2
XAB$C_DAT value, 10–2
XAB$C_FHCLEN value, 11–3
XAB$C_FHC value, 11–3
XAB$C_ITMLEN value, 12–2
XAB$C_ITM value, 12–2
XAB$C_KEYLEN value, 14–2
XAB$C_KEY value, 14–2
XAB$C_PROLEN value, 15–4
XAB$C_PRO value, 15–4
XAB$C_RDTLEN value, 16–2
XAB$C_RDT value, 16–2
XAB$C_SUMLEN value, 18–1
XAB$C_SUM value, 18–1
XAB$C_TRMLEN value, 19–2
XAB$C_TRM value, 19–2
XAB$K_SEMANTICS_MAX_LEN value, for

sensing and setting stored semantics, 12–12
XAB$L_ACLBUF field, 15–2
XAB$L_ACLCTX field, 15–2, 15–3
XAB$L_ACLSTS field, 15–3
XAB$L_ALQ field, 9–3

using to specify additional file space, RMS–47
XAB$L_COLNAM field, 14–2
XAB$L_COLSIZ field, 14–3
XAB$L_COLTBL field, 14–3
XAB$L_DVB field, 14–7
XAB$L_EBK field, 11–3
XAB$L_HBK field, 11–4
XAB$L_ITEMLIST field, 12–2
XAB$L_ITMLST field, 19–2
XAB$L_KNM field, 14–11
XAB$L_LOC field, 9–5
XAB$L_NXT field

in XABALL, 9–6
in XABDAT, 10–2
in XABFHC, 11–5
in XABITM, 12–2
in XABKEY, 14–12

XAB$L_NXT field (cont’d)
in XABPRO, 15–5
in XABRDT, 16–3
in XABSUM, 18–2
in XABTRM, 19–2

XAB$L_RVB field, 14–14
XAB$L_SBN field, 11–5
XAB$L_UIC field, 15–4, 15–7

combining the XAB$W_GRP and XAB$W_MBM
fields, 15–7

order of determining value, 15–7
setting XAB$W_GRP field, 15–4
setting XAB$W_MBM field, 15–4

XAB$Q_BDT field, 10–2
XAB$Q_CDT field, 10–2
XAB$Q_EDT field, 10–2
XAB$Q_EFF field, 10–3
XAB$Q_RCD field, 10–3
XAB$Q_RDT field, 10–3, 16–3
XAB$V_BLK option, 11–2
XAB$V_CBT option, 9–4
XAB$V_CHG option, 14–8
XAB$V_CR option, 11–2
XAB$V_CTG option, 9–4
XAB$V_DAT_NCMPR option, 14–8
XAB$V_DUP option, 14–8
XAB$V_FILE_CONTENTS field, 12–15
XAB$V_FLUSH_ON_CLOSE field, 12–15
XAB$V_FTN option, 11–2
XAB$V_HRD option, 9–4
XAB$V_IDX_NCMPR option, 14–8
XAB$V_KEY_NCMPR option, 14–8
XAB$V_NUL option

setting for various data types, 14–9
use in defining string keys, 14–12
use restriction, 14–8
with XAB$B_NUL field, 14–8

XAB$V_ONC option, 9–4
XAB$V_PRN option, 11–2
XAB$V_PROPAGATE option, 15–7
XAB$W_ACLLEN field, 15–3
XAB$W_ACLSIZ field

limitations imposed by MAXBUF, 15–3
limitations imposed by user’s BYTLM quota,

15–3
XAB$W_DEQ field, 9–5
XAB$W_DFL field, 14–4

use with RAB$V_LOA option, 7–14
XAB$W_DXQ field, 11–3
XAB$W_FFB field, 11–3
XAB$W_GBC field, 11–4
XAB$W_GRP field, 15–4
XAB$W_IFL field, 14–10
XAB$W_ITMLST_LEN field, 19–2

requirement for valid terminal driver, 19–1
XAB$W_LRL field, 11–4

Index–21

XAB$W_MBM field, 15–4
XAB$W_MRL field, 14–11
XAB$W_MRZ field, 11–4
XAB$W_POS0 through XAB$W_POS7 field,

14–12
XAB$W_PRO field

default logic, 15–6
organization, 15–6
required ordering of arguments, 15–5
user classes, 15–6

XAB$W_PVN field, 18–2
XAB$W_RFI field

as argument to $XABALL_STORE macro,
A–19

requirement for XAB$C_RFI, 9–6
specifying, 9–6

XAB$W_RVN field, 10–3, 16–3
XAB$W_VERLIMIT field in XABFHC, 11–5
XAB$W_VOL field, 9–6
XAB$_ACCESS_SEMANTICS item, 12–11
XAB$_CACHE_OPTIONS item code, 12–14
XAB$_ENABLE symbol, 12–13
XAB$_FILE_LENGTH_HINT item code, 12–13
XAB$_MULTIBUFFER_COUNT XABITM, 12–12
XAB$_NORECORD XABITM, 12–12
XAB$_REF field, 14–13
XAB$_STORED_SEMANTICS item, 12–11
XABALL block, 1–4

relationship to FAB fields, 9–1
summary of fields, 9–1

$XABALL macro, A–18
$XABALL_STORE macro, A–19
XABDAT blocks, 10–1

description, 1–4
$XABDAT macro, A–20
$XABDAT_STORE macro, A–21

example of use, B–8
XABFHC block, 11–1

description, 1–4
$XABFHC macro, A–22
$XABFHC_STORE macro, A–23
XABITM block

description, 1–4
summary of fields, 12–2

$XABITM macro, A–24
XABJNL block, 13–1

description, 1–4
using to obtain journaling information, 4–20

XABKEY block
data type options, 14–5
default logic, 14–9
description, 1–4
summary of fields, 14–1
XAB$W_MRL field, 14–11

$XABKEY macro, A–25
$XABKEY_STORE macro, A–27

XABPRO block
description, 1–4
summary of fields, 15–1
XAB$B_BLN field, 15–4
XAB$W_GRP field, 15–4

$XABPRO macro, A–28
ASCII radix indicator requirement in MTACC

argument, A–28
describing UIC argument, A–29
example of MTACC argument, A–28
listing user classes, A–28
XAB$W_PRO field requirements, A–28

$XABPRO_STORE macro, A–30
XABRDT block

comparing with XABDAT, 16–1
default logic, 16–2
description, 1–4
service use of XAB$Q_RDT and XAB$W_RVN

fields, 16–1
summary of fields, 16–1
use restriction, 16–1, 16–2

$XABRDT macro, A–31
$XABRDT_STORE macro, A–32

argument categories, A–32
requirements, A–32

XABRU block, 17–1
description, 1–5

XABs (extended attribute blocks)
description, 1–6
naming conventions for FAB, 1–6
naming conventions for RAB, 1–5
program example, B–19
types, 1–4
types for file operations, 1–4

XABSUM block
description, 1–5
summary of fields, 18–1
use restriction, 18–1

$XABSUM macro, A–33
$XABSUM_STORE macro, A–34
XABTRM block

description, 1–5
requirements to use, 19–1
summary of fields, 19–1

$XABTRM macro, A–35
$XABTRM_STORE macro, A–36

Index–22

	OpenVMSRecord Management Services Reference Manual
	Contents
	Preface
	Intended Audience
	Document Structure
	Related Documents
	Reader’s Comments
	How To Order Additional Documentation
	Conventions

	Part I OpenVMS RMS—General Information
	1 Introduction to RMS
	1.1 RMS Functions
	1.2 Passing Arguments to RMS
	1.2.1 Record Management Services and Control Blocks
	1.2.2 Control Blocks for File Services
	1.2.3 Control Blocks for Record Services
	1.2.4 Dual Purpose of Control Blocks

	2 RMS Program Interface
	2.1 RMS Run-Time Environment
	2.2 Conventions for Naming Fields
	2.3 RMS Calling Sequence
	2.4 Service Completion
	2.4.1 Illformed Calls to RMS
	2.4.2 Setting Synchronous or Asynchronous Option
	2.4.3 Synchronous Completion
	2.4.4 Asynchronous Completion
	2.4.5 Status Code Testing
	2.4.6 Types of Errors

	2.5 Allowable Program Execution Modes
	2.6 Access-Mode Protected Memory
	2.7 Reserved Event Flags
	2.8 DEC Multinational Character Set

	3 Implementing RMS from C Programs
	3.1 Creating, Accessing, and Deaccessing a File
	3.1.1 Example of Copying Records from One File to Another File

	3.2 Program to Illustrate Record Operations
	3.3 Program to Show Index Root Levels
	3.4 Program to Illustrate Using NAML Blocks for Extended File Specifications (Alpha Only)
	3.5 Program to Illustrate Using the RAB64 Structure

	Part II RMS Control Blocks
	4 File Access Block (FAB)
	4.1 Summary of Fields
	4.2 FAB$B_ACMODES Field
	4.3 FAB$L_ALQ Field
	4.4 FAB$B_BID Field
	4.5 FAB$B_BKS Field
	4.6 FAB$B_BLN Field
	4.7 FAB$W_BLS Field
	4.8 FAB$V_CHAN_MODE Subfield
	4.8.1 Override Value
	4.8.2 Channel Access Mode Function

	4.9 FAB$L_CTX Field
	4.10 FAB$W_DEQ Field
	4.11 FAB$L_DEV Field
	4.12 FAB$L_DNA Field
	4.13 FAB$B_DNS Field
	4.14 FAB$B_FAC Field
	4.15 FAB$L_FNA Field
	4.16 FAB$B_FNS Field
	4.17 FAB$L_FOP Field
	4.18 FAB$B_FSZ Field
	4.19 FAB$W_GBC Field
	4.20 FAB$W_IFI Field
	4.21 FAB$B_JOURNAL Field
	4.22 FAB$V_LNM_MODE Subfield
	4.23 FAB$L_MRN Field
	4.24 FAB$W_MRS Field
	4.25 FAB$L_NAM Field
	4.26 FAB$B_ORG Field
	4.27 FAB$B_RAT Field
	4.28 FAB$B_RFM Field
	4.29 FAB$B_RTV Field
	4.30 FAB$L_SDC Field
	4.31 FAB$B_SHR Field
	4.32 FAB$L_STS Field
	4.33 FAB$L_STV Field
	4.34 FAB$L_XAB Field

	5 Name Block (NAM)
	5.1 Summary of Fields
	5.2 File Specification Component Descriptors
	5.3 NAM$B_BID Field
	5.4 NAM$B_BLN Field
	5.5 NAM$B_DEV and NAM$L_DEV Fields
	5.6 NAM$W_DID Field
	5.7 NAM$B_DIR and NAM$L_DIR Fields
	5.8 NAM$T_DVI Field
	5.9 NAM$L_ESA Field
	5.10 NAM$B_ESL Field
	5.11 NAM$B_ESS Field
	5.12 NAM$W_FID Field
	5.13 NAM$W_FIRST_WILD_DIR Field
	5.14 NAM$L_FNB Field
	5.15 NAM$W_LONG_DIR_LEVELS Field
	5.16 NAM$B_NAME and NAM$L_NAME Fields
	5.17 NAM$B_NMC
	5.18 NAM$B_NODE and NAM$L_NODE Fields
	5.19 NAM$B_NOP Field
	5.20 NAM$L_RLF Field
	5.21 NAM$L_RSA Field
	5.22 NAM$B_RSL Field
	5.23 NAM$B_RSS Field
	5.24 NAM$B_TYPE and NAM$L_TYPE Fields
	5.25 NAM$B_VER and NAM$L_VER Fields
	5.26 NAM$L_WCC Field

	6 Long Name Block (NAML)
	6.1 Using the NAM and NAML Block
	6.2 Summary of Fields
	6.3 Validating the NAML Block
	6.4 NAML$B_BID Field
	6.5 NAML$B_BLN Field
	6.6 NAML$L_FILESYS_NAME Field
	6.7 NAML$L_FILESYS_NAME_ALLOC Field
	6.8 NAML$L_FILESYS_NAME_SIZE Field
	6.9 NAML$L_INPUT_FLAGS Field
	6.10 NAML$L_LONG_DEFNAME and NAML$L_LONG_DEFNAME_SIZE Fields
	6.11 NAML$L_LONG_DEV and NAML$L_LONG_DEV_SIZE Fields
	6.12 NAML$L_LONG_DIR and NAML$L_LONG_DIR_SIZE Fields
	6.13 NAML$L_LONG_EXPAND Field
	6.14 NAML$L_LONG_EXPAND_ALLOC Field
	6.15 NAML$L_LONG_EXPAND_SIZE Field
	6.16 NAML$L_LONG_FILENAME and NAML$L_LONG_FILENAME_SIZE Fields
	6.17 NAML$L_LONG_NAME and NAML$L_LONG_NAME_SIZE Fields
	6.18 NAML$L_LONG_NODE and NAML$L_LONG_NODE_SIZE Fields
	6.19 NAML$L_LONG_RESULT Field
	6.20 NAML$L_LONG_RESULT_ALLOC Field
	6.21 NAML$L_LONG_RESULT_SIZE Field
	6.22 NAML$L_LONG_TYPE and NAML$L_LONG_TYPE_SIZE Fields
	6.23 NAML$L_LONG_VER and NAML$L_LONG_VER_SIZE Fields
	6.24 NAML$L_OUTPUT_FLAGS Field
	6.25 NAML$Q_USER_CONTEXT Field

	7 Record Access Block (RAB)
	7.1 Summary of Fields
	7.2 RAB$B_BID Field
	7.3 RAB$L_BKT Field
	7.4 RAB$B_BLN Field
	7.5 RAB$L_CTX Field
	7.6 RAB$L_FAB Field
	7.7 RAB$W_ISI Field
	7.8 RAB$L_KBF Field
	7.9 RAB$B_KRF Field
	7.10 RAB$B_KSZ Field
	7.11 RAB$B_MBC Field
	7.12 RAB$B_MBF Field
	7.13 RAB$L_PBF Field
	7.14 RAB$B_PSZ Field
	7.15 RAB$B_RAC Field
	7.16 RAB$L_RBF Field
	7.17 RAB$W_RFA Field
	7.18 RAB$L_RHB Field
	7.19 RAB$L_ROP Field
	7.20 RAB$W_ROP_2 Field
	7.21 RAB$W_RSZ Field
	7.22 RAB$L_STS Field
	7.23 RAB$L_STV Field
	7.24 RAB$B_TMO Field
	7.25 RAB$L_UBF Field
	7.26 RAB$W_USZ Field
	7.27 RAB$L_XAB Field

	8 64-Bit Record Access Block (RAB64)
	8.1 Summary of Fields
	8.2 RAB64$Q_CTX Field
	8.3 RAB64$PQ_KBF Field
	8.4 RAB64$PQ_RBF Field
	8.5 RAB64$PQ_RHB Field
	8.6 RAB64$Q_RSZ Field
	8.7 RAB64$PQ_UBF Field
	8.8 RAB64$Q_USZ Field

	9 Allocation Control XAB (XABALL)
	9.1 Summary of Fields
	9.2 XAB$B_AID Fields
	9.3 XAB$B_ALN Field
	9.4 XAB$L_ALQ Field
	9.5 XAB$B_AOP Field
	9.6 XAB$B_BKZ Field
	9.7 XAB$B_BLN Field
	9.8 XAB$B_COD Field
	9.9 XAB$W_DEQ Field
	9.10 XAB$L_LOC Field
	9.11 XAB$L_NXT Field
	9.12 XAB$W_RFI Field
	9.13 XAB$W_VOL Field

	10 Date and Time XAB (XABDAT)
	10.1 Summary of Fields
	10.2 XAB$Q_BDT Field
	10.3 XAB$B_BLN Field
	10.4 XAB$Q_CDT Field
	10.5 XAB$B_COD Field
	10.6 XAB$Q_EDT Field
	10.7 XAB$L_NXT Field
	10.8 XAB$Q_RDT Field
	10.9 XAB$W_RVN Field
	10.10 XAB$Q_RCD Field (VAX Only)
	10.11 XAB$Q_EFF Field (VAX Only)

	11 File Header Characteristic XAB (XABFHC)
	11.1 Summary of Fields
	11.2 XAB$B_ATR Field
	11.3 XAB$B_BKZ Field
	11.4 XAB$B_BLN Field
	11.5 XAB$B_COD Field
	11.6 XAB$W_DXQ Field
	11.7 XAB$L_EBK Field
	11.8 XAB$W_FFB Field
	11.9 XAB$W_GBC Field
	11.10 XAB$L_HBK Field
	11.11 XAB$B_HSZ Field
	11.12 XAB$W_LRL Field
	11.13 XAB$W_MRZ Field
	11.14 XAB$L_NXT Field
	11.15 XAB$B_RFO Field
	11.16 XAB$L_SBN Field
	11.17 XAB$W_VERLIMIT Field

	12 Item List XAB (XABITM)
	12.1 Summary of Fields
	12.1.1 XAB$B_BLN Field
	12.1.2 XAB$B_COD Field
	12.1.3 XAB$L_ITEMLIST Field
	12.1.4 XAB$B_MODE Field
	12.1.5 XAB$L_NXT Field

	12.2 Network File Access Items (XAB$_NET_... and XAB$_CAP_...)
	12.3 File User Characteristics Items (XAB$_UCHAR_...)
	12.4 RMS Performance Monitoring (XAB$_STAT_ENABLE)
	12.5 Compound Document Support (XAB$_..._SEMANTICS)
	12.6 Specifying the Number of Local Buffers (XAB$_MULTIBUFFER_COUNT)
	12.7 Expiration Date and Time Suppression
	12.7.1 XAB$_NORECORD XABITM
	12.7.2 Application

	12.8 File Length Hint (XAB$_FILE_LENGTH_HINT)
	12.9 Extended File Cache (XAB$_CACHE_OPTIONS) (Alpha Only)

	13 Journaling XAB (XABJNL)
	14 Key Definition XAB (XABKEY)
	14.1 Summary of Fields
	14.2 XAB$B_BLN Field
	14.3 XAB$B_COD Field
	14.4 XAB$L_COLNAM Field
	14.5 XAB$L_COLSIZ Field
	14.6 XAB$L_COLTBL Field
	14.7 XAB$B_DAN Field
	14.8 XAB$B_DBS Field
	14.9 XAB$W_DFL Field
	14.10 XAB$B_DTP Field
	14.11 XAB$L_DVB Field
	14.12 XAB$B_FLG Field
	14.13 XAB$B_IAN Field
	14.14 XAB$B_IBS Field
	14.15 XAB$W_IFL Field
	14.16 XAB$L_KNM Field
	14.17 XAB$B_LAN Field
	14.18 XAB$B_LVL Field
	14.19 XAB$W_MRL Field
	14.20 XAB$B_NSG Field
	14.21 XAB$B_NUL Field
	14.22 XAB$L_NXT Field
	14.23 XAB$W_POS0 Through XAB$W_POS7 Field
	14.24 XAB$B_PROLOG Field
	14.25 XAB$B_REF Field
	14.26 XAB$L_RVB Field
	14.27 XAB$B_SIZ0 Through XAB$B_SIZ7 Field
	14.28 XAB$B_TKS Field

	15 Protection XAB (XABPRO)
	15.1 Summary of Fields
	15.2 XAB$L_ACLBUF Field
	15.3 XAB$L_ACLCTX Field
	15.4 XAB$W_ACLLEN Field
	15.5 XAB$W_ACLSIZ Field
	15.6 XAB$L_ACLSTS Field
	15.7 XAB$B_BLN Field
	15.8 XAB$B_COD Field
	15.9 XAB$W_GRP Field
	15.10 XAB$W_MBM Field
	15.11 XAB$B_MTACC Field
	15.12 XAB$L_NXT Field
	15.13 XAB$W_PRO Field
	15.14 XAB$B_PROT_OPT Field
	15.15 XAB$L_UIC Field

	16 Revision Date and Time XAB (XABRDT)
	16.1 Summary of Fields
	16.2 XAB$B_BLN Field
	16.3 XAB$B_COD Field
	16.4 XAB$L_NXT Field
	16.5 XAB$Q_RDT Field
	16.6 XAB$W_RVN Field

	17 Recovery Unit XAB (XABRU)
	18 Summary XAB (XABSUM)
	18.1 Summary of Fields
	18.2 XAB$B_BLN Field
	18.3 XAB$B_COD Field
	18.4 XAB$B_NOA Field
	18.5 XAB$B_NOK Field
	18.6 XAB$L_NXT Field
	18.7 XAB$W_PVN Field

	19 Terminal XAB (XABTRM)
	19.1 Summary of Fields
	19.2 XAB$B_BLN Field
	19.3 XAB$B_COD Field
	19.4 XAB$L_ITMLST Field
	19.5 XAB$W_ITMLST_LEN Field
	19.6 XAB$L_NXT Field

	Part III OpenVMS RMS Services
	$CLOSE
	$CONNECT
	$CREATE
	$DELETE
	$DISCONNECT
	$DISPLAY
	$ENTER
	$ERASE
	$EXTEND
	$FIND
	$FLUSH
	$FREE
	$GET
	$NXTVOL
	$OPEN
	$PARSE
	$PUT
	$READ
	$RELEASE
	$REMOVE
	$RENAME
	$REWIND
	$SEARCH
	$SPACE
	$TRUNCATE
	$UPDATE
	$WAIT
	$WRITE

	A RMS Control Block Macros
	$FAB
	$FAB_STORE
	$NAM
	$NAM_STORE
	$NAML
	$NAML_STORE
	$RAB
	$RAB_STORE
	$RAB64 (Alpha Only)
	$RAB64_STORE (Alpha Only)
	$XABALL
	$XABALL_STORE
	$XABALL_STORE
	$XABDAT
	$XABDAT_STORE
	$XABFHC
	$XABFHC_STORE
	$XABITM
	$XABKEY
	$XABKEY_STORE
	$XABPRO
	$XABPRO_STORE
	$XABRDT
	$XABRDT_STORE
	$XABSUM
	$XABSUM_STORE
	$XABTRM
	$XABTRM_STORE

	B VAX MACRO Programming Information and Examples
	B.1 RMS Macros
	B.1.1 Conventions for Naming RMS Macros
	B.1.2 Applicable VAX MACRO Syntax Rules

	B.2 Using the RMS Macros
	B.2.1 Control Block Initialization Macros
	B.2.2 Control Block Symbol Definition Macros
	B.2.3 Control Block Store Macros
	B.2.4 Service Macros

	B.3 VAX MACRO Example Programs
	B.3.1 Creating, Accessing, and Deaccessing a File
	B.3.2 Example of Opening and Creating Files
	B.3.3 Example of Creating a Multiple-Key Indexed File
	B.3.4 Processing File Specifications
	B.3.5 Connecting and Disconnecting Record Streams
	B.3.6 Other File-Processing Operations
	B.3.7 Retrieving and Inserting Records
	B.3.9 Updating Records
	B.3.10 Using Block I/O
	B.3.11 Mixed Block and Record I/O
	B.3.12 Next Block Pointer (NBP)

	Index
	Examples
	Example 3–1 Use of the Create, Open, and Close Services
	Example 3–2 Record Operations
	Example 3–3 Displaying the Index Root for a File
	Example 3–4 Using NAML Blocks for Extended File Specifications
	Example 3–5 Using the RAB64 Structure
	Example 12–1 Using XABITM to Enable RMS Statistics
	Example B–1 Use of the $XABDAT and $XABDAT_STORE Macros
	Example B–2 Use of the Create, Open, and Close Services
	Example B–3 Use of the Create Service for an Indexed File
	Example B–4 Wildcard Processing Using Parse and Search Services
	Example B–5 Use of the Connect Service and Multiple Keys
	Example B–6 Use of the Rename Service
	Example B–7 Use of the Get and Put Services
	Example B–8 Use of the Delete Service
	Example B–9 Use of the Update Service
	Example B–10 Use of Block I/O

	Figures
	Figure 2–1 Argument List Format
	Figure 12–1 Item Descriptor Data Structure
	Figure 15–1 File Protection Field

	Tables
	Table 1–1 Record Management Services
	Table 4–1 FAB Fields
	Table 4–2 Device Characteristics
	Table 4–3 File Processing Options
	Table 4–4 Maximum Record Size for File Organizations and Record Formats
	Table 5–1 NAM Block Fields
	Table 5–2 NAM$L_FNB Status Bits
	Table 6–1 NAML Fields
	Table 7–1 RAB Fields
	Table 7–2 Record Processing Options
	Table 7–3 Search Option Results
	Table 7–4 Keyed Search Combinations
	Table 7–5 ROP_2 Record Processing Options
	Table 8–1 RAB64 Fields
	Table 9–1 XABALL Fields
	Table 10–1 XABDAT Fields
	Table 11–1 XABFHC Fields
	Table 12–1 XABITM Fields
	Table 12–2 XABITM Item List
	Table 12–3 System Networking Capabilities
	Table 12–4 File User Characteristics
	Table 12–5 Tag Support Item Codes
	Table 12–6 XAB$_CACHING_OPTIONS XABITM
	Table 14–1 XABKEY Fields
	Table 15–1 XABPRO Fields
	Table 16–1 XABRDT Fields
	Table 18–1 XABSUM Fields
	Table 19–1 XABTRM Fields
	Table RMS–1 Close Service FAB and XAB Input Fields
	Table RMS–2 Close Service FAB and XAB Output Fields
	Table RMS–3 Connect Service RAB Input Fields
	Table RMS–4 Connect Service RAB Output Fields
	Table RMS–5 Create Service FAB and XAB Input Fields
	Table RMS–6 Create Service FAB and XAB Output Fields
	Table RMS–7 Create Service NAM Input Fields
	Table RMS–8 Create Service NAM Output Fields
	Table RMS–9 Create Service NAML Input Fields (Alpha Only)
	Table RMS–10 Create Service NAML Output Fields (Alpha Only)
	Table RMS–11 Delete Service RAB Input Fields
	Table RMS–12 Delete Service RAB Output Fields
	Table RMS–13 Disconnect Service RAB Input Fields
	Table RMS–14 Disconnect Service RAB Output Fields
	Table RMS–15 Display Service FAB Input Fields
	Table RMS–16 Display Service FAB and XAB Output Fields
	Table RMS–17 Display Service NAM Input Fields
	Table RMS–18 Display Service NAM Output Fields
	Table RMS–19 Display Service NAML Input Fields (Alpha Only)
	Table RMS–20 Display Service NAML Output Fields (Alpha Only)
	Table RMS–21 Enter Service FAB Input Fields
	Table RMS–22 Enter Service FAB Output Fields
	Table RMS–23 Enter Service NAM Input Fields
	Table RMS–24 Enter Service NAM Output Field
	Table RMS–25 Enter Service NAML Input Fields (Alpha Only)
	Table RMS–26 Enter Service NAML Output Fields (Alpha Only)
	Table RMS–27 Erase Service FAB Input Fields
	Table RMS–28 Erase Service FAB Output Fields
	Table RMS–29 Erase Service NAM Input Fields
	Table RMS–30 Erase Service NAM Output Fields
	Table RMS–31 Erase Service NAML Input Fields (Alpha Only)
	Table RMS–32 Erase Service NAML Output Fields (Alpha Only)
	Table RMS–33 Extend Service FAB Input Fields
	Table RMS–34 Extend Service FAB Output Fields
	Table RMS–35 Find Service RAB Input Fields
	Table RMS–36 Find Service RAB Output Fields
	Table RMS–37 Find Service RAB64 Input Fields (Alpha Only)
	Table RMS–38 Find Service RAB64 Output Fields (Alpha Only)
	Table RMS–39 Flush Service RAB Input Fields
	Table RMS–40 Flush Service RAB Output Fields
	Table RMS–41 Free Service RAB Input Fields
	Table RMS–42 Free Service RAB Output Fields
	Table RMS–43 Get Service RAB Input Fields
	Table RMS–44 Get Service RAB Output Fields
	Table RMS–45 Get Service RAB64 Input Fields (Alpha Only)
	Table RMS–46 Get Service RAB64 Output Fields (Alpha Only)
	Table RMS–47 Next Volume Service RAB Input Fields
	Table RMS–48 Delete Service RAB Output Fields
	Table RMS–49 Open Service FAB and XAB Input Fields
	Table RMS–50 Open Service FAB and XAB Output Fields
	Table RMS–51 Open Service NAM Input Fields
	Table RMS–52 Open Service NAM Output Fields
	Table RMS–53 Open Service NAML Input Fields (Alpha Only)
	Table RMS–54 Open Service NAML Output Fields
	Table RMS–55 Parse Service FAB Input Fields
	Table RMS–56 Parse Service FAB Output Fields
	Table RMS–57 Parse Service NAM Input Fields
	Table RMS–58 Parse Service NAM Output Fields
	Table RMS–59 Parse Service NAML Input Fields (Alpha Only)
	Table RMS–60 Parse Service NAML Output Fields (Alpha Only)
	Table RMS–61 Put Service RAB Input Fields
	Table RMS–62 Put Service RAB Output Fields
	Table RMS–63 Put Service RAB64 Input Fields (Alpha Only)
	Table RMS–64 Put Service RAB64 Output Fields (Alpha Only)
	Table RMS–65 Read Service RAB Input Fields
	Table RMS–66 Read Service RAB Output Fields
	Table RMS–67 Read Service RAB64 Input Fields (Alpha Only)
	Table RMS–68 Read Service RAB64 Output Fields (Alpha Only)
	Table RMS–69 Release Service RAB Input Fields
	Table RMS–70 Release Service RAB Output Fields
	Table RMS–71 Remove Service FAB Input Fields
	Table RMS–72 Remove Service FAB Output Fields
	Table RMS–73 Remove Service NAM Input Fields
	Table RMS–74 Remove Service NAM Output Fields
	Table RMS–75 Remove Service NAML Input Fields (Alpha Only)
	Table RMS–76 Remove Service NAML Block Output Fields (Alpha Only)
	Table RMS–77 Rename Service FAB Input Fields
	Table RMS–78 Rename Service FAB Output Fields
	Table RMS–79 Rename Service NAM Input Fields
	Table RMS–80 Rename Service NAM Output Fields
	Table RMS–81 Rename Service NAML Input Fields (Alpha Only)
	Table RMS–82 Rename Service NAML Output Fields (Alpha Only)
	Table RMS–83 Rewind Service RAB Input Fields
	Table RMS–84 Rewind Service RAB Output Fields
	Table RMS–85 Search Service FAB Input Fields
	Table RMS–86 Search Service FAB Block Output Fields
	Table RMS–87 Search Service NAM Input Fields
	Table RMS–88 Search Service NAM Output Fields
	Table RMS–89 Search Service NAML Input Fields (Alpha Only)
	Table RMS–90 Search Service NAML Output Fields (Alpha Only)
	Table RMS–91 Space Service RAB Input Fields
	Table RMS–92 Space Service RAB Output Fields
	Table RMS–93 Truncate Service RAB Input Fields
	Table RMS–94 Truncate Service RAB Output Fields
	Table RMS–95 Update Service RAB Input Fields
	Table RMS–96 Update Service RAB Output Fields
	Table RMS–97 Update Service RAB64 Input Fields (Alpha Only)
	Table RMS–98 Update Service RAB64 Output Fields (Alpha Only)
	Table RMS–99 Wait Service FAB Input Fields
	Table RMS–100 Wait Service FAB Output Field
	Table RMS–101 Wait Service RAB Input Fields
	Table RMS–102 Wait Service RAB Output Field
	Table RMS–103 Write Service RAB Input Fields
	Table RMS–104 Write Service RAB Output Fields
	Table RMS–105 Write Service RAB64 Input Fields (Alpha Only)
	Table RMS–106 Write Service RAB64 Output Fields (Alpha Only)
	Table B–1 User Control Blocks
	Table B–2 Record Management Services
	Table B–3 File, Record, and Block I/O Processing Macros

